CHAPTER 1

The Power of Grids — Closest Pair and Smallest Enclosing
Disk

In this chapter, we are going to discuss two basic geometric algorithms. The first one
computes the closest pair among a set of n points in linear time. This is a beautiful and
surprising result that exposes the computational power of using grids for geometric com-
putation. Next, we discuss a simple algorithm for approximating the smallest enclosing
ball that contains k points of the input. This at first looks like a bizarre problem but turns
out to be a key ingredient to our later discussion.

1.1. Preliminaries

For a real positive number o and a point p = (x,y) in R?, define G,(p) to be the grid
point (|x/a] a,|y/a] @). We call a the width or sidelength of the grid G,. Observe that G,
partitions the plane into square regions, which we call grid cells. Formally, for any i, j € Z,
the intersection of the halfplanes x > @i, x < a(i+ 1),y > @j, and y < a(j + 1) is said to
be a grid cell. Further we define a grid cluster as a block of 3 X 3 contiguous grid cells.

Note that every grid cell O of G, has a unique ID; indeed, let p = (x,y) be any point
in O, and consider the pair of integer numbers idg = id(p) = (lx/a],|y/a]). Clearly,
only points inside O are going to be mapped to id;. We can use this to store a set P of
points inside a grid efficiently. Indeed, given a point p, compute its id(p). We associate
with each unique id a data-structure (e.g., a linked list) that stores all the points of P falling
into this grid cell (of course, we do not maintain such data-structures for grid cells which
are empty). So, once we have computed id(p), we fetch the data-structure associated with
this cell by using hashing. Namely, we store pointers to all those data-structures in a hash
table, where each such data-structure is indexed by its unique id. Since the ids are integer
numbers, we can do the hashing in constant time.

AssumpTioN 1.1. Throughout the discourse, we assume that every hashing operation
takes (worst case) constant time. This is quite a reasonable assumption when true random-
ness is available (using for example perfect hashing [CLRSO01]).

AssumptioN 1.2. Our computation model is the unit cost RAM model, where every
operation on real numbers takes constant time, including log and | -] operations. We will
(mostly) ignore numerical issues and assume exact computation.

DermniTion 1.3. For a point set P and a parameter «, the partition of P into subsets
by the grid G, is denoted by G,(P). More formally, two points p,q € P belong to the
same set in the partition G, (P) if both points are being mapped to the same grid point or
equivalently belong to the same grid cell; that is, id(p) = id(q).

1.2. Closest pair
We are interested in solving the following problem:

1

2 1. THE POWER OF GRIDS — CLOSEST PAIR AND SMALLEST ENCLOSING DISK

ProBLEM 1.4. Given a set P of n points in the plane, find the pair of points closest to
each other. Formally, return the pair of points realizing CP(P) = min o llp —qll-
p#q, p.ge

The following is an easy standard packing argument that underlines, under various
disguises, many algorithms in computational geometry.

Lemma 1.5. Let P be a set of points contained inside a
square O, such that the sidelength of O is @« = CP(P). Then
|P| < 4.

Proor. Partition O into four equal squares Oy, . . ., Oq,
and observe that each of these squares has diameter V2a/2
< @, and as such each can contain at most one point of
P; that is, the disk of radius « centered at a point p € P
completely covers the subsquare containing it; see the figure
on the right.

Note that the set P can have four points if it is the four
corners of O0.]

LemMma 1.6. Given a set P of n points in the plane and a distance @, one can verify in
linear time whether CP(P) < a, CP(P) = a, or CP(P) > a.

Proor. Indeed, store the points of P in the grid G,. For every non-empty grid cell,
we maintain a linked list of the points inside it. Thus, adding a new point p takes constant
time. Specifically, compute id(p), check if id(p) already appears in the hash table, if not,
create a new linked list for the cell with this ID number, and store p in it. If a linked list
already exists for id(p), just add p to it. This takes O(n) time overall.

