
15-451/651: Design & Analysis of Algorithms May 2, 2019
Lecture #27: Polynomials in Algorithm Design last changed: May 9, 2019

In this lecture, we will see some of the power of polynomials in algorithm design. In particular,
we’ll see the basic and beautiful ideas behind the error-correction used in QR codes (like this one):

You’ve probably all seen polynomials before: e.g., 3x2 − 5x + 17, or 2x− 3, or −x5 + 38x3 − 1, or
x, or even a constant 3. These are all polynomials over a single variable (here, x). The degree of a
polynomial is the highest exponent of x that appears: hence the degrees of the above polynomials
are 2, 1, 5, 1, 0 respectively.

In general, a polynomial over the variable x of degree at most d looks like:

P (x) = cdx
d + cd−1x

d−1 + .. + c1x + c0

Note that the sequence of d + 1 coefficients 〈cd, cd−1, . . . , c0〉 completely describes P (x).

Hence, if the coefficients were all drawn from the set Zp, then we have exactly pd+1 possible different
polynomials. This includes the zero polynomial 0 = 0xd + 0xd−1 + .. + 0x + 0.

In this lecture, we will use properties of polynomials, to construct error correcting codes, and do
other cool things with them.

1 Operations on Polynomials

Before we study properties of polynomials, recall the following simple operations on polynomials:

• Given two polynomials P (x) and Q(x), we can add them to get another polynomial R(x) =
P (x) + Q(x). Note that the degree of R(x) is at most the maximum of the degrees of P and
Q. (Q: Why is it not equal to the maximum?)

(x2 + 2x− 1) + (3x3 + 7x) = 3x3 + x2 + 9x− 1

The same holds for the difference of two polynomials P (x) − Q(x), which is the same as
P (x) + (−Q(x)).

• Given two polynomials P (x) and Q(x), we can multiply them to get another polynomial
S(x) = P (x)×Q(x).

(x2 + 2x− 1)× (3x3 + 7x) = 3x5 + 4x3 + 6x4 + 14x2 − 7x

The degree of S(x) is equal to the sum of the degrees of P and Q.

• Note that P (x)/Q(x) may not be a polynomial.

1

• We can also evaluate polynomials. Given a polynomial P (x) and a value a, P (a) := cd · ad +
cd−1 · ad−1 + .. + c1 · a + c0. For example, if P (x) = 3x5 + 4x3 + 6x4 + 14x2 − 7x, then

P (2) = 3 · 25 + 4 · 23 + 6 · 24 + 14 · 22 − 7 · 2 = 266

Of course, the multiplication between the ci’s and a must be well-defined, as should the
meaning of ai for all i. E.g., if the ci’s and a are reals, this is immediate.

But also, if ci’s and a all belonged to Zp for prime p, evaluation would still be well-defined.
For instance, if we were working in Z17, then

P (2) = 266 (mod 17) = 11

• A root of a polynomial P (x) is a value r such that P (r) = 0. For example, P (x) above has
three real roots 0,−1 +

√
2,−1−

√
2, and two complex roots.

Here, we were implictly working over R, the field of real numbers. But almost everything today
holds true for any field, say a finite field of integers modulo a prime (Fp for prime p).

2 How Many Roots?

Let’s start with the following super-important theorem.

Theorem 1 (Few-Roots Theorem) Any non-zero polynomial of degree at most d has at most
d roots.

This holds true, regardless of what field we are working over. When we are working over the reals
(i.e., the coeffcients are reals, and we are allowed to plus in arbitrary reals for x), this theorem is
a corollary of the fundamental theorem of Algebra. But it holds even if we are working over some
other field (say Zp for prime p).

Let’s relate this to what we know. Consider polynomials of degree 1, also known as linear polyno-
mials. Say they have real coefficients, this gives a straight line when we plot it. Such a polynomial
has at most one root: it crosses the x-axis at most once. And in fact, any degree-1 polynomial
looks like c1x+c0, and hence setting x = −c0/c1 gives us a root. So, in fact, a polynomial of degree
exactly 1 has exactly one root.

