Lecture 1/

I[mplementing
synchronization

Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2021

Today's topic: efficiently implementing
synchronization primitives

= Primitives for ensuring mutual exclusion
- Locks
- Atomic primitives (e.g., atomic_add)
- Transactions (later in the course)

= Primitives for event signaling

- Barriers
- Flags

CMU 15-418/618,
Sprina 2021

Three phases of a synchronization event

1. Acquire method

- How a thread attempts to gain access to protected resource
2. Waiting algorithm

- How a thread waits for access to be granted to shared resource
3. Release method

- How thread enables other threads to gain resource when Its
work In the synchronized region is complete

CMU 15-418/618,
Sprina 2021

Busy waiting

" Busy waiting (a.k.a. “spinning”)
while (condition X not true) {}

logic that assumes X is true

= |nclasses like 15-213 or In operating systems, you have
certainly also talked about synchronization

- You might have been taught busy-waiting is bad: why?

CMU 15-418/618,
Sprina 2021

“Blocking” synchronization

= |dea: If progress cannot be made because a resource cannot
be acquired, it is desirable to free up execution resources for
another thread (preempt the running thread)

if (condition X not true)
block until true; // 0S scheduler de-schedules thread

// (let’s another thread use the processor)

= pthreads mutex example

pthread mutex t mutex;

pthread_mutex_lock(&mutex);

CMU 15-418/618,
Sprina 2021

Busy waiting vs. blocking

= Busy-waiting can be preferable to blocking if:
- Scheduling overhead is larger than expected walit time

- Processor’s resources not needed for other tasks

- This is often the case in a parallel program since we usually don’t oversubscribe
a system when running a performance-critical parallel app (e.g., there aren’t
multiple CPU-Intensive programs running at the same time)

- Clarification: be careful to not confuse the above statement with the value of
multi-threading (interleaving execution of multiple threads/tasks to hiding
long latency of memory operations) with other work within the same app.

= Examples:

pthread _spinlock t spin; int lock;

pthread spin_lock(&spin); OSSpinLockLock(&lock); // 0OSX spin lock

CMU 15-418/618,
Sprina 2021

Implementing Locks

Warm up: a simple, but incorrect, lock

lock: ld RO, mem[addr] // load word into RO
cmp RO, #0 // compre RO to ©
bnz 1lock // if nonzero jump to top

st mem[addr], #1

unlock: st mem[addr], #0 // store © to address

Problem: data race because LOAD-TEST-STORE I1s not atomic!

Processor 0 loads address X, observes 0
Processor 1 loads address X, observes 0
Processor O writes 1 to address X
Processor 1 writes 1 to address X

CMU 15-418/618,
Sprina 2021

Test-and-set based lock

Atomic test-and-set instruction:

ts RO, mem[addr] // load mem[addr] into RO
// 1f mem[addr] is O, set mem[addr] to 1

lock: ts RO, mem[addr] // load word into RO
bnz RO, lock // if 0, lock obtained

unlock: st mem[addr], #0 // store O to address

CMU 15-418/618,
Sprina 2021

Test-and-set lock: consider conerence traffic

B
U

nvalidate line

US

Processor O
- BusRX &
Update line in cache (setto 1)

V'

[PO s holding lock...]

RdX l

00

ate line in cache (set to 0)

Invalidate line

= thread has lock

Processor 1

- Invalidate line

..

..

Processor 2

Invalidate line

...................................

Invalidate line

CMU 15-418/618,
Sprina 2021

Check your understanding

= (Onthe previous slide, what 1s the duration of time the thread
running on PO holds the lock?

= At what pointsin time does P0’s cache contain a valid copy of
the cache line containing the lock variable?

CMU 15-418/618,
Sprina 2021

Test-and-set lock performance

Benchmark: execute a total of N lock/unlock sequences (in aggregate) by P processors
Critical section time removed so graph plots only time acquiring/releasing the lock

20 —
Benchmark executes:
18 lock(L);
critical-section(c)
unlock(L);
16
14
212 |-
2
=10 N/ Bus contention Increases amount of
ol time to transfer lock (lock holder must
wait to acquire bus to release)
Not shown: bus contention also slows
down execution of critical section

| | | J | | |
S 7 9 11 13 15

Number of processors

CMU 15-418/618,

Figure credit: Culler, Singh, and Gupta Sprina 2021

Desirable lock performance characteristics

= |Low latency

- If lock Is free and no other processors are trying to acquire It, a processor should
be able to acquire the lock quickly

= | ow Interconnect traffic

- Ifall processors are trying to acquire lock at once, they should acquire the lock In
succession with as little traffic as possible