Now, if any grid cell in G,(P) contains more than, say, 4 points of P, then it must be
that the CP(P) < @, by Lemma 1.5.

Thus, when we insert a point p, we can fetch
all the points of P that were already inserted in
the cell of p and the 8 adjacent cells (i.e., all the
points stored in the cluster of p); that is, these are
the cells of the grid G, that intersects the disk
D = disk(p, @) centered at p with radius a; see
the figure on the right. If there is a point closer
to p than « that was already inserted, then it must
be stored in one of these 9 cells (since it must be
inside D). Now, each one of those cells must con-
tain at most 4 points of P by Lemma 1.5 (oth-
erwise, we would already have stopped since the
CP(-) of the inserted points is smaller than). Let
S be the set of all those points, and observe that |S| < 9 -4 = O(1). Thus, we can compute,
by brute force, the closest point to p in S. This takes O(1) time. If d(p,S) < a, we stop;
otherwise, we continue to the next point.

Opverall, this takes at most linear time.

As for correctness, observe that the algorithm returns ‘CP(P) < @’ only after finding
a pair of points of P with distance smaller than @. So, assume that p and q are the pair of
points of P realizing the closest pair and that ||p — q|| = CP(P) < a. Clearly, when the later
point (say p) is being inserted, the set S would contain g, and as such the algorithm would

1.2. CLOSEST PAIR 3

stop and return ‘CP(P) < «’. Similar argumentation works for the case that CP(P) = «.
Thus if the algorithm returns ‘CP(P) > «’, it must be that CP(P) is not smaller than « or
equal to it. Namely, it must be larger. Thus, the algorithm output is correct. []

Remark 1.7. Assume that CP(P \ {p}) > a, but CP(P) < a. Furthermore, assume that
we use Lemma 1.6 on P, where p € P is the last point to be inserted. When p is being
inserted, not only do we discover that CP(P) < a, but in fact, by checking the distance of
p to all the points stored in its cluster, we can compute the closest point to p in P \ {p} and
denote this point by g. Clearly, pq is the closest pair in P, and this last insertion still takes
only constant time.

Slow algorithm. Lemma 1.6 provides a natural way of computing CP(P). Indeed,
permute the points of P in an arbitrary fashion, and let P = (py,...,p,). Next, let a;_| =
CP{p1,...,Pi-1}). We can check if @; < @;_; by using the algorithm of Lemma 1.6 on P;
and @;_;. In fact, if @; < @;_, the algorithm of Lemma 1.6 would return ‘CP(P;) < a1’
and the two points of P; realizing a;.

So, consider the “good” case, where a; = a;_;; that is, the length of the shortest pair
does not change when p; is being inserted. In this case, we do not need to rebuild the
data-structure of Lemma 1.6 to store P; = (pi,...,p;). We can just reuse the data-structure
from the previous iteration that was used by P;_; by inserting p; into it. Thus, inserting a
single point takes constant time, as long as the closest pair does not change.

Things become problematic when «; < «@;_;, because then we need to rebuild the grid
data-structure and reinsert all the points of P; = (py, ..., p;) into the new grid G,,(P;). This
takes O(i) time.

In the end of this process, we output the number «,,, together with the two points of P
that realize the closest pair.

OBSERVATION 1.8. [f the closest pair distance, in the sequence a1, . .., @,, changes only
t times, then the running time of our algorithm would be O(nt + n). Naturally, t might be
Q(n), so this algorithm might take quadratic time in the worst case.

Linear time algorithm. Surprisingly®, we can speed up the above algorithm to have
linear running time by spicing it up using randomization.

We pick a random permutation of the points of P and let {py,...,p,) be this per-
mutation. Let @y = ||p; — p2ll, and start inserting the points into the data-structure of
Lemma 1.6. We will keep the invariant that @; would be the closest pair distance in the set
P, fori=2,...,n.

