
Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2021

Lecture 17:

Implementing
Synchronization

CMU 15-418/618,
Spring 2021

synchronization primitives

▪ Primitives for ensuring mutual exclusion

- Locks

- Atomic primitives (e.g., atomic_add)

- Transactions (later in the course)

▪ Primitives for event signaling

- Barriers

- Flags

CMU 15-418/618,
Spring 2021

Three phases of a synchronization event

1. Acquire method

- How a thread attempts to gain access to protected resource

2. Waiting algorithm

- How a thread waits for access to be granted to shared resource

3. Release method

- How thread enables other threads to gain resource when its
work in the synchronized region is complete

CMU 15-418/618,
Spring 2021

Busy waiting

▪
while (condition X not true) {}

logic that assumes X is true

▪ In classes like 15-213 or in operating systems, you have
certainly also talked about synchronization
- You might have been taught busy-waiting is bad: why?

CMU 15-418/618,
Spring 2021

▪ Idea: if progress cannot be made because a resource cannot
be acquired, it is desirable to free up execution resources for
another thread (preempt the running thread)
if (condition X not true)

block until true; // OS scheduler de-schedules thread

// (let’s another thread use the processor)

▪ pthreads mutex example
pthread_mutex_t mutex;

pthread_mutex_lock(&mutex);

CMU 15-418/618,
Spring 2021

Busy waiting vs. blocking

▪ Busy-waiting can be preferable to blocking if:
- Scheduling overhead is larger than expected wait time

-
-

a system when running a performance-
multiple CPU-intensive programs running at the same time)

- Clarification: be careful to not confuse the above statement with the value of
multi-threading (interleaving execution of multiple threads/tasks to hiding
long latency of memory operations) with other work within the same app.

▪ Examples:
int lock;

OSSpinLockLock(&lock); // OSX spin lock

pthread_spinlock_t spin;

pthread_spin_lock(&spin);

CMU 15-418/618,
Spring 2021

Implementing Locks

CMU 15-418/618,
Spring 2021

Warm up: a simple, but incorrect, lock

lock:

unlock:

ld R0, mem[addr] // load word into R0
cmp R0, #0 // compre R0 to 0
bnz lock // if nonzero jump to top
st mem[addr], #1

st mem[addr], #0 // store 0 to address

Problem: data race because LOAD-TEST-STORE is not atomic!
Processor 0 loads address X, observes 0
Processor 1 loads address X, observes 0
Processor 0 writes 1 to address X
Processor 1 writes 1 to address X

CMU 15-418/618,
Spring 2021

Test-and-set based lock

Atomic test-and-set instruction:
ts R0, mem[addr] // load mem[addr] into R0

// if mem[addr] is 0, set mem[addr] to 1

lock:

unlock:

ts R0, mem[addr] // load word into R0
bnz R0, lock // if 0, lock obtained

st mem[addr], #0 // store 0 to address

CMU 15-418/618,
Spring 2021

Test-and-set lock: consider coherence traffic
Processor 0 Processor 1

BusRdX

Update line in cache (set to 1)

Invalidate line

Processor 2

Invalidate lineT&S

[P0 is holding lock...]

T&SBusRdX

Attempt to update (t&s fails)

Invalidate line

T&SBusRdX

Attempt to update (t&s fails)

Invalidate line

T&SBusRdX

Attempt to update (t&s fails)

Invalidate line

T&SBusRdX

Attempt to update (t&s fails)

Invalidate line

T&SBusRdX

Update line in cache (set to 1)

Invalidate line
BusRdX

Update line in cache (set to 0)

Invalidate line

= thread has lock

CMU 15-418/618,
Spring 2021

Check your understanding

▪ On the previous slide, what is the duration of time the thread
running on P0 holds the lock?

▪
the cache line containing the lock variable?

CMU 15-418/618,
Spring 2021

Test-and-set lock performance

Benchmark executes:
lock(L);
critical-section(c)
unlock(L);

Ti
m

e
(u

s)

Number of processors

Benchmark: execute a total of N lock/unlock sequences (in aggregate) by P processors
Critical section time removed so graph plots only time acquiring/releasing the lock

Bus contention increases amount of
time to transfer lock (lock holder must
wait to acquire bus to release)

Not shown: bus contention also slows
down execution of critical section

Figure credit: Culler, Singh, and Gupta

CMU 15-418/618,
Spring 2021

Desirable lock performance characteristics
▪ Low latency

- If lock is free and no other processors are trying to acquire it, a processor should
be able to acquire the lock quickly

▪ Low interconnect traffic

- If all processors are trying to acquire lock at once, they should acquire the lock in
succession with as little traffic as possible

▪ Scalability

- Latency / traffic should scale reasonably with number of processors

▪ Low storage cost

▪ Fairness

- Avoid starvation or substantial unfairness

- One ideal: processors should acquire lock in the order they request access to it

Simple test-and-set lock: low latency (under low contention), high traffic, poor scaling, low storage cost (one int),

no provisions for fairness

CMU 15-418/618,
Spring 2021

Test-and-test-and-set lock
void Lock(int* lock) {

while (1) {

while (*lock != 0);

if (test_and_set(*lock) == 0)
return;

}
}

void Unlock(volatile int* lock) {
*lock = 0;

}

// while another processor has the lock...

