Lecture Notes: Probability Review

Lecturer: Gary Miller

1 Depth-first search basics

2 The Exponential Distribution

Definition 2.1. Let Ω be a sample space, a random variable is a mapping $X: \Omega \rightarrow \mathbb{R}$.
Definition 2.2. The probability density distribution (PDF) of an exponential random variable X_{β} is

$$
\operatorname{Pr}\left[X_{\beta}=\mu\right]= \begin{cases}\beta e^{-\beta \mu}, & \mu \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

Definition 2.3. The culmulutive distribution function (CDF) of X_{β} is

$$
\begin{aligned}
& F_{\beta}(y) \equiv \operatorname{Pr}\left[X_{\beta} \leq y\right] \\
& F_{\beta}(y)=\int_{0}^{y} \beta e^{-\beta x} d x=\left[-e^{-\beta x}\right]_{0}^{y}=1-e^{-\beta y}
\end{aligned}
$$

Definition 2.4. The expected value of a random variable X is

$$
\mathbb{E}_{x}[X]=\int_{-\infty}^{\infty} y \operatorname{Pr}[X=y] d y
$$

Remark 2.5. There are two ways to calculate $\mathbb{E}\left[X_{\beta}\right]$ for a exponential random variable X_{β}

1. By defintion, using integration by parts,

$$
\mathbb{E}\left[X_{\beta}\right]=\int_{0}^{\infty} y \beta e^{-\beta y} d y=1 / \beta
$$

2.

$$
\mathbb{E}\left[X_{\beta}\right]=\int_{0}^{\infty} \operatorname{Pr}\left[X_{\beta} \geq y\right] d y=\int_{0}^{\infty} e^{-\beta y}=\left[-\frac{1}{\beta} e^{-\beta y}\right]_{0}^{\infty}=\frac{1}{\beta}
$$

Proposition 2.6 (Memoryless Property). Given exponential random variable X_{β},

$$
\operatorname{Pr}\left[X_{\beta}>m+n \mid X_{\beta}>n\right]=\frac{e^{-\beta(m+n)}}{e^{-\beta n}}=e^{-\beta m}
$$

[^0]
3 Order Statistics

Definition 3.1. $X_{1}, X_{2}, \ldots X_{n}$ are n i.i.d random variables. The i-th order statistic is

$$
X_{(i)}=\operatorname{SELECT}_{k}\left(X_{1}, \ldots X_{k}\right)
$$

i.e.

$$
X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}
$$

Theorem 3.2. Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are i.i.d such that

$$
f(u)=\operatorname{Pr}\left[X_{i}=u\right]
$$

and

$$
F u=\operatorname{Pr}\left[0 \leq X_{i} \leq u\right] .
$$

Then

$$
\operatorname{Pr}\left[X_{(1)}=u\right]=n(1-F(u))^{n-1} f(u)
$$

Corollary 3.3. If $X_{1}, X_{2}, \ldots X_{n}$ are i.i.d exponentials,

$$
\operatorname{Pr}\left[X_{(1)}=u\right]=n\left(e^{-\beta u}\right)^{n-1} \beta e^{-\beta u}=n \beta e^{-n \beta u}
$$

So $X_{(1)} \sim \operatorname{Exp}(n \beta)$. Therefore

$$
\mathbb{E}\left(X_{(1)}\right)=\frac{1}{n \beta} .
$$

Claim 3.4 (Expectation of $X_{(n)}$).

$$
X_{(n)} \approx \frac{\log n}{\beta}
$$

Proof. Let $S_{i}=X_{(i+1)}-X_{(i)}$, for $i \geq 0$.
We will need the following sub-claim:

Claim 3.5.

$$
S_{i} \sim \operatorname{Exp}((n-i) \beta)
$$

We will prove this claim using the memoryless property. We think of each X_{i} as a time, say, the time that the i th light bulb burnt out. Thus at time $X_{(i)} i$ of the bulbs have burnt out and $n-i$ still lit. Assume that the burnt-out ones are $X_{1}, \ldots X_{i}$, thus $X_{j}>X_{(i)}$ for $i<j \leq n$. Thus $S_{i} \sim X_{(1)}$ but for $n-i$ random variables.