What about degree 2, the quadratics? Things get a little more tricky now, as you probably
remember from high school. E.g., the polynomial x2 + 1 has no real roots, but it has two complex
roots. However, you might remember that if it has one real root, then both roots are real. But
anyways, a quadratic crosses the x-axis at most twice. At most two roots.

And in general, Theorem 1 says, any polynomial of degree at most d has at most d roots.

3 A New Representation for degree-d Polynomials

Let’s prove a simple corollary of Theorem 1, which says that if we plot two polynomials of degree
at most d, then they can intersect in at most d points—unless they are the same polynomial (and
hence intersect everywhere)! Remember, two distinct lines intersect at most once, two distinct
quadratics intersect at most twice, etc. Same principle.

Corollary 2 Given d+ 1 pairs (a0, b0), (a1, b1), . . . , (ad, bd), where the ai’s are distinct, there is at
most one polynomial P (x) of degree at most d, such that P (ai) = bi for all i = 0, 1, . . . , d.

2

Proof: For a contradiction, suppose there are two distinct polynomials P (x) and Q(x) of degree
at most d such that for all i,

P (ai) = Q(ai) = bi.

Then consider the polynomial R(x) = P (x)−Q(x). It has degree at most d, since it is the difference
of two polynomials of degree at most d. Moreover,

R(ai) = P (ai)−Q(ai) = 0

for all the d+ 1 settings of i = 0, 1, . . . , d. Once again, R is a polynomial of degree at most d, with
d + 1 roots. By the contrapositive of Theorem 1, R(x) must be the zero polynomial. And hence
P (x) = Q(x), which gives us the contradiction. �

To paraphrase the theorem differently, given two (i.e., 1 + 1) points there is at most one linear (i.e.,
degree-1) polynomial that passes through them, given three (i.e., 2 + 1) points there is at most one
quadratic (i.e., degree-2) polynomial that passes through them, etc.

Can it be the case that for some d + 1 pairs (a0, b0), (a1, b1), . . . , (ad, bd), there is no polynomial of
degree at most d that passes through them? Well, clearly if ai = aj but bi 6= bj . But what if all
the ai’s are distinct?

Theorem 3 (Unique Reconstruction Theorem) Given d+1 pairs (a0, b0), (a1, b1), . . . , (ad, bd)
where the ai’s are distinct, there always exists a polynomial P (x) of degree at most d, such that
P (ai) = bi for all i = 0, 1, . . . , d.

We will prove this theorem soon, but before that note some implications. Combining Corollary 2
with Theorem 3, we get that given d + 1 pairs (a0, b0), (a1, b1), . . . , (ad, bd) with distinct a’s, this
means there is a unique polynomial of degree at most d that passes through them. Exactly one.

In fact, given d + 1 numbers b0, b1, . . . , bd, there is a unique polynomial P (x) of degree at most d
such that P (i) = bi. (We’re just using the theorem with ai = i.) Earlier we saw how to represent
any polynomial of degree at most d by d + 1 numbers, the coefficients. Now we are saying that
we can represent the polynomial of degree at most d by a different sequence of d + 1 numbers: its
values at 0, 1, . . . d.

Two different representations for the same thing, cool! Surely there must be a use for this new
representation. We will give at least two uses for this, but first let’s see the proof of Theorem 3. (If
you are impatient, you can skip over the proof, but do come back and read it—it is very elegant.)

3.1 The Proof of Theorem 3?

OK, now the proof. We are given d + 1 pairs (ai, bi), and the a’s are all distinct. The proof
will actually give an algorithm to find this polynomial P (x) with degree at most d, and where
P (ai) = bi.

Let’s start easy: suppose all the d + 1 values bi’s were zero. Then P (x) has d + 1 roots, and now
Theorem 1 tells us that P (x) = 0, the zero polynomial!

