Curves and Surfaces
for CAGD

A Practical Guide
Fifth Edition

Gerald Farin
Arizona State University

AAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAA

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
OOOOOOOOOOOOOOO

4.1

The de Casteljau //
Algorithm A

The algorithm described in this chapter is probably the most fundamental
one in the field of curve and surface design, yet it is surprisingly simple. Its
main attraction is the beautiful interplay between geometry and algebra: a very
intuitive geometric construction leads toa powerful theory.

Historically, it is with this algorithm that the work of de Casteljau started
in 1959. The only written evidence is in [145] and [146], both technical reports
that are not easily accessible. De Casteljau’s work went unnoticed until W. Boehm
obtained copies of the reports in 1975. Since then, de Casteljau’s work has gained
more popularity.

Parabolas

We give a simple construction for the generation of a parabola; the straightfor-
ward generalization will then lead to Bézier curves. Let by, by, b, be any three
points in E3, and let ¢ € R. Construct

bi(t) = (1—)by + tby,

bl(#) = (1 -)b, +tby,

b3(t) = (1 —)by(®) + tb](2).
Inserting the first two equations into the third one, we obtain

bi(#) = (1 —)%bg + 2¢(1 —)by + £°b,. (4.1)

Y

R 2

bls

Chapter 4 The de Casteljau Algorithm

Figure 4.1

b,

b,

o “— —0
0 t 1

Parabolas: construction by repeated linear interpolation.

This is a quadratic expression in ¢ (the superscript denotes the degree), and so
b%(t) traces out a parabola as t varies from —o0 to +o0. We denote this parabola
by b2. This construction consists of repeated linear interpolation; its geometry is
illustrated in Figure 4.1. For ¢ between O and 1, b2(2) is inside the triangle formed
by by, by, by; in particular, b?(0) =bg and b%(1) = b,.

Inspecting the ratios of points in Figure 4.1, we see that

ratio(bg, b(l), b,) = ratio(b;, b%, by) = ratio(b(l), bé, b}) =t/(1—1).

Thus our construction of a parabola is affinely invariant because piecewise linear
interpolation is affinely invariant; see Section 3.2.

We also note that a parabola is a plane curve, since b2(z) is always a barycentric
combination of three points, as is clear from inspecting (4.1). A parabola is a
special case of conic sections, which will be discussed in Chapter 12.

Finally we state a theorem from analytic geometry, closely related to our
parabola construction. Let a, b, ¢ be three distinct points on a parabola. Let the
tangent at b intersect the tangents at a and c in e and f, respectively. Let the
tangents at a and c intersect in d. Then ratio(a, e, d) = ratio(e, b, f) = ratio(d, f, c).
This three tangent theorem describes a property of parabolas; the de Casteljau
algorithm can be viewed as the constructive counterpart. Figure 4.1, although
using a different notation, may serve as an illustration of the theorem.

4.2 The de Casteljau Algorithm 45

4.2 The de Casteljau Algorithm

Parabolas are plane curves. However, many applications require true space
curves.! For those purposes, the previous construction for a parabola can be
generalized to generate a polynomial curve of arbitrary degree 7:

de Casteljau algorithm:

Given: by,by,...,b,eE3andt e R,
set

b](1) = (1 - b]~1(2) + b] ;1 (2) { := (4.2)

i+1 =0,...,n—7r
and b?(t) = b;. Then b{j(¢) is the point with parameter value ¢ on the Bézier
curve b”, hence b”(2) = bj(2).

«* ™ The polygon P formed by b, . .., b, is called the Bézier polygon or control
polygon of the curve b*.2 Similarly, the spolygon vertices b; are called control
points or Bézier points. Figure 4.2 illustrates the cubic case.

Sometimes we also write b”(¢) = B[by, . . . , b,; t]= B[P; ¢] or, shorter, b” =
B[by, . ..,b,] =BP. This notation’ defines B to be the (linear) operator that
associates the Bézier curve with its control polygon. We say that the curve
Blby, . . ., b,] is the Bernstein-Bézier approximation to the control polygon, a
terminology borrowed from approximation theory; see also Section 6.9.

The intermediate coefficients bl(¢) are conveniently written into a triangular
array of points, the de Casteljau scheme. We give the example of the cubic case:

by
b, bl
b, b% b2 (4.3)

0
by bl b2 b

This triangular array of points seems to suggest the use of a two-dimensional
array in writing code for the de Casteljau algorithm. That would be a waste of

1 Compare the comments by P. Bézier in Chapter 1!

2 Inthe cubic case, there are four control points; they form a tetrahedron in the 3D case. This
tetrahedron was already mentioned by W. Blaschke [65] in 1923; he called it “osculating
tetrahedron.”

