Lecture 14
Performance Monitoring Tools

Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2021

Announcements

= WA4 s due tonight
= Assignment 3 is due Wednesday
" Friday is “Spring Break”

= |nformal Mid-semester Feedback survey
= Mid-semester Grades

CMU 15-418/618,
Spring 2021

Scenario

= Student walks into office hours and says, “My code is slow /
uses lots of memory /is SIGKILLED. I'implemented X, Y, and Z.
Are those good? What should | do next?”

= |tdepends.

CMU 15-418/618,
Spring 2021

What is my program doing?

= Measurements are more valuable than insights
- Insights are best formed from measurements!

= We're Computer Scientists
- We can write programs to analyze programs

CMU 15-418/618,
Spring 2021

Note about Examples

* The example programs in today’s lecture are from Spring
2016 Assignment 3

- OpenMP-based graph processing workload (paraGraph)
- Millions to tens of millions of nodes

- Code written for the GHC machines and Xeon Phi

= |nteresting example of parallel programming (bonus
content)

CMU 15-418/618,
Spring 2021

paraGraph

= (Optimize three graph kernels
- bfs
- kbfs - bfs k times, using different starting points
- pagerank

CMU 15-418/618,
Spring 2021

Mapping functions onto Graphs

= Within OpenMP, but does so by mapping functions to vertices
and edges

- vertexMap(vertexMap(U: vertexSubset,
F: vertex -> bool) : vertexSubset

- edgeMap(G: graph,
U: vertexSubset,
C: vertex -> bool,

F: (vertex, vertex) -> bool) : vertexSubset

CMU 15-418/618,
Spring 2021

BFS

int* parents = ... initialied to -1

bool cond(int v) {

return parents[v] == -1;

bool update (int u, int v) {

return compare and swap (& parents[v], -1, u);

void bfs(graph g, int root, int* parents) ({

parents[root] = root; // parent of root vertex is itself
vertexSubset frontier = {root};
while (size(frontier) > 0) {

frontier = edgeMap (graph, frontier, cond, update)

CMU 15-418/618,
Spring 2021

My program is slow today.

= Whatelse is running?
- Try “top”

top - 14:43:26 up 25 days, 3:46,
Tasks: 1326 total, 1 running, 1 S
Cpu(s): 0.0%us, 0.1%sy, 0.0%ni, °1d, 0.0%y
Mem: 16220076k total, 7646188k ushg 8573888k

sers, load average: 0.04, 0.05, 0.01
&z eeping, 2 stopped, 4 zombie

0.0%hi, 0.0%si, 0.0%st
246280k buffers

Swap: 4194296k total, 3560k used, 4190736k , 5219176k cached
PID USER PR NI VIRT RES ©SHR S %CPU SMEM TIME+ COMMAND
2801 nobody 20 0 481m 3860 1192 s 1.0 0.0 63:45.33 gmetad
3306 root 20 0 258m 11lm 2128 S 0.7 0.1 161:54.86 1lsi mrdsnmpagen
4920 nobody 20 0 297m 18m 3380 S 0.7 0.1 181:11.80 gmond
49781 -——————- 20 0 106m 2144 1456 S 0.3 0.0 0:00.10 bash
58119 bpr 20 0 15976 2220 936 R 0.3 0.0 0:00.30 top
106182 ———=———- 20 0 24584 2184 1136 S 0.3 0.0 2:27.99 tmux
134225 - ——————- 20 0O 143m 1732 608 S 0.3 0.0 0:02.92 intelremotemond

CMU 15-418/618,
Spring 2021

What else can top tell us?

= (CPU/Memory usage of our program
— ./paraGraph kbfs com-orkut 117m.graph ——r

top - 15:54:27 up 3 days, 23:58, 6 users, load average: 3.43, 1.15, 0.43

Tasks: 2%0 ®™otal, 2 running, 284 sleeping, 0 stopped, 0 zombie
%Cpu(s): us, 0.2 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st

KiB Mem: 32344548 total, 31305468 used, 1539080 free, 435012 buffers
KiB Swap: 7999484 total, 13176 used, 7986308 free. 27364456 cached Mem

PID USER PR NI VIRT RES SHR S /3sCRU %SMEM TIME+ COMMAND
23457 bpr 20 0 1559584 979704 3420 R4 3.0 0:27.91 paraGraph

1071 root 20 0 75892 6560 5564 S .0 0.0 19:58.05 cups-brows+
21506 root 20 0 87680 17300 5460 S 0.7 0.1 1:08.43 cupsd
23408 bpr 20 0 24956 3196 2588 R 0.3 0.0 0:00.18 top

1 root 20 0 36100 4204 2632 S 0.0 0.0 0:01.02 init

CMU 15-418/618,
Spring 2021

Do | have to use top?