In the ith iteration, if @; = «@;_1, then this insertion takes constant time. If «; < a;_1,
then we know what is the new closest pair distance @; (see Remark 1.7), rebuild the grid,
and reinsert the i points of P; from scratch into the grid G,,. This rebuilding of G, (P;)
takes O(i) time.

Finally, the algorithm returns the number «, and the two points of P, realizing it, as
the closest pair in P.

Lemma 1.9. Let t be the number of different values in the sequence ay, a3, . . ., a,. Then
E[t] = O(logn). As such, in expectation, the above algorithm rebuilds the grid O(logn)
times.

®Surprise in the eyes of the beholder. The reader might not be surprised at all and might be mildly annoyed
by the whole affair. In this case, the reader should read any occurrence of “surprisingly” in the text as being
“mildly annoying”.

4 1. THE POWER OF GRIDS — CLOSEST PAIR AND SMALLEST ENCLOSING DISK

Proor. For i > 3, let X; be an indicator variable that is one if and only if @; < a;_;.
Observe that E[X;] = Pr[X; = 1] (as X; is an indicator variable) and ¢ = 3} X;.

To bound Pr[X; = 1] = Pr[e; < a,-], we (conceptually) fix the points of P; and ran-
domly permute them. A point q € P; is critical if CP(P; \ {q}) > CP(P;). If there are no
critical points, then @;_; = «; and then Pr[X; = 1] = 0 (this happens, for example, if there
are two pairs of points realizing the closest distance in P;). If there is one critical point,
then Pr[X; = 1] = 1/i, as this is the probability that this critical point would be the last
point in the random permutation of P;.

Assume there are two critical points and let p,q be this unique pair of points of P;
realizing CP(P;). The quantity «; is smaller than a;_; only if either p or q is p;. The
probability for that is 2/i (i.e., the probability in a random permutation of i objects that one
of two marked objects would be the last element in the permutation).

Observe that there cannot be more than two critical points. Indeed, if p and q are
two points that realize the closest distance, then if there is a third critical point s, then
CP(P; \ {s}) = |lp — qll, and hence the point s is not critical.

Thus, Pr[X; = 1] = Pr[a; < a;-1] < 2/i, and by linearity of expectations, we have that
El1] = E[X); Xi| = S, EIX] < 215 2/i = Olog n). m

Lemma 1.9 implies that, in expectation, the algorithm rebuilds the grid O(log n) times.
By Observation 1.8, the running time of this algorithm, in expectation, is O(nlog n). How-
ever, we can do better than that. Intuitively, rebuilding the grid in early iterations of the
algorithm is cheap, and only late rebuilds (when i = Q(n)) are expensive, but the number
of such expensive rebuilds is small (in fact, in expectation it is a constant).

THEOREM 1.10. For set P of n points in the plane, one can compute the closest pair of
P in expected linear time.

Proor. The algorithm is described above. As above, let X; be the indicator variable
which is 1 if @; # @;_1, and 0 otherwise. Clearly, the running time is proportional to

R=1+Z(1+X,--i).
i=3

Thus, the expected running time is proportional to

E[R| =E[1 +Zn1(1 +X,~i)} Sn+iE[Xi]-iSn+ii~Pl‘[Xi = 1|
i=3 i=3 i=3

n) 2
<n+ E i-—<3n,
: i

=3

by linearity of expectation and since E[X;] = Pr[X; = 1] and since Pr[X; = 1] < 2/i (as
shown in the proof of Lemma 1.9). Thus, the expected running time of the algorithm is
O(E[R]) = O(n). []

Theorem 1.10 is a surprising result, since it implies that uniqueness (i.e., deciding if
n real numbers are all distinct) can be solved in linear time. Indeed, compute the distance
of the closest pair of the given numbers (think about the numbers as points on the x-axis).
If this distance is zero, then clearly they are not all unique.

However, there is a lower bound of Q(nlogn) on the running time to solve unique-
ness, using the comparison model. This “reality dysfunction” can be easily explained once
one realizes that the computation model of Theorem 1.10 is considerably stronger, using
hashing, randomization, and the floor function.

