Lecture 20a:

Under the Hood, Part 1:
Implementing Message Passing

Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2021

Today’s Theme

CMU 15-418/618,
Sprina 2021

Message passing model (abstraction)

" Threads operate within their own private address spaces
* Threads communicate by sending/receiving messages
- send: specifies recipient, buffer to be transmitted, and optional message
identifier (“tag”)
- receive: sender, specifies buffer to store data, and optional message identifier

- Sending messages is the only way to exchange data between threads 1 and 2

Thread 2 address

Thread 1 address
space

space

X Esend(X, 2, my msg id)

:semantics: send contexts of local :
Variable X :variable x as message to thread 2
:and tag message with the id : irecv(Y, 1, my_msg_id)
my_msg_id :semantics: receive message with :
5 : :id “my_msg_id” from thread 1 and : Y
BN NN NN NN NN NN NN NN NN NN NN NN NN EEEEEEEEEEEEEEE = Estore Contents in Iocal variable Y .

e seuereanemereanemeeenesnees [

Variable Y

. . CMU 15-418/618,
lllustration adopted from Culler, Singh, Gupta Sprina 2021

Message passing systems

= Popular software library: MPI (message passing interface)

= Hardware need not implement system-wide loads and stores to
execute message passing programs (need only be able to communicate

messages)

- Can connect commodity systems together to form large parallel machine
(message passing is a programming model for clusters)

System
72 racks

Cabled
2x8x16

Rack

32 node cards

2

b B
_ sz

e b

BDEEIII) 2
EAWANEWE: 3

1 PF/s

Node Card Up to 288 TB

(32 chips 4x4x2)
32 compute, 0-2 10 cards

Compute Card

1 chip, 40 q. B .
DRAMs oy

Chip ‘ﬁ
s

4 processors

= 435 GF/s
" Upto128GB

- 13.6 GF/s
< 2 or 4 GB DDR

IBM Blue Gene/P
Supercomputer
O International Bu

13.6 GF/s
8 MB EDRAM

siness Machines Corporution. 2007, 2008, All nghts reserved

Image credit: IBM

—~—

1 y
— 7 U]
—— -
3 ‘& QL\ §-~~¥f~m~ A
- =

‘DS &l G

5 . vee 7e)
- ,'\ — .l
’ ‘ v 'o 3 h j' > 4 0 < L)
- M Y
2 3 " A Y, N N\
: N \\ \ o . e . =
~ —— « _ . ' J
| - . — o 1
% ——— *
» XY 2 .]

-

gLl

nna
LALLEE L ey

Cluster of workstations

(Infiniband network)

CMU 15-418/618,
Sprina 2021

Network Transaction

Interconnection Network

Serialized Message

Output Buffer Input Buffer

1 1

Source Node Destination Node

= One-way transfer of information from a source
output buffer to a destination input buffer

- causes some action at the destination
- e.g., deposit data, state change, reply
- occurrence is not directly visible at source

CMU 15-418/618,
Sprina 2021

Shared Address Space Abstraction

(1) Initiate memory access
(2) Address translation
(3) Local/remote check
(4) Request transaction

(5) Remote memory access

(6) Reply transaction

(7) Complete memory access

source

Destination

Load rl <— Address

Read request

Wait

v

Read response

Time

Read request

Memory access

~

J

Read response

\A
/

Fundamentally a two-way request/response protocol
- writes have an acknowledgement

CMU 15-418/618, Fall
2016

Key Properties of SAS Abstraction

Source and destination addresses are specified by
source of the request

- a degree of logical coupling and trust

No storage logically “outside the application address
space(s)”

- may employ temporary buffers for transport
Operations are fundamentally request-response

Remote operation can be performed on remote
memory

- logically does not require intervention of the
remote processor

CMU 15-418/618, Fall
2016

Message Passing Implementation Options

Synchronous:

- Send completes after matching receive and source
data sent

- Receive completes after data transfer complete
from matching send

Asynchronous:
- Send completes after send buffer may be reused

CMU 15-418/618, Fall
2016

Synchronous Message Passing

source Destination

Initiate send Send(Pdest, local VA, len) Receive(Psrc, local VA, 1len)

(1)

(2) Address translation
(3) Local/remote check
(4) Send-ready request : Send-ready request

(5) Remote check for posted : Wait (Tagicneck)
receive (assume success) :

6) Reply transaction /
(6) Reply v Receive-ready reply

(7) Bulk data transfer |
Source VA —> Dest VA ! J_IJ

Data-transfer request J‘

Time

= Data is not transferred until target address is known
= Limits contention and buffering at the destination

= Performance?