= No. Time was part of the assignment 3 gsub jobs.
$ tail -n 1 bpr grade performance.job

time ./grade performance.py ./Sexe

= time isoften a shell command, there is also the time binary

/usr/bin/time ./paraGraph kbfs com-orkut 117m.graph -t 8 -r

33.16user 0.10system 0:05.54elapsed 600%CPU
(Oavgtext+0avgdata 979708maxresident)k Oinputs+Ooutputs
(Omajor+5624minor) pagefaults Oswaps

CMU 15-418/618,
Spring 2021

But why Is it slow?

= Where Is the time spent?

- Put timing statements around probable issues
- Printresults

= OR
- Use atool to insert timing statements

CMU 15-418/618,
Spring 2021

Program Instrumentation

= When to Inject the instrumentation?
- When the program is compiled.
- When the program s run.

CMU 15-418/618,
Spring 2021

Instrumentation Tool Families

= Program Optimization
- Gprof
- Perf
- VTune
= Program Debugging
- Valgrind
- Sanitizers
= Advanced Analysis
- Pin
- Contech

CMU 15-418/618,
Spring 2021

Amdahl’s Law Revisited

1- s—acomponent of the program
P — speedup of that component speedup <

The more time something takes
- The more speedup small improvements make

Concentrate program optimization on:
- Hotcode
- Common cases

1

| B

CMU 15-418/618,
Spring 2021

GProf

Enabled with “-pg” compiler flag
Places a call into every function
- Calls record the call graph

- (Calls record time elapsed

Run the program.
Run gprof <prog name>

CMU 15-418/618,
Spring 2021

GProf cont

= Qutput shows both the total time in each function
- And cumulative time in calling trees

= (Can be useful with large call graphs

" §$./paraGraph pagerank -t 8 -r soc-pokec 30m.graph

= $gprof
% cumulative self self total
time seconds seconds calls ms/call ms/call name
69.35 0.43 0.43 1 430.00 430.00 Dbuild incoming edges (graph*)
30.65 0.62 0.19 18 10.56 10.56 pagerank (graph*, ...)
0.00 0.62 0.00 1632803 0.00 0.00 addVertex (VertexSet*, int)
0.00 0.62 0.00 7 0.00 0.00 newVertexSet (T, int, int)
0.00 0.62 0.00 7 0.00 0.00 freeVertexSet (VertexSet¥*)

CMU 15-418/618,
Spring 2021

Perf

= Modern architectures expose performance counters
- Cache misses, branch mispredicts, IPC, etc

= Perf tool provides easy access to these counters
- perf list - list counters available on the system
- perfstat — count the total events
- perfrecord - profile using one event
- perfreport — Browse results of perf record

= Perfispresent on GHC machines tested

CMU 15-418/618,
Spring 2021

Perf stat

= (Canbe run with specific events or a general suite

= perfstat[-e...]app

- Many counters come in pairs, each needs a separate -e

- cycles, instructions
branches, branch-misses

- Processors can only enable ~4 counters, else it must

cac
sta
sta

ne-references, cache-misses
led-cycles-frontend

led-cycles-backend

multiplex

CMU 15-418/618,

Perf stat (default) output

./paraGraph -t 8 -r pagerank /afs/cs/academic/class/15418-s16/public/asst3_graphs/soc-
pokec_30m.graph':

2366.633970 task-clock (msec) # 1.758 CPUs utilized
109 context-switches # 0.046 K/sec
9 cpu-migrations # 0.004 K/sec
6,168 page-faults # 0.003 M/sec
7,513,900,068 cycles # 3.175 GHz (83.23%)
6,327,732,886 stalled-cycles-frontend # 84.21% frontend cycles idle (83.42%)
4,019,403,839 stalled-cycles-backend # 53.49% backend cycles idle (66.86%)
3,222,030,372 instructions # 0.43 insns per cycle
1.96 stalled cycles per insn (83.43%)
457,170,532 branches # 193.173 M/sec (83.30%)
12,354,902 branch-misses # 2.70% of all branches (83.24%)

So what is the bottleneck?