= Scalability
- Latency/ traffic should scale reasonably with number of processors
= |ow storage cost
= Fairness
- Avoid starvation or substantial unfairness
- One Ideal: processors should acquire lock in the order they request access to it

Simple test-and-set lock: low latency (under low contention), high traffic, poor scaling, low storage cost (one int),

no provisions for fairness CMU 15-418/618
Sprina 2021

Test-and-test-and-set lock

void Lock(int* lock) {
while (1) {

while (*lock != 0); // while another processor has the lock...

if (test_and_set(*lock) == @) // when lock is released, try to acquire it
return;

}
}

void Unlock(volatile int* lock) {
*lock = 0;
}

CMU 15-418/618,
Sprina 2021

Test-and-test-and-set lock: coherence traffic

Processor 1 Processor 2 Processor 3

 BusRdX "5 Invalidate line Invalidate line

...

V'

BusRd BusRd
[P1isholding lock...] [Many reads from local cache] [Many reads from local cache]

BusRdX] l

Update line in cache (set to 0) Invalidate line Invalidate line

Invalidate line BusRa BusRd
BusRaxX T&S
Update line incache (setto1)
Invalidateline BusRdX o

Attempt to update (t&s fails)
= thread has lock R RIIICTEEPTELPRIPEEEPRREREERRPEED EMU-15-418/618,

Sprina 2021

Test-and-test-and-set characteristics

Slightly higher latency than test-and-set in uncontended case
- Must test... then test-and-set

Generates much less interconnect traffic
- One Invalidation, per waiting processor, per lock release (O(P) invalidations)

- This is O(P?) interconnect traffic if all processors have the lock cached
- Recall: test-and-set lock generated one invalidation per waiting processor per test

More scalable (due to less traffic)
Storage cost unchanged (one Int)
Still no provisions for fairness

CMU 15-418/618,
Sprina 2021

Test-and-set lock with back off

Upon failure to acquire lock, delay for awhile before retrying

void Lock(volatile int* 1) {
int amount = 1;
while (1) {
if (test _and set(*1l) == 0)
return;
delay(amount);
amount *= 2;
}
}

= Same uncontended latency as test-and-set, but potentially higher latency under
contention. Why?

= Generates less traffic than test-and-set (not continually attempting to acquire lock)
= |mproves scalability (due to less traffic)
= Storage cost unchanged (still one int for lock)
= Exponential back-off can cause severe unfairness
- Newer requesters back off for shorter intervals

CMU 15-418/618,
Sprina 2021

Ticket lock

Main problem with test-and-set style locks: upon release,
all waiting processors attempt to acquire lock using test-
and-set

struct lock {
volatile int next_ ticket;
volatile int now_serving;

}s

void Lock(lock* 1) {
int my_ ticket = atomic increment(&l->next ticket); // take a “ticket”

while (my_ticket != 1l->now_serving); // wait for number
} // to be called

void unlock(lock* 1) {
1->now_serving++;

}

No atomic operation needed to acquire the lock (only a read)
Result: only one invalidation per lock release (O(P) interconnect traffic)

CMU 15-418/618,
Sprina 2021

Array-based lock

Each processor spins on a different memory address
Jtilizes atomic operation to assign address on attempt to acquire

struct lock {
volatile padded int status|[P]; // padded to keep off same cache line

volatile int head;

}s
int my_element;

void Lock(lock* 1) {
my element = atomic_circ_increment(&1l->head); // assume circular increment

while (1->status[my_element] == 1);
}

void unlock(lock* 1) {
1->status[my_element] = 1;
1->status[circ_next(my_element)] = 0; // next() gives next index

}
O(1) interconnect traffic per release, but lock requires space linear in P

Also, the atomic circular increment is a more complex operation (higher overhead)

CMU 15-418/618,
Sprina 2021

x86 cmpxchg

= Compare and exchange (atomic when used with lock prefix)

lock cmpxchg dst, src

T

often a memory address

lock prefix (makes operation atomic)

1 x86 accumulator register
if (dst == EAX)
ZF = 1 - flag register
dst = src
else
ZF = 0
EAX = dst

Self-check: Can you implement ASM for
atomic test-and-set using cmpxchg?