CMU 15-418/618, Fall
2016

Asynchronous Message Passing:

Optimistic

(1) Initiate send

(2) Address translation
(3) Local/remote check
(4) Send data

(5) Remote check for posted
receive; on fail, allocate data
buffer

* Good news:

source

Send(Pdest, local VA, 1len)

Time

7

Data-transfer request

Destination

(

N\

Tag Match
Allocate Buffer
Y,

7

Receive(Psrc, local VA, len)

= source does not stall waiting for the destination to

receive
* Bad news:

" storage is required within the message layer (?)

CMU 15-418/618, Fall
2016

Asynchronous Message Passing:

Conservative Source Destination
(1) Initiate send Send(Pdest, local VA, len)
(2) Address translation
(3) Local/remote check Send-ready request
(4) Send-ready request l

Resume computing

(5) Remote check for posted
receive (assume fail); record (Tag match)
send-ready

Receive(Psrc, local VA, 1len)

(6) Recelve-ready request /
Recelve-ready request

(7) Bulk data reply i J_HJ

Source VA —> Dest VA C

Time L\‘ i | J_HJJ
Data-transfer reply

= Where is the buffering?
= Contention control? Receiver-initiated protocol?
= What about short messages?

CMU 15-418/618, Fall
2016

Key Features of Message Passing Abstraction

= Source knows send address, destination knows
receive address

- after handshake they both know both

= Arbitrary storage “outside the local address
spaces”

- may post many sends before any receives

" Fundamentally a 3-phase transaction
- includes a request / response
- can use optimistic 1-phase in limited “safe” cases
- credit scheme

CMU 15-418/618,
Sprina 2021

Challenge: Avoiding Input Buffer Overflow

= This requires flow-control on the sources

= Approaches:
1. Reserve space per source (credit)

- when is it available for reuse? (utilize ack
messages?)

2. Refuse input when full
- what does this do to the interconnect?
- backpressure in a reliable network
- tree saturation? deadlock?

- what happens to traffic not bound for
congested destination?

3. Drop packets (?)
4. ?7?7?

CMU 15-418/618,
Sprina 2021

Challenge: Avoiding Fetch Deadlock

= Must continue accepting messages, even when cannot source
msgs
- what if incoming transaction is a request?
- each may generate a response, which cannot be sent!
- what happens when internal buffering is full?

Approaches:
1. Logically independent request/reply networks
- physical networks
- virtual channels with separate input/output queues
2. Bound requests and reserve input buffer space
- K(P-1) requests + K responses per node
- service discipline to avoid fetch deadlock?
3. NACK on input buffer full
- NACK delivery?

CMU 15-418/618,
Sprina 2021

Implementation Challenges: Big Picture

= One-way transfer of information
" No global knowledge, nor global control

- barriers, scans, reduce, global-OR give fuzzy
global state

= Very large number of concurrent transactions
= Management of input buffer resources

- many sources can issue a request and over-
commit destination before any see the effect

= Latency is large enough that you are tempted to
“take risks”

- e.g., optimistic protocols; large transfers;
dynamic allocation

CMU 15-418/618,
Sprina 2021

Lecture 20b:

Implementing Parallel
Runtimes, Part 2

Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2021

Objectives

= What are the costs of using parallelism APIs?
= How do the runtimes operate?

CMU 15-418/618,
Sprina 2021

Basis of Lecture

= This lecture is based on runtime and source code analysis
of Intel’s open source parallel runtimes

- OpenMP - https://www.openmprtl.org/

- Cilk - https://bitbucket.org/intelcilkruntime/intel-cilk-
runtime

* And using the LLVM compiler
- OpenMP - part of LLVM as of 3.8

- CilkPlus: http://cilkplus.github.io/ = OpenCilk:
http://cilk.mit.edu

CMU 15-418/618,
Sprina 2021

https://www.openmprtl.org/
https://bitbucket.org/intelcilkruntime/intel-cilk-runtime
http://cilkplus.github.io/
http://cilk.mit.edu/

OpenMP and Cilk

= What do these have in common?
- pthreads

= What benefit does abstraction versus implementation
provide?