CMU 15-418/618,
Spring 2021

More perf stat

= Maybe memory is a bottleneck.

201,493,787 cache-references
49,347,882 cache-misses # 24 .491 % of all cache refs

= 24% misses, that's not good.

= Butwhat should we do?

CMU 15-418/618,
Spring 2021

Perf record

= Pick anevent (or use the default cycles)

= When the event’s counter overflows
- The processor sends an interrupt
- The kernel records where (PC value) of the program

= NOTE: counters update in funny, microarchitectural ways so
Intuition may be required

“Because of latency in the microarchitecture between the generation of events and the generation

of interrupts on overflow, it is sometimes difficult to generate an interrupt close to an event that
caused it.”

CMU 15-418/618,
Spring 2021

Perf cache misses

= Are cache misses the problem?
- Sort of.

11K of event 'cache-misses', Event count (approx.):

Samples:
181771931

Overhead
47.18%
46.84%

2.70%
1.37%

Command

paraGraph
paraGraph
paraGraph
paraGraph

Shared Object
paraGraph
paraGraph
[unknown]

[unknown]

[.1]
[-]
[k]
[k]

Symbol
edgeMapS<State<float> >
build incoming edges
Oxffffff£f£813b2537
Oxffffff£f£813b2915

CMU 15-418/618,
Spring 2021

Perf report cycles

= perfreport shows analysis from record
- Commandline interactive interface

Samples: 13K of event 'cycles', Event count (approx.): 11108635969

Overhead Command Shared Object Symbol
65.93% paraGraph paraGraph [.] edgeMapS<State<float> >
27.66% paraGraph paraGraph [.] build incoming_ edges
1.85% paraGraph paraGraph [.] vertexMap<Local<float> >
1.02% paraGraph [kernel.kallsyms] [k] clear page c
0.88% paraGraph paraGraph [.] addVertex
0.60% paraGraph [kernel.kallsyms] [k] copy user generic string

= Qver 25% of program time Is in creating the graph
- This also skews the perf stats

CMU 15-418/618,
Spring 2021

Deep dive

= Selecting a function will display its assembly with function-local %

bool update (Vertex s, Vertex d)

{
float add = pcurr[s] / outgoing size(graph, s);

I

I

I
2.97 | divss %xmml, $xmmO
5.22 | jmp 162

I nop

|160: mov %eax, $edx

| #pragma omp atomic

| pnext[d] += add;
0.16 |162: mov %edx,0x18 (%rsp)
1.28 | mov %edx, Seax
0.01 | movss 0x18 (%rsp) , $xmm2
2.71 | addss %xmmO, $xmm2
4.63 | movss %$xmm2,0x18 (%rsp)
1.16 | mov 0x18 (%rsp) ,%rl5d
3.99 | lock cmpxchg %rl5d, (%$rcx)

25.22 | cmp %eax, sedx
| jne 160

CMU 15-418/618,
Spring 2021

Deep dive

= Selecting a function will display its assembly with function-local %

| #pragma omp atomic
| pnext[d] += add;

0.01 | movss 0x18(%rsp) , $xmm2 1. OMP atomic -> lock cmpxchg
2.71 | addss %xmmO, $xmm2
4.63 | movss %xmm2,0x18 (%rsp) 2. This instruction is 25%*65% of
1.16 | mov 0x18 (%rsp) ,%rl5d i i
3.99 | lock cmpxchg %rl5d, (%$rcx) execution time
25.22 | cmp %eax, sedx

CMU 15-418/618,
Spring 2021

Deep dive 2

= kBFSisreally, really slow. Why?

Samples:

39218498652

Overhead Command
63.78% paraGraph
19.33% paraGraph
8.21% paraGraph
3.88% paraGraph

Shared Object
paraGraph
paraGraph
paraGraph
paraGraph

= That's almost all my code. :(
- edgeMap(S) is my code

| | | e | | e | | e |
. . . .

d e R A

48K of event 'cycles', Event count (approx.):

Symbol
edgeMapS<RadiiUpdate>
edgeMap<RadiiUpdate>
build incoming edges

vertexMap<VisitedCopy>

CMU 15-418/618,
Spring 2021

Disassemble It!
= What s taking all of kbfs’s time?