3 This notation should not be confused with the blossoming notation used later.

)

A

46 Chapter 4 The de Casteljau Algorithm

Figure 4.2

Example 4.1

o - -0
0 t 1

The de Casteljau algorithm: the point bg(t) is obtained from repeated linear interpolation.
The cubic case 7 = 3 is shown for t =1/3.

Computing a point on a Bézier curve with the de Casteljau algorithm.

A de Casteljau scheme for a planar cubic and for ¢ = %:

storage, however: it is sufficient to use the left column only and to overwrite it
appropriately.

For a numerical example, see Example 4.1. Figure 4.3 shows 60 evaluations
of a Bézier curve. The intermediate points b/ are also plotted and connected.*

Although the control polygon of the figure is symmetric, the plot is not. This is due to the
organization of the plotting algorithm.

4.3 Some Properties of Bézier Curves &7

200 J,
N

Figure 4.3 The de Casteljau algorithm: 60 points are computed on a degree six curve; all intermede-

4.5

diate points b} are shown.

Some Properties of Bézier Curves

The de Casteljau algorithm allows us to infer several important properties of
Bézier curves. We will infer these properties from the geometry underlying the
algorithm. In the next chapter, we will show how they can also be derived
analytically.

Affine invariance. Affine maps were discussed in Section 2.2. They are in the
tool kit of every CAD system: objects must be repositioned, scaled, and so
on. An important property of Bézier curves is that they are invariant under
affine maps, which means that the following two procedures yield the same
result: (1) first, compute the point b*(¢) and then apply an affine map to it; (2)
first, apply an affine map to the control polygon and then evaluate the mapped
polygon at parameter value .

Affine invariance is, of course, a direct consequence of the de Casteljau
algorithm: the algorithm is composed of a sequence of linear interpolations
(or, equivalently, of a sequence of affine maps). These are themselves affinely
invariant, and so is a finite sequence of them.

Let us discuss a practical aspect of affine invariance. Suppose we plot a cubic
curve b3 by evaluating at 100 points and then plotting the resulting point array.
Suppose now that we would like to plot the curve after a rotation has been
applied to it. We can take the 100 computed points, apply the rotation to each
of them, and plot. Or, we can apply the rotation to the 4 control points, then
evaluate 100 times and plot. The first method needs 100 applications of the
rotation, whereas the second needs only 4!

48 Chapter 4 The de Casteljau Algorithm

Affine invariance may not seem to be a very exceptional property for a
useful curve scheme; in fact, it is not straightforward to think of a curve
scheme that does not have it (exercise!). It is perhaps worth noting that Bézier
curves do not enjoy another, also very important, property: they are not
projectively invariant. Projective maps are used in computer graphics when
an object is to be rendered realistically. So if we try to make life easy and
simplify a perspective map of a Bézier curve by mapping the control polygon
and then computing the curve, we have actually cheated: that curve is not the
perspective image of the original curve! More details on perspective maps can
be found in Chapter 12.

Invariance under affine parameter transformations. Very often, one thinks
of a Bézier curve as being defined over the interval [0, 1]. This is done because it
is convenient, not because it is necessary: the de Casteljau algorithm is “blind”
to the actual interval that the curve is defined over because it uses ratios only.
One may therefore think of the curve as being defined over any arbitrary
interval @ < u < b of the real line—after the introduction of local coordinates
t = (u — a)/ (b — a), the algorithm proceeds as usual. This property is inherited
from the linear interpolation process (3.9). The corresponding generalized
de Casteljau algorithm is of the form:

, b—u,,_ U—a, .
bl (u) = mbi L) + -b—_—;b,.ﬂl(u). (4.4)

The transition from the interval [0, 1] to the interval [a, b] is an affine
map. Therefore, we can say that Bézier curves are invariant under affine
parameter transformations. Sometimes, one sees the term linear parameter
transformation in this context, but this terminology is not quite correct: the
transformation of the interval [0, 1] to [a, b] typically includes a translation,
which is not a linear map.

Convex hull property. For ¢ € [0, 1], b”(2) lies in the convex hull (see Figure 2.3)
of the control polygon. This follows since every intermediate b is obtained
as a convex barycentric combination of previous bl'."l—at no step of the
de Casteljau algorithm do we produce points outside the convex hull of
thC b,‘.

A simple consequence of the convex hull property is that a planar control
polygon always generates a planar curve.