1.3. A SLOW 2-APPROXIMATION ALGORITHM FOR THE k-ENCLOSING DISK 5

Ficure 1.1. If the disk Dy (P, k) does not contain any vertex of the cell
¢, then it does not cover any shaded area. As such, it can contain at most
k/2 points, since the vertical and horizontal strips containing ¢ each has
at most k/4 points of P inside it.

1.3. A slow 2-approximation algorithm for the k-enclosing disk

For a disk D, we denote by radius(D) the radius of D. Let Doy (P, k) be a disk of min-
imum radius which contains k points of P, and let 7, (P, k) denote the radius of Doy (P, k).
For k = 2, this is equivalent to computing the closest pair of points of P. As such, the
problem of computing D (P, k) is a generalization of the problem studied in the previous
section.

Here, we study the easier problem of approximating r,p (P, k).

OBserVATION 1.11. Given a set P of n points in the plane, a point q, and a parameter
k, one can compute the k closest points in P to q in O(n) time. To do so, compute for
each point of P its distance to q. Next, using a selection algorithm, compute the k smallest
numbers among these n distances. These k numbers corresponds to the desired k points.
The running time is O(n) as selection can be done in linear time.

The algorithm algDCoverSlow(P, k). Let P be a set of n points in the plane. Com-
pute a set of m = O(n/k) horizontal lines hy, ..., h,, such that between two consecutive
horizontal lines, there are at most k/4 points of P in the strip they define. To this end, con-
sider the points of P sorted in increasing y ordering, and create a horizontal line through
the points of rank i(k/4) in this order, for i = 1,...,|n/(k/4)]. This can be done in
O(nlog(n/k)) time using deterministic median selection together with recursion.? Sim-
ilarly, compute a set of vertical lines vy, ..., v,, such that between two consecutive lines,
there are at most k/4 points of P. (Note that all these lines pass through points of P.)

Consider the (non-uniform) grid G induced by the lines Ay, ..., h, and vy,...,v,. Let
X be the set of all the intersection points of these lines; that is, X is the set of vertices of G.
For every point p € X, compute (in linear time) the smallest disk centered at p that contains
k points of P, and return the smallest disk computed.

LemMma 1.12. Given a set P of n points in the plane and parameter k, the algorithm
algDCoverSlow(P, k) computes, in O(n(n/k)?) deterministic time, a circle D that contains
k points of P and radius(D) < 2rop (P, k), where rop (P, k) is the radius of the smallest disk
in the plane containing k points of P.

®Indeed, compute the median in the y-order of the points of P, split P into two sets, and recurse on each set,
till the number of points in a subproblem is of size < k/4. We have T'(n) = O(n) + 2T (n/2), and the recursion
stops for subproblems of size < k/4. Thus, the recursion tree has depth O(log(n/k)), which implies running time
O(nlog(n/k)).

6 1. THE POWER OF GRIDS — CLOSEST PAIR AND SMALLEST ENCLOSING DISK

Proor. Since |X| = O((n/k)%) and for each such point finding the smallest disk con-
taining k points takes O(n) time, the running time bound follows.

As for correctness, we claim that Doy (P, k) contains at least one point of X. Indeed,
consider the center u of Doy (P, k), and let ¢ be the cell of G that contains u. Clearly, if
Dy (P, k) does not cover any of the four vertices of ¢, then it can cover only points in the
vertical and horizontal strips of G that contain ¢. See Figure 1.1. However, each such
strip contains at most k/4 points, and there are two such strips. It follows that Dy (P, k)
contains at most k/2 points of P, a contradiction. Thus, Doy (P, k) must contain a point of
X. Clearly, for a point € X N Dy (P, k), this yields the required 2-approximation. Indeed,
the disk of radius 27, (P, k) centered at g contains at least k points of P since it also covers
Do (P, k). [|

CoroLLARY 1.13. Given a set P of n points and a parameter k = Q(n), one can compute
in linear time a circle D that contains k points of P and radius(D) < 2rqu(P, k).