bool update (Vertex src, Vertex dst) {

(o)} =
OOk MdMOOO

O oOoOoRr

.11
.21
.20
.88
.15
.27
.02

.54
.34
.02
.31

.45

bool changed = false;
for (int j = 0; j < NUMWORDS,; j++) {

if (visited[dst][j] !'= visited[src][]j]) {
mov 0x0(%rl3) ,%rax
mov (%$rax,%rdi,1l) ,%rbp
mov (%$rax, %$rcx,8) ,%rax
mov 0x0 (%rbp) , %ebp
mov (%rax) , %eax
cmp %eax, 3ebp
je 108

// word-wide or
__sync_fetch and or(&(nextVisited[dst][]]), visited[dst]
mov 0x8 (%rl3) ,%rcx

or %eax, %ebp

mov (%rcx,%rdi,1l) ,%rcx

lock or %ebp, (%rcx)
int oldRadius = radii[dst];
if (radii[dst] '= iter) {

mov 0x18 (%rl3) , %ebp

CMU 15-418/618,

Spring 2021

2D Arrays

" visited[dst] []]
—visited 1s 1int**
—dst in O (Nodes)

—9 1is O(l) (often <=4)

" What 1f visited was i1nt*[4]7?

—Eliminate one memory operation

CMU 15-418/618,
Spring 2021

\VTune

= Part of Intel’s Parallel Studio XE
- Requires (free student) license from Intel

= Similar to perf
- Also includes analysis across related counters

CMU 15-418/618,
Spring 2021

VVTune Memory Bound

= That Spring, | asked many students in office hours:
- “Do you think the graph code is memory bound?”

= Let’s find out!
- (Create a project (select program + arguments to analyze)
- Create an analysis
- Microarchitecture -> Memory Access Analysis
- Start!

CMU 15-418/618,
Spring 2021

Memory Access Analysis Results

Intel VTune Amplifier XE 2016

Elapsed Time : 0.713s

CPU Time 2.484s
Memory Bound “: 50.5%

The metric value is high. This can indicate that the significant Fraction of execution pipeline slots could be stalled due to demand memory
load and stores. Use WTune Amplifier XE Memory Access analysis to have the metric breakdown by memory hierarchy, memory bandwidth
information, correlation by memory objects.

L1 Bound 0.027
L2 Bound —: 0.020
L3 Bound “: 0.127

This metric shows how often CPU was stalled on L3 cache, or contended with a sibling Core. Avoiding cache misses (L2 misses/L3 hits)
improves the latency and increases performance.

DRAM Bound 0.320
This metric shows how often CPU was stalled on the main memory (DRAM). Caching typically improves the latency and increases
performance.
Other: 1.2%
Average Lakency (cycles) = 22
Total Thread Count: 8
Paused Time ~: 0s

CMU 15-418/618,
Spring 2021

Further Analysis

= |nput: soc-pokec...

Execution Time (ms)

A

DRAM Bandwidth (GB/sec)

Graph Initialization

v

1 1
29.0]
1937
9.7

kBFS Iterations

CMU 15-418/618,
Spring 2021

Further Analysis

= |nput: com-orkut

Execution Time (s)

s
CRCRE)
=] Ld 2

1 1

DRAM Bandwidth (GB/sec)

Graph Initialization kBFS Iterations

CMU 15-418/618,
Spring 2021

Instrumentation Tool Families

= Program Optimization
- Gprof
- Perf
- VTune
= Program Debugging
- Valgrind
- Sanitizers
= Advanced Analysis
- Pin
- Contech

CMU 15-418/618,
Spring 2021

Valgrind

= Heavy-weight binary instrumentation

- Designed to shadow all program values: registers and
memory

- Shadowing requires serializing threads
- 4x overhead minimum

= Comes with several useful tools
- Usually used for memcheck

CMU 15-418/618,
Spring 2021

Valgrind memcheck

= \alidates memory operations in a program
Each allocation is freed only once

Each access Is to a currently allocated space
All reads are to locations already written
10 - 20x overhead

= valgrind --tool=memcheck <prog ...>

==29991== HEAP SUMMARY:

==29991== in use at exit: 2,694,466,576 bytes in 2,596 blocks

==29991== total heap usage: 16,106 allocs, 13,510 frees, 3,001,172,305 bytes allocated
==29991==

==29991== LEAK SUMMARY:

==29991== definitely lost: 112 bytes in 1 blocks

==29991== indirectly lost: 0 bytes in 0 blocks

==29991== possibly lost: 7,340,200 bytes in 7 blocks

==29991== still reachable: 2,687,126,264 bytes in 2,588 blocks

==29991== suppressed: 0 bytes in 0 blocks

CMU 15-418/618,
Spring 2021

Address Sanitizer

= Compilation-based approach to detect memory issues
- GCCand LLVM support
- ~2xoverhead

= Add“-fsanitize=address”, make clean ...

