
15-451: Algorithms October 17, 2019

Lecture Notes: Computational Geometry: Introduction and Sweep Line

Lecturer: Gary Miller Scribe:

1

1 Introduction

Computational geometry is a branch of computer science which concerns design and analysis of
problems that arise in geometric settings; in particular, over 2D or 3D Euclidean spaces which are
extremely powerful mathematical tools for modeling real-world problems. Computational geometry
techniques are highly applicable in computer science related areas including but not limited to:

• Computer Graphics

– Images creation

– Hidden surface removal

– Illumination

– Physics-based simulations

• Robotics

– Motion planning

• Geographic Information Systems

• Computer Aided Design/Computer Aided Manufacturing (CAD/CAM)

• Computer chip design and simulations

• Scientific Computation

– Blood flow simulations

– Molecular modeling and simulations

In this course, the following classic ideas that are frequently used for dealing with geometric
problems will be covered:

• Sweep-Line

• Divide and Conquer

• Random Incremental

1Originally 15-750 notes by Amirbehshad Shahrasbi

1



2 Basic Definitions

2.1 Geometric Objects

The following simple geometric objects in the 2D plane can be represented as follows:

1. Point: A point can be simply represented by a pair of real numbers (x, y) which correspond
to its coordinates.

2. Line: A line may be represented by two points on it, or, more efficiently, by a pair of real
numbers, namely, the slope and the intercept.

3. Line Segment: A line segment can be represented by its two end points.

4. Polygon: A polygon can be represented by an ordered array of its vertices.

Further, the following definitions can be useful in representing more complex geometric objects:

1. Linear Combination: The Linear Combination of P1, . . . , Pk ∈ Rd is defined as:{∑
αiPi : αi ∈ R

}
Taking all linear combinations of a set of points forms the minimal subspace that includes all
these points.

2. Affine Combination: The Affine Combination of P1, . . . , Pk ∈ Rd is defined as:{∑
αiPi : αi ∈ R,

∑
αi = 1

}
Taking all affine combinations of a set of points forms the minimal affine subspace that
includes all these points.

3. Convex Combination: The Convex Combination of P1, . . . , Pk ∈ Rd is defined as:{∑
αiPi : αi ∈ R,

∑
αi = 1, αi ≥ 0

}
Taking all convex combinations of a set of points forms the minimal polygon that covers all
these points.

2.2 Primitive Operations

We now depart to introduce primitive operations on geometric objects:

1. Point Equality: In order to check if two points are equal, one can simply check the equality
of their coordinates.

2. Line Segment Intersection: This operation has to output the intersection of two given line
segments (P1, P2) and (P3, P4) or report that they do not intersect. Note that, as previously
mentioned, the line between Pi and Pj can be described as:

αPi + (1− α)Pj , for 0 ≤ α ≤ 1

2



𝑃1 

𝑃2 

𝑃3 
𝑢 

𝑣 

Figure 1: Line side test.

Therefore, if (P1, P2) and (P3, P4) intersect, their intersection is the solution of the following
equation system:

αP1 + (1− α)P2 (1)

βP3 + (1− β)P4 (2)

0 ≤ α ≤ 1 (3)

0 ≤ β ≤ 1 (4)

This can simply be done by a constant-sized matrix inversion.

3. Line Side Test: Note that in a 2D plane, any vector P1P2 splits the plane into two half-
planes, i.e., its right-hand-side half-plane and its left-hand-side half-plane. Assume that
P1, P2, and P3 are given. Then, P3 is on the left-hand-side half-plane made by P1P2 if and
only if:

det

∣∣∣∣ux vx
uy vy

∣∣∣∣ > 0

where u = (ux, uy) = P2 − P1 and v = (vx, vy) = P3 − P1 as depicted in Figure 1.

3 Line Segment Intersection Problem

We now present the line segment intersection problem and provide a solution using the sweep-line
idea. Imagine that a set of n line segments as S = {S1, · · · , Sn} are given and we want to find I,
the set of all pairwise intersections of segments in S. For the sake of simplicity, we assume that the
segments in set S do not form the following special cases:

1. A horizontal segment.

2. More than two segments intersecting at the same point.

3. A segment having an end point within another one.

4. Two segments sharing an endpoint.

A schematic representation of these forbidden cases can be found in Figure 2.
As we mentioned in Section 2, one can find the intersection of two line segments in O(1) time.