CIVIU 19-4158/013,
Sprina 2021

Queue-based Lock (MCS lock)

= (Create a queue of waiters

- Each thread allocates a local space on which to walt

= Pseudo-code:
- glock —global lock

- mlock — my lock (state, next pointer)

AcquireQLock(*glock, *mlock)
{
mlock->next = NULL;
mlock->state = UNLOCKED;
ATOMIC();
prev = glock
*glock = mlock
END_ATOMIC();
if (prev == NULL) return;
mlock->state = LOCKED;
prev->next = mlock;
while (mlock->state == LOCKED)
s // SPIN

ReleaseQLock(*glock, *mlock)
{
do {
if (mlock->next == NULL) {
X = CMPXCHG(glock, mlock, NULL);
if (x == mlock) return;
}
else
{
mlock->next->state = UNLOCKED;
return;
}
} while (1);
}

CMU 15-418/618,
Sprina 2021

Implementing Barriers

Implementing a centralized barrier

(Based on shared counter)

struct Barrier_t {
LOCK lock;
int counter; // initialize to ©
int flag; // the flag field should probably be padded to
// sit on its own cache line. Why?

}s

// barrier for p processors
void Barrier(Barrier_t* b, int p) {
lock(b->lock);
if (b->counter == 0) {
b->flag = 0; // first thread arriving at barrier clears flag
}
int num_arrived = ++(b->counter);
unlock(b->lock);

if (num_arrived == p) { // last arriver sets flag DOeS ItWOI’k? C0n3|der:
b->counter = 0; do stuff ...
b->flag = 1; Barrier(b, P);
J do more stuff ...
else { .
while (b->flag == @); // wait for flag Barrier(b, P);
}
}
CMU 15-418/618,

Sprina 2021

Correct centralized barrier

struct Barrier_t {
LOCK lock;
int arrive_counter; // initialize to © (number of threads that have arrived)
int leave_counter; // initialize to P (number of threads that have left barrier)

int flag;
}s

// barrier for p processors
void Barrier(Barrier_t* b, int p) {
lock(b->lock);

if (b->arrive_counter == 0) { // if first to arrive...
if (b->leave_counter == P) { // check to make sure no other threads “still in barrier”
b->flag = 0; // first arriving thread clears flag
} else {
unlock(lock);
while (b->leave _counter != P); // wait for all threads to leave before clearing
lock(lock);
b->flag = 0; // first arriving thread clears flag
}
}

int num_arrived = ++(b->arrive_counter);
unlock(b->lock);

i (num_arrived == p) { // last arriver sets 12 Main idea: wait for all processes to

b->arrive_counter

b->Leave_counter = 1; leave first barrier, before clearing

b->flag = 1;
) flag for entry into the second
else {
while (b->flag == 0); // wait for flag
lock(b->1lock);
b->leave_counter++;
unlock(b->lock);
}
} CMU 15-418/618,
Sprina 2021

Centralized barrier with sense reversal

struct Barrier_t {
LOCK lock;
int counter; // initialize to ©
int flag; // initialize to ©

}s

int local sense = 0; // private per processor. Main idea: processors wait for flag
// to be equal to local sense

// barrier for p processors
void Barrier(Barrier_t* b, int p) {
local sense = (local sense == 0) ? 1 : 0O;
lock(b->lock);
int num_arrived = ++(b->counter);
if (b->counter == p) { // last arriver sets flag
unlock(b->lock);
b->counter = 0;
b->flag = local sense;
}
else {
unlock(b->lock);
while (b.flag != local sense); // wait for flag

}

Sense reversal optimization results in one spin instead of two

CMU 15-418/618,
Sprina 2021

Centralized barrier: traffic

= ((P) traffic on Interconnect per barrier:

- All threads: 2P write transactions to obtain barrier lock and update counter
(O(P) traffic assuming lock acquisition is implemented in O(1) manner)

- Last thread: 2 write transactions to write to the flag and reset the counter
(O(P) traffic since there are many sharers of the flag)

- P-1transactions to read updated flag

= Butthere s still serialization on asingle shared lock

- Sospan (latency) of entire operation is O(P)
- Canwe do better?

CMU 15-418/618,
Sprina 2021

Combining tree Implementation of barrier

High contention!
(e.g., single barrier\A O

lock and counter) 2 O\O
O Om C{ Cg 5 \Q

Centralized Barrier Combining Tree Barrier

= Combining trees make better use of parallelism in interconnect topologies
- lg(P) span (latency)

- Strategy makes less sense on a bus (all traffic still serialized on single shared bus)
= Barrier acquire: when processor arrives at barrier, performs increment of parent counter

- Process recurses to root
= Barrier release: beginning from root, notify children of release

CMU 15-418/618,
Sprina 2021

Coming up...

= |magine you have a shared variable for which contention is low.
S0 It 1s unlikely that two processors will enter the critical section
at the same time?

= You could hope for the best, and avoid the overhead of taking the
lock since 1t Is likely that mechanisms for ensuring mutual
exclusion are not needed for correctness

- Take a “optimize-for-the-common-case” attitude

= What happens if you take this approach and you're wrong: in the
middle of the critical region, another process enters the same
region?

CMU 15-418/618,
Sprina 2021