==1902== ERROR: AddressSanitizer: heap-buffer-overflow on address 0x7£683e4c008c
at pc 0x41lcb77 bp 0x7£683bcl4a20 sp 0x7£683bcl4als8

READ of size 4 at 0x7£683e4c008c thread T6

0x41cb76 (paraGraph+0x41cb76)

#0
#1
#2
#3
#4
#5
#6
#7

0x7£6852efdf62
0x7f£6852ea7ae3
0x7£6852ea620a
0x7£6852ecab80
0x7£684£db7b97
0x7£f684efadl81
0x7£684£f2b4d47c

(/usr0/local/lib/libiomp5.so+0x89£62)
(/usr0/local/lib/libiomp5.so+0x33ae3)
(/usr0/local/lib/libiomp5.so+0x3220a)
(/usr0/local/lib/libiomp5.so+0x56b80)
(/usr/1ib/x86_64-linux-gnu/libasan.so.0.0.0+0x18b97)
(/1lib/x86_64-linux-gnu/libpthread-2.19.s0+0x8181)
(/1lib/x86_ 64-linux-gnu/libc-2.19.so0+0xfa47c)

CMU 15-418/618,
Spring 2021

Instrumentation Tool Families

= Program Optimization
- Gprof
- Perf
- VTune

= Program Debugging
- Valgrind
- Sanitizers

= Advanced Analysis
- Pin
- Contech

CMU 15-418/618,
Spring 2021

Pin
= CompArch research project, now Intel tool
= Binary instrumentation tool framework

- “Low” overhead
- Provides many sample tools

= (lven its architecture roots, it is best suited to specific
architectural questions about a program

- What is the instruction mix?
- What memory addresses does it access?

CMU 15-418/618,
Spring 2021

Pin cont.

= Pinactsas avirtual machine

- It reassembles the instructions with appropriate
Instrumentation

= Each “pintool” requests specific instrumentation
- Onbasic block entry, record the static instruction count
- On every memory operation, record the address

CMU 15-418/618,
Spring 2021

(Pin) Instrumentation Granularity

= |nstruction
= Basic Block

- Asequence of instructions

- Single entry, single exit

- Terminated with one control flow instruction
= Trace

- Asequence of executed basic blocks

- May span multiple functions

CMU 15-418/618,
Spring 2021

Pintool Example Instruction Count

= Forevery basic block in an identified trace
- Insert somewhere in the block an instrumentation call to my routine
- Pass my routine two arguments: number of instructions, thread ID

// Pin calls this function every time a new basic block is encountered.
// It inserts a call to docount.
VOID Trace (TRACE trace, VOID *v)

{

// Visit every basic block in the trace
for (BBL bbl = TRACE BblHead(trace); BBL Valid(bbl); bbl = BBL Next(bbl))

{
// Insert a call to docount for every bbl, passing the number of

instructions.

BBL InsertCall (bbl, IPOINT ANYWHERE, (AFUNPTR)docount,
IARG_FAST ANALYSIS CALL, IARG UINT32, BBL NumIns(bbl), IARG THREAD ID, IARG_END);

}
}

CMU 15-418/618,
Spring 2021

Pintool Instruction Count Output

= $pin-t pin/source/tools/ManualExamples/obj-intel64/inscount_tls.so -

- ./paraGraph bfs -t 8 -r soc-pokec_30m.graph
= $catinscount_tls.out
Total number of threads =9
0]
Count|[

Count

Count
Count
Count
Count
Count
Count
Count

‘0 ~N o Ul B~ W N

= 561617530

]= 16153

]= 44659367
]= 44863462
]= 44436576
]= 44458686
]= 43808683
]= 44055917

= 43408645

CMU 15-418/618,
Spring 2021

Pin Cache Example
= ...-tsource/tools/Memory/obj-intel64/dcache.so ...