Thus,

$$
\mathbb{E}\left(S_{i}\right)=\frac{1}{(n-i) \beta}
$$

Therefore,

$$
\mathbb{E}\left(X_{(n)}\right)=\sum_{i=0}^{n-1} \mathbb{E}\left[S_{i}\right]=\frac{1}{\beta}\left(1+\frac{1}{2}+\ldots \frac{1}{n}\right)=\frac{\ln n}{\beta}
$$

Proposition 3.6 (Concentration for $X_{(n)}$).

$$
\operatorname{Pr}\left[X_{i} \geq \frac{c \ln n}{\beta}\right]=e^{-c \ln n}=n^{-c}
$$

By union bound we get,

$$
\operatorname{Pr}\left[X_{i} \geq \frac{c \ln n}{\beta}\right] \leq n \cdot n^{-c}=\frac{1}{n^{c-1}}
$$

Thus,

$$
\operatorname{Pr}\left[X_{i} \geq \frac{2 \ln n}{\beta}\right] \leq \frac{1}{n}
$$

4 Generating Distribution of Random Variables

Problem: Given $f: \mathbb{R} \rightarrow \mathbb{R}^{+}$, where

$$
\int_{-\infty}^{\infty} f(x) d x=1
$$

Want to find random variable X_{f} whose PDF is f.

Remark 4.1. It is not clear that the random variable exists. But we can ask if we have one, can we generate more.

Definition 4.2. Let f, g be PDF's with random variable X_{f}, X_{g}, we say $f \leq g$ if there exists a deterministic process D such that $X_{f}=D\left(X_{g}\right)$.

Example 4.3. Let U be uniform random variable with PDF u, i.e.

$$
u(x)= \begin{cases}1, & \text { if } x \in[0,1] \\ 0, & \text { otherwise }\end{cases}
$$

Let U_{2} be uniform random variable on $[0,2]$, with PDF u_{2}, then

$$
U_{2}=2 U \Longrightarrow u_{2} \leq u
$$

4.1 Generating Exponential Distribution from Uniform Distribution

The PDF of an exponential random variable X is

$$
f(X)=\beta e^{-\beta X} \quad \text { for } 0<\beta, X \geq 0
$$

and

$$
F(X)=\int_{0}^{\infty} f(X) d X=1-e^{-\beta X}
$$

Thus $F:[0, \infty] \rightarrow[0,1]$ is one-to-one and onto. We get that $F\left(X_{f}\right)$ is uniform on $[0,1]$. Therefore, $u \leq f$, But we want $f \leq u$.

Find F^{-1}, i.e. solve for X in $Y=F(X)=1-e^{-\beta X}$

$$
\begin{aligned}
& Y=1-e^{-\beta X} \\
\Longleftrightarrow & e^{-\beta X}=1-Y \\
\Longleftrightarrow & -\beta X=\ln (1-Y) \\
\Longleftrightarrow & X=-\frac{1}{\beta} \ln (1-Y) \\
\Longleftrightarrow & X=-\frac{1}{\beta} \ln Y \quad \text { since } 1-Y \text { is uniform on }[0,1]
\end{aligned}
$$

Thus $X_{f}=\frac{1}{\beta} \ln \left(X_{u}\right)$. Thus $f \leq u$.

4.2 Generating Normal Distribution from Uniform Distribution

The PDF of a general normal random variable X is

$$
f(X)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{X^{2}}{2 \sigma^{2}}}
$$

Taking $\sigma=1$, we get Gauss' unit normal:

$$
f(X)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}
$$

But it is hard to compute the CDF of X

$$
F(X)=\int_{-\infty}^{X} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x
$$

Theorem 4.4. $F(X)$ is not an elementary function.
Remark 4.5. It is OK to compute if $f(x)=x e^{-\frac{x^{2}}{2}}$, as

$$
\frac{d}{d x}\left(-e^{-\frac{x^{2}}{2}}\right)=x e^{-\frac{x^{2}}{2}}
$$

We consider 2D-normal.