// when lock is released, try to acquire it

CMU 15-418/618,
Spring 2021

Test-and-test-and-set lock: coherence traffic
Processor 1 Processor 2

BusRdX

Update line in cache (set to 1)

[P1 is holding lock...]

BusRdX

Update line in cache (set to 0)

Invalidate line

Invalidate line

BusRd

[Many reads from local cache]

Invalidate line

BusRd

BusRdX

Update line in cache (set to 1)

Invalidate line

Processor 3

Invalidate line

BusRd

[Many reads from local cache]

Invalidate line

BusRd

BusRdX

Attempt to update (t&s fails)

T&S

T&S

T&S

= thread has lock

CMU 15-418/618,
Spring 2021

Test-and-test-and-set characteristics

▪ Slightly higher latency than test-and-set in uncontended case
- Must test... then test-and-set

▪ Generates much less interconnect traffic
- One invalidation, per waiting processor, per lock release (O(P) invalidations)

- This is O(P2) interconnect traffic if all processors have the lock cached

- Recall: test-and-set lock generated one invalidation per waiting processor per test

▪ More scalable (due to less traffic)

▪ Storage cost unchanged (one int)

▪ Still no provisions for fairness

CMU 15-418/618,
Spring 2021

Test-and-set lock with back off
Upon failure to acquire lock, delay for awhile before retrying

void Lock(volatile int* l) {
int amount = 1;
while (1) {

if (test_and_set(*l) == 0)
return;

delay(amount);
amount *= 2;

}
}

▪ Same uncontended latency as test-and-set, but potentially higher latency under
contention. Why?

▪ Generates less traffic than test-and-set (not continually attempting to acquire lock)

▪ Improves scalability (due to less traffic)

▪ Storage cost unchanged (still one int for lock)

▪ Exponential back-off can cause severe unfairness

- Newer requesters back off for shorter intervals

CMU 15-418/618,
Spring 2021

Ticket lock
Main problem with test-and-set style locks: upon release,
all waiting processors attempt to acquire lock using test-
and-set

struct lock {
volatile int next_ticket;
volatile int now_serving;

};

void Lock(lock* l) {
int my_ticket = atomic_increment(&l->next_ticket); // take a “ticket”
while (my_ticket != l->now_serving); // wait for number

} // to be called

void unlock(lock* l) {
l->now_serving++;

}

No atomic operation needed to acquire the lock (only a read)

Result: only one invalidation per lock release (O(P) interconnect traffic)

CMU 15-418/618,
Spring 2021

Array-based lock
Each processor spins on a different memory address

Utilizes atomic operation to assign address on attempt to acquire

struct lock {
volatile padded_int status[P]; // padded to keep off same cache line
volatile int head;

};

int my_element;

void Lock(lock* l) {
my_element = atomic_circ_increment(&l->head); // assume circular increment
while (l->status[my_element] == 1);

}

void unlock(lock* l) {
l->status[my_element] = 1;
l->status[circ_next(my_element)] = 0; // next() gives next index

}

O(1) interconnect traffic per release, but lock requires space linear in P

Also, the atomic circular increment is a more complex operation (higher overhead)

CMU 15-418/618,
Spring 2021

x86 cmpxchg

▪ Compare and exchange (atomic when used with lock prefix)
lock cmpxchg dst, src

if (dst == EAX)

ZF = 1

dst = src

else

ZF = 0

EAX = dst

often a memory address

x86 accumulator register

flag register

lock prefix (makes operation atomic)

Self-check: Can you implement ASM for
atomic test-and-set using cmpxchg?