CMU 15-418/618,
Sprina 2021

Simple OpenMP Loop Compiled

= What is this code doing?
= What do the OpenMP semantics specify?
= How might you accomplish this?

extern float foo(void);
int main (1nt argc, char** argv) {
int 1;
float r = 0.0;
fpragma omp parallel for Schedulé¥injmic) reduction (+:r)

(1 = 0; 1 < 10; 1 ++) |
rot= £00(); Under the hood:
} 1. Scheduling
retuEn 0 2. Work (in parallel)

3. Reduction
4. Barrier

Example from OpenMP runtime documentation CMU 15-418/618,
Sprina 2021

Simple OpenMP Loop Compiled

extern float foo(void);
int main (1nt argc, char** argv) {
static 1nt zero = 0O;
auto int gtid;
auto float r = 0.0;
~_kmpc begin(& loc3, 0);
gtid = kmpc global thread num(& loc3);

~_kmpc fork call(&loc/, 1, main 7 parallel 3, &r);

~_kmpc end(& iocO) ;
0;
}
Call a (new) function in parallel with the argument(s)
Example from OpenMP runtime documentation CMU 15-418/618,

Sprina 2021

Simple OpenMP Loop Compiled

struct main_10_reduction_t_5 {floatr_10 rpr; };

= OpenMP “microtask”

void main_7_parallel_3(int *gtid, int *btid, float *r_7_shp) {

- EaCh thread rU nS the taSk auto int i_7_pr;
c e g . . auto int lower, upper, liter, incr;
= |nltla|IZGS |OCa| |terat|0n bOundS and |OCa| auto struct main_10_reduction_t_5 reduce;
- duce.r_10 = 0.F;
reduction fere g
. . . __kmpc_dispatch_init_4(& loc7,*gtid, 35,0,9,1,1);
. EaCh |terat|0n recelves a Chunk and (_ _kmpc_dispatch_next_4(& loc7, *gtid, &liter,
&lower, &upper, &incr)) {
Operates Iocal Iy (i_7 pr=lower;upper>=i 7 pr;i_7_pr++)
C ey . : duce.r_10 = foo();
= After finishing all chunks, combine into } reducer_10-rpr=fool
" (__kmpc_reduce nowait(& loc10, *gtid, 1, 4,
QIObaI redUCtIOH &reduce, main_10 reduce_5, &lck)) {
1:
*r 7 shp +=reduce.r_10 rpr;
__kmpc_end_reduce_nowait(& loc10, *gtid, &Ick);
2:
__kmpc_atomic_float4 add(& loc10, *gtid,
r_7 shp, reduce.r 10 rpr);
}
}
Example from OpenMP runtime documentation CMU 15-418/618,

Sprina 2021

Simple OpenMP Loop Compiled

= All code combined

extern float foo(void); void main_7_parallel_3(int *gtid, int *btid, float *r_7_shp) {
int main (int argc, char®* argv) { autointi_7_pr;

static int zero = 0; auto int lower, upper, liter, incr;

auto int gtid; auto struct main_10_reduction_t 5 reduce;

auto float r =0.0; reduce.r_10_rpr =0.F;

__kmpc_begin(& loc3,0); liter = 0;

gtid = ___kmpc_global thread num(& loc3); __kmpc_dispatch_init_4(& loc7,*gtid, 35,0,9,1, 1);

__kmpc_fork call(&loc7, 1, main_7 parallel_3, &r); (__kmpc_dispatch_next_4(& loc7, *gtid, &liter,

__kmpc_end(& loc0); &lower, &upper, &incr)) {

0; (i_7 pr=Ilower; upper>=i_7 pr;i_7_pr++)
} reduce.r_10 rpr +=foo();
}
struct main_10 reduction_t 5 {floatr_10 rpr; }; (__kmpc_reduce nowait(& loc10, *gtid, 1, 4,
static kmp_critical name lck={0}; &reduce, main_10 reduce 5, &lck)) {
static ident_t loc10; 1:
*r 7 shp +=reduce.r_10 rpr;

void main_10_reduce 5(struct main_10 reduction _t 5 *reduce_|hs, __kmpc_end _reduce_nowait(& loc10, *gtid, &lck);
struct main_10 reduction_t 5 *reduce_rhs) ;
{ 2:

reduce |hs->r 10 rpr +=reduce_rhs->r 10 rpr; __kmpc_atomic_float4 add(& loc10, *gtid, r 7 shp,
} reduce.r 10 rpr);