Remark 1.14. If algDCoverSlow(P, k) is applied to a point set P of size smaller than
k, then the algorithm picks an arbitrary point p of P and outputs the minimum radius disk
centered at p containing P. This takes O(|P|) time.

RemaARrKk 1.15. One can sometime encode the output of a geometric algorithm in terms
of the input objects that define it. This might be useful for handling numerical issues,
where this might prevent numerical errors. In our case, we will use this to argue about the
expected running time of an algorithm that uses algDCoverSlow in a black-box fashion.
|

So, consider the disk D output by the algorithm algD- .
?

CoverSlow(P, k). It is centered at point p of radius r. The
point p is the intersection of two grid lines. Each of these
grid lines, by construction, passes through two input points
g,s € P. Similarly, the radius of D is the distance of the
intersection point p to a point t € P. Namely, the disk D
can be uniquely specified by a triple of points (q,s,t) of
P, where the first (resp. second) point g (resp. S) specifies
the vertical (resp. horizontal) line of the grid that passes
through this point (thus the two points specify the center of the disk), and the third point
specifies the points on the boundary of the disk; see the figure on the right.

Now, think about running algDCoverSlow on all possible subsets Q C P. The above
argument implies that although there the number of different inputs considered is exponen-
tial, the algorithm always outputs one of n> possible outputs, where 1 = |P|.

Lemma 1.12 can be easily extended to higher dimensions. We get the following result.

Lemma 1.16. Given a set P of n points in R and parameter k, one can compute, in
O(n(n/ k)d) deterministic time, a ball b that contains k points of P and its radius radius(b) <

2ropi(P, k), where rop (P, k) is the radius of the smallest ball in R containing k points of P.

1.4. A linear time 2-approximation for the k-enclosing disk

In the following, we present a linear time algorithm for approximating the minimum
enclosing disk. While interesting in their own right, the results here are not used later and
can be skipped on first, second, or third (or any other) reading.

As in the previous sections, we construct a grid which partitions the points into small
(O(k) sized) groups. The key idea behind speeding up the grid computation is to construct

1.4. A LINEAR TIME 2-APPROXIMATION FOR THE k-ENCLOSING DISK 7

algGrow(P;,a;_1,k)
Output: «; algDCover(P, k)
begin Output: 2-approx. to rop(P, k)
Gio1 « G, ,(P) begin
for every grid cluster ¢ € G;_; Compute a gradation of P:
with [c N P;| > k do {P1,....,Pu}
P. —cnP; a; « algDCoverSlow(Pq, k)
a. < algDCoverSlow(P_, k) for i < 2 tom do
/ ropt(Pc’ k)y<a.< 2ropt(Pc, k) @; < algGrow(P;, a1, k)
return «,,
return minimum @, computed. end
end

Figure 1.2. The linear time 2-approximation algorithm algDCover for
the smallest disk containing k points of P. Here, algDCoverSlow de-
notes the “slow” 2-approximation algorithm of Lemma 1.16.

the appropriate grid over several rounds. Specifically, we start with a small set of points
as a seed and construct a suitable grid for this subset. Next, we incrementally insert the
remaining points, while adjusting the grid width appropriately at each step.

1.4.1. The algorithm.
1.4.1.1. Preliminaries. We remind the reader that algDCoverSlow(P, k) is the “slow”
algorithm of Lemma 1.16.

DerntTion 1.17. Given a set P of n points, a k-gradation (Py,...,P,,) of P is a se-
quence of subsets of P, such that (i) P,, = P, (ii) P; is formed by picking each point of P;,;
with probability 1/2, (iii) |Py| < &, and (iv) |P2| > k.

We remind the reader that a grid cluster is a block of 3 x 3 contiguous grid cells.

Dernttion 1.18. Let gd,, (P) denote the maximum number of points of P mapped to a
single grid cell by the partition G, = G,(P); see Definition 1.3.