$$
\text { Let } \begin{aligned}
f(x, y) & =\frac{1}{2 \pi} e^{-\frac{x^{2}}{2}} e^{-\frac{y^{2}}{2}} \\
& =\frac{1}{2 \pi} e^{-\frac{x^{2}+y^{2}}{2}}
\end{aligned}
$$

In polar,

$$
f(r, \theta)=\frac{1}{2 \pi} e^{-\frac{r^{2}}{2}}
$$

Now we can find the cumulative with respect to a disk of radiu r :

$$
\left.D(R)=\int_{0}^{R} \frac{2 \pi r}{2 \pi} e^{-\frac{r^{2}}{2}} d r=-e^{-\frac{r^{2}}{2}}\right]_{0}^{R}=1-e^{-\frac{R^{2}}{2}}
$$

Again we compute F^{-1},

$$
\begin{aligned}
& \text { Let } y=1-e^{-\frac{R^{2}}{2}} \\
& \Longrightarrow e^{-\frac{R^{2}}{2}}=1-y \\
& \Longrightarrow-\frac{R^{2}}{2}=\ln (1-y) \\
& \Longrightarrow R \sqrt{-2 \ln (1-y)}
\end{aligned}
$$

Therefore given two uniform random variables u, v, we can generate a unit normal random variable using the following algorithm.

Alg: u, v uniform on $[0,1]$.

$$
\begin{aligned}
& r=\sqrt{-2 \ln u} \\
& \theta=2 \pi v \\
& \text { In polar, return }(r, \theta) \\
& (\text { or return } \quad(x=r \cos \theta, y=r \sin \theta))
\end{aligned}
$$

4.3 The Box-Muller Algorithm

$\operatorname{Alg} \mathbf{B M}(u, v): u, v$ uniform on $[0,1]$.

1) Set $u=2 u-1, v=2 v-1, \quad$ (uniform on $[-1,1]$)
2) do $w=u^{2}+v^{2}$ until $w \leq 1$
3) Set $A=\sqrt{\frac{-2 \ln w}{w}}$
4) return $\left(T_{1}=A u, T_{2}=A v\right)$

Claim 4.6. The Box-Muller Algorithm generates $2 D$ unit Gaussian.
Proof. After step 2), write u, v as

$$
\begin{aligned}
& V_{1}=R \cos \theta \\
& V_{2}=R \sin \theta \\
& S=R^{2}
\end{aligned}
$$

After step 4), we get the coordinate (x_{1}, x_{2}) where

$$
x_{1}=\sqrt{\frac{-2 \ln S}{S}} V_{1}=\sqrt{\frac{-2 \ln S}{S}} R \cos \theta=\sqrt{-2 \ln S} \cos \theta
$$

Similarly,

$$
X_{2}=\sqrt{-2 \ln S} \sin \theta
$$

In polar form, we have $\left(R^{\prime}, \theta^{\prime}\right)$, where $R^{\prime}=\sqrt{-2 \ln S}, \theta^{\prime} \in[0,2 \pi]$. Compute CDF of R^{\prime},

$$
\begin{aligned}
C D F\left(R^{\prime}\right) & =\operatorname{Pr}\left[R^{\prime} \leq r\right] \\
& =\operatorname{Pr}[\sqrt{-2 \ln S} \leq r] \\
& =\operatorname{Pr}\left[-2 \ln S \leq r^{2}\right] \\
& =\operatorname{Pr}\left[S \geq e^{r^{2} / 2}\right](*)
\end{aligned}
$$

Figure 1: Visualization of $r \geq t$

Note suppose u, v is uniform over the unit disk, then in the figure below,

$$
\operatorname{Pr}[(u, v) \in \text { annulus }]=1-t^{2}
$$

Consider random variable $S=R^{2}=u^{2}+v^{2}$,

$$
\operatorname{Pr}[S \geq t]=\operatorname{Pr}\left[R^{2} \geq t\right]=\operatorname{Pr}[R \geq \sqrt{t}]=1-t
$$

Therefore,

$$
\operatorname{Pr}\left[S \geq e^{\frac{r^{2}}{2}}\right]=1-e^{\frac{r^{2}}{2}}
$$

So S is Gaussian. This completes our proof.

[^0]: ${ }^{1}$ Originally $15-750$ notes by Andre Wei