}
}
Example from OpenMP runtime documentation CMU 15-418/618,

Sprina 2021

Fork Call

= “Forks” execution and calls a specified routine
(microtask)

" Determine how many threads to allocate to the parallel
region

= Setup task structures
= Release allocated threads from their idle loop

CMU 15-418/618,
Sprina 2021

Iteration Mechanisms

= Static, compile time iterations
- __kmp_for_static_init
- Compute one set of iteration bounds

" Everything else
- _ _kmp_dispatch_next
- Compute the next set of iteration bounds

CMU 15-418/618,
Sprina 2021

OMP Barriers

= Two phase -> gather and release
- Gather non-master threads pass, master waits
- Release is opposite

= Barrier can be:
- Linear (Centralized)
- Tree
- Hypercube
- Hierarchical

CMU 15-418/618,
Sprina 2021

OMP Atomic

= Can the compiler do this in a read-modify-write (RMW)
op?

= Otherwise, create a compare-and-swap loop

T* wval;
T update;
#pragma omp atomic

*val += update;

If T is int, this is “lock add ...".
If T is float, this is “lock cmpxchg ...”

Why?

CMU 15-418/618,
Sprina 2021

OMP Tasks

= #pragma omp task depend (inout:x) ...

= Create microtasks for each task
- Track dependencies by a list of address / length tuples

- Ordered, dataflow scheduling of tasks on memory
locations

= Allows dynamic creation of task graph for computations
with irregular structure

CMU 15-418/618,
Sprina 2021

Cilk

= Covered in Lecture 6
= We discussed the what and why, now the how

CMU 15-418/618,
Sprina 2021

Simple Cilk Program Compiled

= What is this code doing?
= What do the Cilk semantics specify?
= Which is the child? Which is the continuation?

int fib(int n) {
1f (n < 2)
return n;
1nt a = ci1lk spawn fib(n-1);
int b = fib(n-2);
cllk sync;
return a + b;

CMU 15-418/618,
Sprina 2021

How to create a continuation?

= Continuation needs all of the state to continue
- Register values, stack, etc.

= What function allows code to jump to a prior point of
execution?

= Setjmp(jmp_buf env)
- Save stack context
- Return via longjmp(env, val)

- Setjmp returns 0 if saving, val if returning via longjmp

CMU 15-418/618,
Sprina 2021

Basic Block

= Unit of Code Analysis -

= Sequence of instructions

- Execution can only enter at the first instruction
- Cannot jump into the middle
- Execution can only exit at the last instruction
- Branch or Function Call
- Or the start of another basic block (fall through)

CMU 15-418/618,
Sprina 2021

Simple Cilk Program Revisited

setymp

0

15—

Save Continuation
parallel

serial

setmp Is sync?

0

e fib1 + fib2
cilkrts_sync fibl +1ib2

ﬂ ret

CMU 15-418/618,
Sprina 2021

Cilk Workers

= While there may be work
- Try to get the next item from our queue
- Else try to get work from a random queue
- If there is no work found, wait on semaphore

= |f work item is found
- Resume with the continuation’s stack

CMU 15-418/618,
Sprina 2021

Thread Local Storage

* Linux supports thread local storage
- New: C11 - _Thread_local keyword
- one global instance of the variable per thread
- Compiler places values into .tbhss
- OS provides each thread with this space

= Since Cilk and OpenMP are using pthreads
- These values are in the layer below them

CMU 15-418/618,
Sprina 2021

OpenMP Example - Traced

~ '4
.J,

CMU 15-418/618,
Sprina 2021

- Traced

Cilk Taskgraph - Fi

CMU 15-418/618,
Sprina 2021

/
!
\\
/
_
4
| &)
X
\/
/
4
....... f
....... \Yl-/ . | .
(2 o ~ "
/ et TR ,
he | —_ .:.
_ 1 ™ J

| S\ [et o~

N 2B & s iy

\.//.__ N/ .Y__ = __

_ XA

// ~ TR I .=
/ (o ,__unnn g __||'|
X, ~ = Nof

. oot //L.\a./ \ AN N

s ! 0 __ _.. ~. ._
___ __., b/ ...__| e |VE|V__ ai | = wm oo

P o o/ N\