OK, next step. Suppose b0 = 1, but all the d other bi’s are zero. Do we know a degree-d polynomial
which has roots at d places a1, a2, . . . , ad. Sure, we do—it is just

Q0(x) = (x− a1)(x− a2) · · · (x− ad).

So are we done? Not necessarily: Q0(a0) might not equal b0 = 1. But that is easy to fix! Just scale

3

the polynomial by 1/Q0(a0). I.e., what we wanted was

R0(x) = (x− a1)(x− a2) · · · (x− ad) · 1

Q0(a0)

=
(x− a1)(x− a2) · · · (x− ad)

(a0 − a1)(a0 − a2) · · · (a0 − ad)
.

Again, R0(x) has degree d by construction, and satisfies what we wanted! (We’ll call R0(x) the 0th

“switch” polynomial.)

Next, what if b0 was not 1 but some other value. Easy again: just take b0 ×R0(x). This has value
b0 × 1 at a0, and b0 × 0 = 0 at all other ai’s.

Similarly, one can define switch polynomials Ri(x) of degree d that have Ri(ai) = 1 and Ri(aj) = 0
for all i 6= j. Indeed, this is

Ri(x) =
(x− a0) · · · (x− ai−1) · (x− ai+1) · · · (x− ad)

(ai − a0) · · · (ai − ai−1) · (ai − ai+1) · · · (ai − ad)
.

So the polynomial we wanted after all is just a linear combination of these switch polynomials:

P (x) = b0R0(x) + b1R1(x) + . . . + bdRd(x)

Since it is a sum of degree-d polynomials, P (x) has degree at most d. And what is P (ai)? Since
Rj(ai) = 0 for all j 6= i, we get P (ai) = biRi(ai). Now Ri(ai) = 1, so this is bi. All done.12

Example: Consider the tuples (5, 1), (6, 2), (7, 9): we want the unique degree-2 polynomial that passes
through these points. So first we find R0(x), which evaluates to 1 at x = 5, and has roots at 6 and 7.
This is

R0(x) =
(x− 6)(x− 7)

(5− 6)(5− 7)
=

1

2
(x− 6)(x− 7)

Similarly

R1(x) =
(x− 5)(x− 7)

(6− 5)(6− 7)
= −(x− 5)(x− 7)

and

R2(x) =
(x− 5)(x− 6)

(7− 5)(7− 6)
=

1

2
(x− 5)(x− 6)

Hence, the polynomial we want is

P (x) = 1 ·R0(x) + 2 ·R1(x) + 9 ·R2(x) = 3x2 − 32x + 86

Let’s check our answer:
P (5) = 1, P (6) = 2, P (7) = 9.

Running Time: Note that constructing the polynomial P (x) takes O(d2) time. (Can you find
the simplified version in this time as well?) If you chose the points a0, . . . , ad carefully, you could
do this in O(d log d) time. For this, you choose 2r roots of unity for r = 2dlog2(d+1)e, and then use
a divide-and-conquer idea: the resulting algorithm is called the Fast Fourier Transform.

1This algorithm is called Lagrange interpolation, after Joseph-Louis Lagrange, or Giuseppe Lodovico Lagrangia,
depending on whether you ask the French or the Italians. (He was born in Turin, and both countries claim him for
their own.) And to muddy things even further, much of his work was done at Berlin. He later moved to Paris, where
he survived the French revolution—though Lavoisier was sent to the guillotine because he intervened on behalf of
Lagrange. Among much other great research, he also gave the first known proof of Wilson’s theorem, that n is a
prime if and only if n|(n− 1)! + 1—apparently Wilson only conjectured Wilson’s theorem.

2You can use an idea very similar to Lagrange interpolation to prove the Chinese Remainder Theorem.