4.3 Some Properties of Bézier Curves 49

The importance of the convex hull property lies in what is known as
interference checking. Suppose we want to know if two Bézier curves intersect
each other—for example, each might represent the path of a robot arm, and
our aim is to make sure that the two paths do not intersect, thus avoiding
expensive collisions of the robots. Instead of actually computing a possible
intersection, we can perform a much cheaper test: circumscribe the smallest
possible box around the control polygon of each curve such that it has its edges
parallel to some coordinate system. Such boxes are called minmax boxes, since
their faces are created by the minimal and maximal coordinates of the control
polygons. Clearly each box contains its control polygon, and, by the convex
hull property, also the corresponding Bézier curve. If we can verify that the
two boxes do not overlap (a trivial test), we are assured that the two curves
do not intersect. If the boxes do overlap, we would have to perform more
checks on the curves. The possibility for a quick decision of no interference
is extremely important, since in practice one often has to check one object
against thousands of others, most of which can be labeled “no interference”
by the minmax box test.’

Endpoint interpolation. The Bézier curve passes through by and b,;: we have
b*(0) = by, b*(1) =b,,. This is easily verified by writing down the scheme (4.3)
for the cases = 0 and ¢ = 1. In a design situation, the endpoints of a curve
are certainly two very important points. It is therefore essential to have direct
control over them, which is assured by endpoint interpolation.

Designing with Bézier curves. Figure 4.4 shows two Bézier curves. From the
inspection of these examples, one gets the impression that in some sense the
Bézier curve “mimics” the Bézier polygon—this statement will be made more
precise later. It is the reason Bézier curves provide such a handy tool for the
design of curves: to reproduce the shape of a hand-drawn curve, it is sufficient
to specify a control polygon that somehow “exaggerates” the shape of the
curve. One lets the computer draw the Bézier curve defined by the polygon,
and, if necessary, adjusts the location (possibly also the number) of the polygon
vertices. Typically, an experienced person will reproduce a given curve after
two to three iterations of this interactive procedure.

5 It is possible to create volumes (or areas, in the 2D case) that hug the given curve closer
than the minmax box does. See Sederberg et al. [560].

RA v

50 Chapter 4 The de Casteljau Algorithm

I - Figure 4.4

4.4

=

Bézier curves: some examples.

The Blossom

In recent years, a new way to look at Bézier curves has been developed; it is
called the principle of blossoming. This principle was independently developed
by de Casteljau [147] and Ramshaw [498], [499]. Other literature includes Seidel
[562], [565], [566]; DeRose and Goldman [165]; Boehm [75]; Lee [379]; and
Gallier [252]. '

Blossoms were introduced in Section 3.4. They are closely related to the
de Casteljau algorithm: in column 7, do not again perform a de Casteljau step
for parameter value ¢, but use a new value ¢,. Restricting ourselves to the cubic
case, we obtain:

4.4 The Blossom 51

b; bj[t]
b, bilty] bjlts, 2]
b; bity] bilts, 22 b3 (21, 22, t3)-

(4.5)

The resulting point bg[tl, 1, t3] is now a function of three independent variables;
thus it no longer traces out a curve, but a region of E3. This trivariate function
b[., -, -]is called the blossom from Section 3.4. The original curve is recovered if
we set all three arguments equal: t =t =1, =13.

To understand the blossom better, we now evaluate it for several special
arguments. We already know, of course, that b[0, 0,0]=bg and b{1,1,1]= b;.
Let us start with [¢1, 23, 23] = [0, 0, 1]. The scheme (4.5) reduces to:

by
b; by
b, b, bO (4.6)

b; b, b; b;=b[0,0,1].

Similarly, we can show that b[0,1,1] = b,. Thus the original Bézier points can
be found by evaluating the curve’s blossom at arguments consisting only of 0’

and 1’s.
But the remaining entries in (4.3) may also be written as values of the blossom

for special arguments. For instance, setting [t1, t2, t31=[0, 0,], we have the
scheme

by
b; bg
b b, (4.7)

b; b, by b(l) =b[0, 0,1].
Continuing in the same manner, we may write the complete scheme (4.3) as:

by = b|0, 0, 0]

b; =b[0,0,1] b[0,0,1]

b, =b[0,1,1] b[0,2,1] b0,2,1]
b;=b[1,1,1] bz, 1,1} bft,z,1] b[t, t,t].

(4.8)

This is easily generalized to arbitrary degrees, where we can also express the
Bézier points as blossom values:

bi — b[0<n—i>, 1<i>], (4.9)

pise

52 Chapter 4 The de Casteljau Algorithm

where t<'> means that t appears r times as an argument. For example,
b[0<1>,t<2>,1<0>] =b[0, ¢, t].

The de Casteljau recursion (4.2) can now be expressed in terms of the blos-
som b:

b[0<n—r—i>, t<r>’ 1<i>] =(1- t)b[0<n—r—i+1>’ t<r—1>, 1<i>]

+ tb[0<n——r—i>, t<r-1>’ l<i+1>]. (410)

The point on the curve is given by b{z=">].