CMU 15-418/618,
Spring 2021

Queue-based Lock (MCS lock)

▪ Create a queue of waiters

- Each thread allocates a local space on which to wait

▪ Pseudo-code:

- glock global lock

- mlock my lock (state, next pointer)

AcquireQLock(*glock, *mlock)
{
mlock->next = NULL;
mlock->state = UNLOCKED;
ATOMIC();
prev = glock
*glock = mlock
END_ATOMIC();
if (prev == NULL) return;
mlock->state = LOCKED;
prev->next = mlock;
while (mlock->state == LOCKED)
; // SPIN

}

ReleaseQLock(*glock, *mlock)
{
do {
if (mlock->next == NULL) {
x = CMPXCHG(glock, mlock, NULL);
if (x == mlock) return;

}
else
{
mlock->next->state = UNLOCKED;
return;

}
} while (1);

}

CMU 15-418/618,
Spring 2021

Implementing Barriers

CMU 15-418/618,
Spring 2021

Implementing a centralized barrier
(Based on shared counter)

Does it work? Consider:
do stuff ...
Barrier(b, P);
do more stuff ...
Barrier(b, P);

struct Barrier_t {
LOCK lock;
int counter; // initialize to 0
int flag; // the flag field should probably be padded to

// sit on its own cache line. Why?
};

// barrier for p processors
void Barrier(Barrier_t* b, int p) {
lock(b->lock);
if (b->counter == 0) {
b->flag = 0; // first thread arriving at barrier clears flag

}
int num_arrived = ++(b->counter);
unlock(b->lock);

if (num_arrived == p) { // last arriver sets flag
b->counter = 0;
b->flag = 1;

}
else {
while (b->flag == 0); // wait for flag

}
}

CMU 15-418/618,
Spring 2021

Correct centralized barrier
struct Barrier_t {

LOCK lock;
int arrive_counter; // initialize to 0 (number of threads that have arrived)
int leave_counter; // initialize to P (number of threads that have left barrier)
int flag;

};

// barrier for p processors
void Barrier(Barrier_t* b, int p) {

lock(b->lock);
if (b->arrive_counter == 0) { // if first to arrive...

if (b->leave_counter == P) { // check to make sure no other threads “still in barrier”
b->flag = 0; // first arriving thread clears flag

} else {
unlock(lock);
while (b->leave_counter != P); // wait for all threads to leave before clearing
lock(lock);
b->flag = 0; // first arriving thread clears flag

}
}
int num_arrived = ++(b->arrive_counter);
unlock(b->lock);

if (num_arrived == p) { // last arriver sets flag
b->arrive_counter = 0;
b->leave_counter = 1;
b->flag = 1;

}
else {

while (b->flag == 0); // wait for flag
lock(b->lock);
b->leave_counter++;
unlock(b->lock);

}
}

Main idea: wait for all processes to
leave first barrier, before clearing
flag for entry into the second

CMU 15-418/618,
Spring 2021

Centralized barrier with sense reversal
struct Barrier_t {
LOCK lock;
int counter; // initialize to 0
int flag; // initialize to 0

};

int local_sense = 0; // private per processor. Main idea: processors wait for flag
// to be equal to local sense

// barrier for p processors
void Barrier(Barrier_t* b, int p) {
local_sense = (local_sense == 0) ? 1 : 0;
lock(b->lock);
int num_arrived = ++(b->counter);
if (b->counter == p) { // last arriver sets flag
unlock(b->lock);
b->counter = 0;
b->flag = local_sense;

}
else {
unlock(b->lock);
while (b.flag != local_sense); // wait for flag

}

Sense reversal optimization results in one spin instead of two

CMU 15-418/618,
Spring 2021

Centralized barrier: traffic

▪ O(P) traffic on interconnect per barrier:
- All threads: 2P write transactions to obtain barrier lock and update counter

(O(P) traffic assuming lock acquisition is implemented in O(1) manner)

- Last thread: 2 write transactions to write to the flag and reset the counter
(O(P) traffic since there are many sharers of the flag)

- P-1 transactions to read updated flag

▪ But there is still serialization on a single shared lock
- So span (latency) of entire operation is O(P)

- Can we do better?

CMU 15-418/618,
Spring 2021

Combining tree implementation of barrier

▪ Combining trees make better use of parallelism in interconnect topologies
- lg(P) span (latency)

- Strategy makes less sense on a bus (all traffic still serialized on single shared bus)
▪ Barrier acquire: when processor arrives at barrier, performs increment of parent counter

- Process recurses to root

▪ Barrier release: beginning from root, notify children of release

Centralized Barrier Combining Tree Barrier

High contention!
(e.g., single barrier

lock and counter)

CMU 15-418/618,
Spring 2021

▪ Imagine you have a shared variable for which contention is low.
So it is unlikely that two processors will enter the critical section
at the same time?

▪ You could hope for the best, and avoid the overhead of taking the
lock since it is likely that mechanisms for ensuring mutual
exclusion are not needed for correctness

- -for-the-common-

▪
middle of the critical region, another process enters the same
region?