Also, let depth(P, @) be the maximum number of points of P that a circle of radius «
can contain.

Lemma 1.19. For any point set P and a > 0, we - N
have that if @ < 2rou(P, k), then any cell of the grid | \ \I
G, contains at most 5k points; that is, gd,(P) < 5k. \ 27D So]

\\ / / \\C \ /

Proor. Let C be the grid cell of G, that realizes NN A Y
gd,(P). Place 4 points at the corners of C and one P - 4 N
point in the center of C. Placing at each of those ¢ N \\/’ /! '\
points a disk of radius 7o (P, k) completely covers | RS |
C, as can be easily verified (since the sidelength of ‘\ //‘\ U opt//
C is at most 2roy(P, k)). Thus, PN C| = gd,(P) < N N v
5 depth(P, rop (P, k)) = 5k; see the figure on the right. T T

8 1. THE POWER OF GRIDS — CLOSEST PAIR AND SMALLEST ENCLOSING DISK

1.4.1.2. The algorithm. We first compute a gradation {Py,...,P,,} of P. We use al-
gDCoverSlow on P; to get the desired approximation for P;. Next, we iteratively refine
this approximation moving from one set in the gradation to the next one. Specifically, mo-
tivated by the above, we will maintain the following invariants at the end of the ith round:
(i) there is a distance a; such that gd,,.(P;) < 5k, (ii) there is a grid cluster in G, containing
k or more points of P;, and (iii) rop (P, k) < ;.

At the ith round, the algorithm constructs a grid G;_; for points in P; using «;_; as the
grid width. We use the slow algorithm of Lemma 1.16 (i.e., algDCoverSlow), on each of
the non-empty grid clusters, to compute ;.

In the end of this process, the number «,, is the desired approximation.

The new algorithm algDCover is depicted in Figure 1.2.

Intuition. During its execution, the algorithm never maps too many points to a single
grid cell being used. Indeed, we know that there is no grid cell of G,_; containing more
than 5k points of P;_;. We expect every cell of G;_; to contain at most 10k points of P;,
since P;,_; C P; was formed by choosing each point of P; with probability 1/2. (This of
course is too good to be true, but something slightly weaker does hold.)

Note that the algorithm of Lemma 1.16 runs in linear time if the number of points
in the set is O(k). In the optimistic scenario, every cluster of G;_1(P;) has O(k) points,
and computing the clustering radius for this point set takes O(k) time. Now, every point
participates in a constant number of clusters, and it follows that this fixing stage takes
(overall) linear time in the size of P;.

1.4.2. Analysis — correctness.

Lemma 1.20. Fori=1,...,m, we have ropn (P, k) < a; < 2rop(P;, k), and the heaviest
cell in G,,(P;) contains at most Sk points of P;.

Proor. Consider the optimal disk D; that realizes rq(P;, k). Observe that there is a
cluster ¢ of Gy, , that contains D;, as @;—; > «;. Thus, when algGrow handles the cluster
¢, we have D; N P; C c. The first part of the lemma then follows from the correctness of
the algorithm of Lemma 1.16.

The second part follows by Lemma 1.19. []

Lemma 1.20 implies immediately the correctness of the algorithm by applying it for
i=m.

1.4.3. Running time analysis.
Lemma 1.21. Given a set P, a gradation of P can be computed in expected linear time.

Proor. Observe that the sampling time is 0(il IP,-I), where m is the length of the
sequence. Also observe that E[|P,,|] = |P,,| = n and

[P = E[E[Pi1 | 1P| = E[|P—21|] = ZE[Pu].
Now by induction, we get
E[|Pm—i|] = %
Thus, the running time is O(E[Z;’;l |P,<|]) = O(Zl’il n/zi) = 0(n). [|

Since |Pq| < k, the call a; « algDCoverSlow(P, k) in algDCover takes O(k) time,
by Remark 1.14.