4

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15451-f13/www/lectures/lect1119.txt
https://en.wikipedia.org/wiki/Joseph-Louis_Lagrange
https://en.wikipedia.org/wiki/Antoine_Lavoisier
https://en.wikipedia.org/wiki/Wilson's_theorem
https://en.wikipedia.org/wiki/Chinese_remainder_theorem

4 Application: Error Correcting Codes

Consider the situation: I want to send you a sequence of d + 1 numbers 〈cd, cd−1, . . . , c1, c0〉 over
a noisy channel. I can’t just send you these numbers in a message, because I know that whatever
message I send you, the channel will corrupt up to k of the numbers in that message. For the
current example, assume that the corruption is very simple: whenver a number is corrupted, it is
replaced by a ?. Hence, if I send the sequence

〈5, 19, 2, 3, 2〉

and the channel decides to corrupt the third and fourth numbers, you would get

〈5, 19, ?, ?, 2〉.

On the other hand, if I decided to delete the fourth and fifth elements, you would get

〈5, 19, 2, ?, ?〉.

Since the channel is “erasing” some of the entries and replacing them with ?’s, the codes we will
develop will be called erasure codes. The question then is: how can we send d+ 1 numbers so that
the receiver can get back these d + 1 numbers even if up to k numbers in the message are erased
(replaced by ?s)? (Assume that both you and the receiver know d and k.)

A simple case: if d = 0, then one number is sent. Since the channel can erase k numbers, the best
we can do is to repeat this single number k + 1 times, and send these k + 1 copies across. At least
one of these copies will survive, and the receiver will know the number.

This suggests a strategy: no matter how many numbers you want to send, repeat each number
k + 1 times. So to send the message 〈5, 19, 2, 3, 2〉 with k = 2, you would send

〈5, 5, 5, 19, 19, 19, 2, 2, 2, 3, 3, 3, 2, 2, 2〉

This takes (d + 1)(k + 1) numbers, approximately dk. Can we do better?

Indeed we can! We view our sequence 〈cd, cd−1, . . . , c1, c0〉 as the d + 1 coefficients of a polynomial
of degree at most d, namely P (x) = cdx

d + cd−1x
d−1 + .. + c1x + c0. Now we evaluate P at some

d + k + 1 points, say 0, 1, 2, . . . , d + k, and send these d + k + 1 numbers

P (0), P (1), . . . , P (d + k)

across. The receiver will get back at least d + 1 of these numbers, which by Theorem 3 uniquely
specifies P (x). Moreover, the receiver can also reconstruct P (x) using, say, Langrange interpolation.

Example: Here is an example: Suppose we want to send 〈5, 19, 2, 3, 2〉 with k = 2. Hence P (x) =
5x4 + 19x3 + 2x2 + 3x + 2. Now we’ll evaluate P (x) at 0, 1, 2, . . . d + k = 6. This gives

P (0) = 2, P (1) = 31, P (2) = 248, P (3) = 947, P (4) = 2542, P (5) = 5567, P (6) = 10676

So we send across the “encoded message”:

〈2, 31, 248, 947, 2542, 5567, 10676〉

Now suppose the third and fifth entries get erased. the receiver gets:

〈2, 31, ?, 947, ?, 5567, 10676〉

5

So she wants to reconstruct a polynomial R(x) of degree at most 4 such that R(0) = 2, R(1) = 31, R(3) =
947, R(5) = 5567, R(6) = 10676. (That is, she wants to “decode” the message.) By Langrange interpo-
lation, we get that

R(x) =
1

45
(x− 1)(x− 3)(x− 5)(x− 6)− 31

40
x(x− 3)(x− 5)(x− 6) +

947

36
x(x− 1)(x− 5)(x− 6)

−5567

40
x(x− 1)(x− 3)(x− 6) +

5338

45
x(x− 1)(x− 3)(x− 5)

which simplifies to P (x) = 5x4 + 19x3 + 2x2 + 3x + 2!

Exercise: Take your favorite degree-3 polynomial P (x) over the reals, and evaluate it at any 4 points.
Use Lagrange interpolation to fit a degree-3 polynomial through those points, and check it equals P (x).

Note on the Running Time: The numbers can get large, so you may want work in the field
Fp, as long as the size of the field is large enough to encode the numbers you want to send across.
(Of course, if you are working modulo a prime p, both the sender and the receiver must know the
prime p.)