We may also consider the blossom of a Bézier curve that is not defined over
[0, 1] but over the more general interval [a, b). Proceeding exactly as above—
but now using (4.4)—we find that the Bézier points b; are found as the blossom
values

b; = bla<""*>,b<""]. (4.11)

Thus a cubic over u € [a, b has Bézier points bla, a, 4}, bla, 4, b],ba, b, b},bb, b, b}.
If the original Bézier curve was defined over [0, 1), the Bézier points of the one
corresponding to [a, b] are simply found by four calls to a blossom routine! See
also Figure 4.5.

b{1,1,0] b[1,1,1]
O'—

b[b,b,b]

bla,b,b]

bla,a,b]

bla,a,a]
Rl

b[0,0,0] b[0,0,1]

[oe—

0 a4 b 1

Figure 4.5 Subdivision: the relevant blossom values.

4.5

4.5 Implementation 53

We may also find explicit formulas for blossoms; here is the case of a cubic:

b(ty, 23, 3]
= (1—t1)b[0, 25, 23] + t1b[1, 12, 13]
= (1 - tp[(1 — £2)b[0, 0, 23] + £,b[0, 1, t3]] + t1[(1 — £2)b[0, 1, 23]
+ t,b[1, 1, 23]]
=b[0,0,0)(1 — £)(1 — £)(1 — t3)
+b[0,0,1][(1 — (1 — tt3 + A= tta(1 — 23) + 11(1 = t)(1—13)]
+b[0,1,1][t42,(1 — £3) + (1 = t)t3 + (1 - t1)tst3]

+bl1, 1, 1]t4t2t3.

For each step, we have exploited the fact that blossoms are multiaffine, following
the inductive proof of the Leibniz equation (3.22).

We should add that every multivariate polynomial function may be interpreted
as the blossom of a Bézier curve—as loAg as it is both symmetric and multiaffine.

Implementation

The header of the de Casteljau algorithm program is:

float decas(degree,coeff,t)
/* uses de Casteljau to compute one coordinate
value of a Bezier curve. Has to be called
for each coordinate (x,y, and/or z) of a control polygon.
Input: degree: degree of curve.
coeff: array with coefficients of curve.
t: parameter value.
Qutput: coordinate value.

*/

This procedure invites several comments. First, we see that it requires the use of
an auxiliary array coeffa. Moreover, this auxiliary array has to be filled for each
function call! So on top of the already high computational cost of the de Casteljau
algorithm, we add another burden to the routine, keeping it from being very
efficient. A faster evaluation method is given at the end of the next chapter.

a

54 Chapter 4 The de Casteljau Algorithm

To plot a Bézier curve, we would then call the routine several times:

void bez_to_points(degree,npoints,coeff.points)
/* Converts Bezier curve into point sequence. Works on
one coordinate only.
Input: degree: degree of curve.
npoints: # of coordinates to be generated. (counting
from 0!)
coeff: coordinates of control polygon.

Qutput: points: coordinates of points on curve.

Remark: For a 2D curve, this routine needs to be called twice,
once for the x-coordinates and once for y.

*/

The last subroutine has to be called once for each coordinate, that is, two or
three times. The main program decasmain.c on the enclosed disk gives an example
of how to use it and how to generate postscript output.

4 6 Problems

1 Suppose a planar Bézier curve has a control polygon that is symmetric
with respect to the y-axis. Is the curve also symmetric with respect to
the y-axis? Be sure to consider the control polygon (-1,0), (0,1, (1, D),
(0,2), (0, 1), (-1, 1), (0,2), (0, 1), (1, 0). Generalize to other symmetry
properties.

2 Use the de Casteljau algorithm to design a curve of degree four that has its
middle control point on the curve. More specifically, try to achieve

_41)
_—e

Five collinear control points are a solution; try to be more ambitious!

*3 The de Casteljau algorithm may be formulated as
Blbg, . . . ,b,st1= (1 —1)Bbg, - . ., bu_13 t]+tBlby, ..., b, 2]

Show that the computation count is exponential (in terms of the degree) if
you implement such a recursive algorithm in a language like C.

* 4

P1

P2

P3

P4

4.6 Problems 55

Show that every nonplanar cubic in E3 can be obtained as an affine map of
the standard cubic (see Boehm [70])

t

x(t) = | £
£3

Werite an experimental program that replaces (1 — ¢) and ¢ in the recursion

(4.2) by [1 = f(#)] and f (), where f is some “interesting” function. Change
the routine decas accordingly and comment on your results.

Rewrite the routine decas to handle blossoms. Evaluate and plot for some
“interesting” arguments.

Experiment with the data set out1ine_2D.dat on the floppy: try to recapture
its shape using one, two, and four Bézier curves. These curves should have
decreasing degrees as you use more of them.

Then repeat the previous problem with outline_3D.dat. This data set is
three dimensional, and you will have to use (at least) two views as you

“approximate the data points. The points, by the way, are taken from the

outline of a high heel shoe sole.

g