Hence, a trivial solution for our problem would be simply checking if any two line segments have an
intersection or not. Clearly, this will take O(n2) time. Furthermore, note than one cannot really
hope for a faster algorithm in terms of n as the input may contain as many as Θ(n2) intersection
points which will make the output size as large as Ω(n2). However, we can find improved solutions
considering an output-sensitive analysis of solutions.

3



Figure 2: Forbidden cases

1 

2 
3 

4 

Figure 3: Status : 4, 2, 1

An output-sensitive algorithm is an algorithm whose consumption of resources like running time
depends on the size of its output. In our case, we will seek output sensitive algorithms that can
potentially outperform the trivial solution for smaller output sizes. Note that the trivial algorithm is
not output-sensitive. In fact, regardless of |I|, the trivial solution will take Θ(n2) to run. However,
considering output-sensitive analysis, one can find algorithms with following running times:

• Sweep-Line: O ((n+ |I|) log n)

• Random Incremental: O (|I|+ n log n)

We now introduce and analyze a solution using the sweep-line idea. The high-level idea for this
solution is having a horizontal line far left on the plane and scanning –or “sweeping”– the plane by
moving that line gradually to the right and capturing intersections as we pass through them.

In order to formalize the algorithm, we define the status for our sweeping line at any point of
the sweeping procedure when it does not lay over any endpoints or intersections. The status of the
sweeping line is defined as an list of the IDs of all segments intersecting it sorted from the top to
the bottom. As an example, in Figure 3, the status of the sweeping line is 4, 2, 1.

Let P be the set of endpoints of segments in S. The sweep line idea is simply trying to keep
track of how the status changes as it scans the whole plane. Note that the status only changes
whenever the sweeping line passes through an endpoint or an intersection, i.e., members of P ∪ I.

For the moment, assume that the set I is given and we only seek to track status changes.
Clearly, if I is given, we can simply insert P ∪ I into priority queue Q which prioritizes points with
smaller x coordinate and then repeatedly extract the minimum element of Q and update the status
according to whether that element is an endpoint or an intersection. Let us refer to members of

4



𝑖 and 𝑗 are 
swapped 

𝑗 

𝑖 

𝑖 is removed 

𝑖 

𝑖 is added 

𝑖 

Figure 4: How status should be updated based on the type of the event.

P ∪ I which are points where status changes as events. Then, at the occurrence of an event, the
status changes as follows (see Figure 4):

• If the next event is a starting point: the ID of the corresponding line has to be inserted into
the status list.

• If the next event is a finishing point: the ID of the corresponding line has to be removed from
the status list.

• If the next event is an intersection point: IDs of corresponding lines have to be swapped in
the status list.

The idea that turns the “status tracking” algorithm into a solution for line segment intersection
problem is simply starting with Q ← P and adding intersection events, i.e., members of I, as the
sweeping line passes through the segments. In order to do so, we make use of the following essential
lemma:

Lemma 3.1. If next event of the sweeping line is the intersection of lines l1 and l2, then l1 and l2
have to be two consecutive elements in the status.

Proof. Clearly, l1 and l2 have to be present in the status since their start points must occur before
intersection and endpoints must occur after intersection. Further, if by contradiction, there is a
line l3 between l1 and l2 in the status, that line has to either finish or cross one of l1 and l2 lines
before l1 and l2’s intersection. This contradicts the fact the l1 and l2’s intersection is the closest
event and finishes the proof.

Note that in order to have the “status tracking” algorithm to work without prior knowledge
of I, we only need to have to make sure that the potential intersection of all consecutive pairs of
lines in the status are available in Q at any point of the algorithm. Hence, we start with P ← Q
and insert the intersection of new consecutive pairs in the status whenever status changes. This

5



way, we can generate segment intersections as we scan the plane. For a formal description of this
algorithm please see Algorithm 1.

Algorithm 1 Sweep-Line Segment Intersection Algorithm

Input: S
Output: I
P ← Endpoints of S
I ← ∅
status← ∅
Q← P
while Q 6= ∅ do

E ← ExtractMin(Q)
HandleEvent(E)

end while

Algorithm 2 HandleEvent

Input: Event E
if E is the starting point of l then

insert(l, status)
addIntersection(left(l), l, Q)
addIntersection(l, right(l), Q)

else if E is the finishing point of l then
addIntersection(left(l), right(l), Q)
delete(l, status)

else if E is the intersection of l < l′ then
swap(l, l′, status)
addIntersection(left(l′), l′, Q)
addIntersection(l, right(l), Q)
insert(E, I)

end if

Note that there are 2n + |I| many events and handling each of them may take up to O(log n)
due to the priority queue operations. Therefore, the overall time complexity is O ((n+ |I|) log n).

6