1.4. A LINEAR TIME 2-APPROXIMATION FOR THE k-ENCLOSING DISK 9

1.4.3.1. Excess and why it is low. Now we proceed to upper-bound the number of
cells of Gy, , that contains “too many” points of P;. Since each point of P;_; was chosen
from P; with probability 1/2, we can express this bound as a sum of independent random
variables, and we can bound this using tail-bounds.

DerintTion 1.22. For a point set P and parameters k and a, the excess of G,(P) is

lcn PIJ P
< —

EP,) = { < ,
ceCells(Gy) S0k S0k

where Cells(G,,) is the set of cells of the grid G,,.

The quantity 100k - E(P,) is an upper bound on the number of points of P in heavy
cells of G, (P), where a cell of G,(P) is heavy if it contains at least 50k points.

For a point set P of n points, the radius « returned by the algorithm of Lemma 1.16
is the distance between a vertex q of the non-uniform grid (i.e., a point of the set X) and
a point of P. Remark 1.15 implies that such a number « is defined by a triple of points of
P (i.e., they specify the three points that @ is computed from). As such, a can be one of
at most O(n*) different values. This implies that throughout the execution of algDCover
the only grids that would be considered would be one of (at most) n* possible grids. In
particular, let ® = &(P) be this set of possible grids.

Lemma 1.23. Forany t > 0, let y = [31nn] /8k and B = t + y. The probability that
Gy, (P) has excess E(P;, 1) = B is at most exp(—8kt).

Proor. Let ® = G(P) (see above), and fix a grid G € ® with excess &(P;, %(G)) at
least 8, where %(G) is the sidelength of a cell of G.

LetU = {{Pi Nct | ceG,IP;Nncl > SOk} be the sets of points stored in the heavy cells

of G. Furthermore, let V = U TI(X, 50k), where T1(X, v) denotes an arbitrary partition of

XeU
the set X into disjoint subsets such that each one of them contains v points, except maybe

the last subset that might contain between v and 2v — 1 points.

This partitions the points inside each heavy cell into groups of size at least 50k. Now,
since each such group lies inside a single cell of G, for G to be the grid computed for
P;_1, it must be that every such group “promoted” at most 5k points from P; to P;_;, by
Lemma 1.20.

Now, it is clear that |'V| = &(P;,%(G)), and for any S € V, we have that u =
E[lS NP;_i|]] > 25k. Indeed, we promote each point of § C P;, independently, with
probability 1/2, to be in P,_; and |S| > 50k. As such, by the Chernoff inequality (Theo-
rem 27.18,341), for 6 = 4/5, we have

2 2
Pr[|S NP1l < Sk] < Pr[lS NPl < - 6),11] < exp(—,u%) < exp(—%)
= exp(—8k).

Furthermore, since G = Gy, ,, this imply that each cell of G contains at most 5k points of
P;_1, by Lemma 1.20. Thus we have

PI‘[G(,F1 = G] < 1_[Pr[|S NP1 < Sk] < exp(=8k|V|) = exp(—8kE(P;, #(G)))
Sev
< exp(—8kp) .

10 1. THE POWER OF GRIDS — CLOSEST PAIR AND SMALLEST ENCLOSING DISK

Since there are at most > different grids in ®, we have

Pl zp|=P| | @=G.)|< Y PrlG=G,.]

Ge®, Ge®,
E(Pix(G)=p E(P;x(G)=p

3[Inn]

<n exp(—8kB) < exp(3 Inn— Sk(t +)) <exp(-8ki). g

1.4.3.2. Bounding the running time.

Lemma 1.24. In expectation, the running time of the algorithm in the ith iteration is
O(IPil +y*k), where y = [3Inn] /8.