Example: Since we want to send numbers as large as 19, let’s work in Z23. Then you’d send the
numbers modulo 23, which would be

〈2, 8, 18, 4, 12, 1, 4〉
Now suppose you get

〈2, 8, ?, 4, ?, 1, 4〉
Interpolate to get

R(x) = 45−1(x− 1)(x− 3)(x− 5)(x− 6)− 5−1x(x− 3)(x− 5)(x− 6) + 9−1x(x− 1)(x− 5)(x− 6)

−40−1x(x− 1)(x− 3)(x− 6) + 2 · 45−1x(x− 1)(x− 3)(x− 5)

where the multiplicative inverses are modulo 23, of course. Simplifying, we get P (x) = 5x4 + 19x3 +
2x2 + 3x + 2 again.

Exercise: Do the same interpolation exercise as above for a polynomial over Z17 or Z251. You will
have to recall how to take additive and multiplicative inverses over finite fields.

4.1 Error Correction

One can imagine that the channel is more malicious: it decides to replace some k of the numbers not
by stars but by other numbers, so the same encoding/decoding strategy cannot be used! Indeed,
the receiver now has no clue which numbers were altered, and which ones were part of the original
message! In fact, even for the d = 0 case of a single number, we need to send 2k + 1 numbers
across, so that the receiver knows that the majority number must be the correct one. And indeed,
if you evaluate P (x) at n = d + 2k + 1 locations and send those values across, even if the channel
alters k of those numbers, there is a unique degree-d polynomial that agrees with d+ k+ 1 of these
numbers (and this must be P (x))—this is not hard to show. What is more interesting is that the
receiver can also reconstruct P (x) fast: this is known as the Berlekamp-Welch algorithm. We will
cover this if we have time.

4.1.1 The Berlekamp-Welch Error-Correction Algorithm?

Let [n] := {0, 1, . . . , n− 1}, where n = d + 2k + 1. Suppose we send over the n numbers

s0, s1, . . . , sn−1,

where si = P (i). We receive numbers

r0, r1, . . . , rn−1,

6

where at most k of these ris are not the same as the sis. Define a set Z of size k such that
Z ⊇ {i | si 6= ri}: i.e., Z contains all the error locations.

Now define a degree-j “error” polynomial E(x) such that

E(x) =
∏
a∈Z

(x− a).

Observe that

P (x) · E(x) = rx · E(x) ∀x ∈ [n]. (1)

Indeed, E(x) = 0 for all x ∈ Z (by construction of E()) and P (x) = rx for all x ∈ [n] \ Z (by the
definition of Z). Of course, we just received the ris, so we don’t know P (x). Nor do we know E(x),
since we don’t know Z.

But we know that E(x) looks like:

E(x) = xk + ek−1x
k−1 + . . . + e1x + e0. (2)

for some values ek−1, ek−2, . . . , e0. (So there are k unknown coefficients, since the coefficient of xk

in E(x) is 1.) Moreover, we know that P (x) · E(x) has degree d + k, so looks like

P (x) · E(x) = fd+kx
d+k + fd+k−1x

d+k−1 + . . . + f1x + f0. (3)

So the n = d + 2k + 1 equalities from (1) look like

fd+kx
d+k + fd+k−1x

d+k−1 + . . . + f1x + f0 = rx (xk + ek−1x
k−1 + . . . + e1x + e0), (4)

one for each x ∈ [n]. The unknown are ei and fi values—there are k + (d + k + 1) = d + 2k + 1
unknowns. So we can solve for these unknowns (say using Gaussian elimination), and get E(x) and
P (x) · E(x). Dividing the latter by the former gives back P (x). It’s like magic.

Exercise: Show there is a unique solution to this system of n equalities in at most n variables.