= catdcache.out

PIN:MEMLATENCIES 1.0. 0x0

#

DCACHE stats

#

L1 Data Cache:

Load-Hits: 131764147 59.69%

Load-Misses: 88995193 40.31%
#Load-Accesses: 220759340 100.00%
#

Store-Hits: 71830273 71.07%

Store-Misses: 29242668 28.93%

Store-Accesses: 101072941 100.00%
#

Total-Hits: 203594420 63.26%
#Total-Misses: 118237861 36.74%

Total-Accesses: 321832281 100.00%

CMU 15-418/618,
Spring 2021

Pin Trace Example

= Fromaprior project

- Records the instruction count

- Records read/write and the address
= The trace was then used by a simulator

// Print a memory write record and the number of instructions between
// previous memory access and this access
VOID RecordMemWrite (UINT32 thread id, VOID * addr)

{

// format: W - [total num ins so far] - [num ins between prev mem access and this
access] - [address accessed]

total counts[thread id]++;

files[thread id] << "W " << total counts[thread id] << " " << icounts[thread id] <<

" " &L addr << std::endl;
reset_count (thread id);

CMU 15-418/618,
Spring 2021

Contech

= Compiler-based instrumentation
- UsesClang and LLVM
- Record control flow, memory accesses, concurrency

= Multi-language: C, C++, Fortran
= Multi-runtime: pthreads, OpenMP, Cilk, MPI
= Multi-architecture: x86, ARM

CMU 15-418/618,
Spring 2021

Contech continued

= Designed around writing analysis not instrumentation
- Allinstrumentation is always used
- Assumes the program is correct
- Traces are analyzed after collection, not during

= Sample backends (i.e., analysis tools) are available
- Cache Model
- Data race detection
- Memory usage

CMU 15-418/618,
Spring 2021

Contech Trace Collection

= Running the instrumented program generates a trace
- Traces are processed into taskgraphs
- Taskgraphs store the ordering of concurrent work

Perf Optimization I: Work Distribution and Scheduling

Basic Cilk Plus examples

O bar() foo)
0 l/
cilk_sync;
cilk_spawn foo(); "\ &
cilk_spawn bar(); bar() foo()
cilk_sync;
S depend Xa b I "y
high rhead (d twi)
b
=0 By
lllllllllllll 5 buz() | fizz) | bar) | foo)
QO
ccccccccc M
4 (MU 15-418/6

CMU 15-418/618,
Spring 2021

Contech Trace Collection Example

* _/paraGraph bfs -t 8 -r soc-
pokec 30m.graph

- BFSTime: 0.0215s ->0.2108s (9.8x slowdown)

- 1855MB trace -> 1388MB taskgraph
- 91 million basic blocks
- 321 million memory accesses
- 3 million synchronization operations

CMU 15-418/618,
Spring 2021

Summary Questions

= |fyou may have a performance issue:
- Isthe issue reproducible?
- Do you have a workload?
- |Is the system stable?
- Is the workload at full CPU?

- If not, are there other users / processes running? |

- Ordoes the workload rely heavily on [0?

v

time / top

- |s the CPU time confined to a small number of functigns?

- What is the most time consuming function(s)?
- What is their algorithmic cost and complexity?

<
«

gprof / perf

CMU 15-418/618,
Spring 2021

Ssummary Continued

= You have areproducible, stable workload
- The machine is otherwise idle
- The workload is fully using its CPUs
- The algorithms are appropriate

= |sthere asmall quantity of hot functions?
- Are their cycles confined to specific functions? oerf / VTune
- Are the costs of the instructions understood?

CMU 15-418/618,
Spring 2021

Instrumentation Tool Links

= (prof - https://sourceware.org/binutils/docs/gprof/
= Perf- https://perf.wiki.kernel.org/index.php/Main_Page

= \Tune - https.//software.intel.com/en-us/qualify-for-free-
software/student

= Valgrind - http://valgrind.org/
= Sanitizers - https.//github.com/google/sanitizers

= Pin- https://software.intel.com/en-us/articles/pin-a-dynamic-binary-
Instrumentation-tool

= Contech - http://bprail.github.io/contech/

CMU 15-418/618,
Spring 2021

https://sourceware.org/binutils/docs/gprof/
https://perf.wiki.kernel.org/index.php/Main_Page
https://software.intel.com/en-us/qualify-for-free-software/student
http://valgrind.org/
https://github.com/google/sanitizers
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
http://bprail.github.io/contech/

Other links

= Performance Anti-patterns:
http://queue.acm.org/detail.cfm?id=1117403

CMU 15-418/618,
Spring 2021

http://queue.acm.org/detail.cfm?id=1117403