Proor. Let Y be the random variable which is the excess of G,, ,(P;). In this case,
there are at most Y cells which are heavy in G,, ,(P;), and each such cell contains at most
O(Yk) points. Thus, invoking the algorithm of algDCoverSlow on such a heavy cell takes
O(Yk-((Yk)/k)*) = O(Y3k) time. Overall, the running time of algGrow, in the ith iteration,
is T(Y) = O(|P,«| +Y- Y3k) = O(|Pi| + Y4k).

Set y = [31Inn]/8k, and observe that the expected running time in the ith stage is

nlk
R; = O(Z Pr{Y = 1](|Pi| + Y4k>]

=0

nlk
= O(|P,~| +Pr[Y < y]y*k + ZPr[Y =1+t +y)* k]

t=1

nlk

=0 (lP,-l + Y+) exp(=8kn) -(t +) k) = O(IPi + '),
=1

by Lemma 1.23 and since the summation is bounded by

n/k
= o(y“kz t* exp(—8kt)J = 0(y%).

t=1

n/k
0 (Z 16¢*y*k exp(—8k?)

t=1

Thus, by Lemma 1.24 and by Lemma 1.21, the total expected running time of algD-
Cover inside the inner loop is

o[i(|Pi| + 74k)] = O(n +(%)4 km] = 0(n),

i=1

since m = O(log n), with high probability, as can be easily verified.

THEOREM 1.25. Given a set P of n points in the plane and a parameter k, the algorithm
algDCover computes, in expected linear time, a radius «, such that ro(P,k) < a <
2ropi(P, k), where rop (P, k) is the minimum radius of a disk covering k points of P.

1.5. Bibliographical notes

Our closest-pair algorithm follows Golin et al. [GRSS95]. This is in turn a simplifi-
cation of a result of Rabin [Rab76]. Smid provides a survey of such algorithms [Smi00].

The minimum disk approximation algorithm is a simplification of the work of Har-
Peled and Mazumdar [HMOS5]. Note that this algorithm can be easily adapted to any point
set in constant dimension (with the same running time). Exercise 1.3 is also taken from
there.

1.6. EXERCISES 11

Computing the exact minimum disk containing & points. By plugging the algo-
rithm of Theorem 1.25 into the exact algorithm of Matousek [Mat95a], one gets an O(nk)
time algorithm that computes the minimum disk containing k points. It is conjectured that
any exact algorithm for this problem requires (nk) time.

1.6. Exercises

Exercisk 1.1 (Packing argument and the curse of dimensionality). One of the reasons
why computational problems in geometry become harder as the dimension increases is that
packing arguments (see Lemma 1.5) provide bounds that are exponential in the dimension,
and even for moderately small dimension (say, d = 16) the bounds they provide are too
large to be useful.

As a concrete example, consider a maximum cardinality point set P contained inside
the unit length cube C in R (i.e., the unit hypercube), such that CP(P) = 1.

(A) Prove that

d
2 <Pl <([Vd]+1).
(B) The above lower bound is conservative. for example, in four dimensions, it is easy to

pack 17 points into the hypercube. Show such a configuration.
(C) Using the formula for the volume of the ball (see Section 19.2.1), and Stirling’s for-

mula, prove that (\/a / S)d < |PJ, for d sufficiently large.

Exercise 1.2 (Compute clustering radius). Let C and P be two given sets of points in
the plane, such that k = |C| and n = |P|. Let r = maXpep Mingec HE - p“ be the covering
radius of P by C (i.e., if we place a disk of radius r around each point of C, all those disks
cover the points of P).

(A) Give an O(n + klogn) expected time algorithm that outputs a number «, such that
r<a<10r.

(B) For & > 0 a prescribed parameter, give an O(n + k2 log n) expected time algorithm
that outputs a number @, such that @ < r < (1 + ¢)a.

Exercisk 1.3 (Randomized k-enclosing disk). Given a set P of n points in the plane and
parameter k, present a (simple) randomized algorithm that computes, in expected O(n(n/k))
time, a circle D that contains k points of P and radius(D) < 2rqu (P, k).

(This is a faster and simpler algorithm than the one presented in Lemma 1.16.)