5 Multivariate Polynomials and Matchings? (Optional)

Here’s a very different application of polynomials in algorithm design. Now we’ll consider multi-
variate polynomials, and use the fact that they also have “few” roots (where “few” is interpreted
suitably) to get an unusual algorithm for finding matchings in graphs. 3

We can rephrase Theorem 1 as follows: if we fix a set S of values in the field we are working over
(e.g., R, or Fp), and pick a random X ∈ S, the probability that P (X) = 0 is at most d/|S|. One
can extend this to the following theorem for multivariate polynomials P (x) = P (x1, x2, . . . , xm).
Recall that the degree of a monomial is the sum of exponents of the variables in it, and the degree
of a polynomial is the maximum degree of any non-zero monomial in it.

Theorem 4 (Schwartz (1980), Zippel (1979)) For any non-zero degree-d polynomial P (x) and
any subset S of values from the underlying field, if each Xi is chosen independently and uniformly
from S, then

Pr[P (X1, . . . , Xm) = 0] ≤ d

|S|
.

3For multivariate polynomials, even simple linear polynomials can have many roots, more than any function related
to the degree. For example P (x, y) = x − y has roots for all points in R = {(x, y) | x = y}. So we quantify how
“rare” these roots are.

7

This theorem is useful in many contexts. E.g., we get yet another algorithm for perfect matchings.

Definition 5 For any graph G = (V,E) with vertices v1, v2, . . . , vn, the Tutte matrix4 and is a
|V | × |V | matrix M(G):

M(G)i,j =


xi,j if {vi, vj} ∈ E and i < j
−xj,i if {vi, vj} ∈ E and i > j
0 if (vi, vj) 6∈ E

This is a square matrix of variables xi,j . And like any matrix, we can take its determinant, which
is a (multivariate) polynomial PG(x) in the variables {xi,j}{i,j}∈E . The degree of this polynomial
is at most n = |V |, the dimension of the matrix. Here is a surprising (and not difficult) fact:5

Theorem 6 (Tutte (1947)) A graph G has a perfect matching if and only if PG(x), the deter-
minant of the Tutte matrix, is not the zero polynomial.

How do we check if PG(x) is zero or not? That’s the problem: since we’re taking a determinant
of a matrix of variables, the usual way of computing determinants may lead to n! terms, which
eventually may all cancel out!

However, we can combine Theorems 4 and 6 together: take G, construct M(x), and replace each
variable by an independently uniform random value in some set S, and then compute the deter-
minant of the resulting matrix of random numbers. This is exactly like plugging in the random
numbers into PG(x). So if PG(x) was zero, the answer is zero for sure. And else, the answer is
zero with probability at most n/|S|, which we can make as small as we want by choosing S large
enough.

Exercise: Think about how you would use this algorithm (which tests for the existence of a perfect
matching), to actually find a perfect matching (with high probability) in a graph, if one exists. Your
PM-finder should perform at most O(m) calls to the PM-existence-checker.

Exercise: Given an algorithm to find perfect matchings in a graph (if one exists), use it to find
maximum cardinality matchings in graphs.

4Named after William T. (Bill) Tutte, pioneering graph theorist and algorithm designer. Recently it was discovered
that he was one of the influential code-breakers in WWII, making crucial insights in breaking the Lorenz cipher.

5For bipartite graphs you can define the “Edmonds” matrix of G = (U, V,E) is an |U | × |V | matrix Mb(G) with
the entry at row i and column j,

Mb(G)i,j =

{
0 if (ui, vj) /∈ E
xi,j if (ui, vj) ∈ E

Theorem 6 is easy to prove for this case. The proof for general graphs requires a little more care.

8

https://en.wikipedia.org/wiki/W._T._Tutte
https://www.math.lsu.edu/~oxley/ahjo.pdf
http://www.codesandciphers.org.uk/lorenz/fish.htm

	Operations on Polynomials
	How Many Roots?
	A New Representation for degree-d Polynomials
	The Proof of Theorem 3

	Application: Error Correcting Codes
	Error Correction
	The Berlekamp-Welch Error-Correction Algorithm

	Multivariate Polynomials and Matchings (Optional)

