Lecture 10;

Workload-Driven
Performance Evaluation

Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2021

You are hired by [Insert your favorite chip company here].
You walk In on day one, and your boss says
“All of our senior architects have decided to take the year off.

Your job is to lead the design of our next parallel processor.”

What questions might you ask?

CMU 15-418/618,
Sprina 2021

Your boss

selects the application that matters most to the company

“I want you to demonstrate good performance on this application.”

How do you know If you have a good design?

= Absolute performance?

- Often measured as wall clock time
- Another example: operations per second

= Speed

up: performance improvement due to parallelism?

- Execution time of sequential program / execution time on P processors
- Operations per second on P processors / operations per second of sequential program

= Efficiency?

- Perfor
- e.0.,0

mance per unit resource

nerations per second per chip area, per dollar, per watt

CMU 15-418/618,
Sprina 2021

Measuring scaling

Consider the particle binning example from last week’s class

Should speedup be measured against the performance of a parallel
version of a program running on one processor, or the best
sequential program?

11

12

14

15

CMU 15-418/618,
Sprina 2021

Parallel Implementations of particle binning

mplementation 3: build separate grids and merge

Sequential algorithm

[
list cell lists[16]; // 2D array of lists £

—

1 >

-
»
2
1
for each particle p \\ ‘/‘/
c = compute cell containing p

B

append p to cell lists[c]

|
B

Implementation 1: Parallel over particles Implementation 4: data-parallel sort

list cell_list[16]; // 2D array of lists Step 1: compute cell containing each particle
lock cell list lock; Amayindex: 1 2 3 4 5

result: 9 6 6 4 6 4

for each particle p // in parallel
Step 2: sort results by cell

c = compute cell containing p
lock(cell list lock)
append p to cell list[c]

unlock(cell list_ lock)

Array Index: 3 5 1 2 4 0

result: 4 4 6 6 6 9

Step 3: find start/end of each cell

.) cell = result[index]
Implementation 2: parallel over grid cells i (index == 0 || cell I= result[index-1]) {
cell starts[cell] = index;
if (index > @) // special case for first cell

list cell lists[16]; // 2D array of lists cell_ends[result[index-1]] = index;
}

if (index == numParticles-1) // special case for last cell
cell ends[cell] = index+1;

for each cell c // in parallel

for each particle p // sequentially _
Common pitfall: compare parallel program speedup to parallel

algorithm running on one core (easier to make yourself look good)
CMU 15-418/618,
Sprina 2021

if (p is within c¢)

append p to cell lists[c]

Speedup of ocean sim application: 258 x 258 grid

Execution on 32 processor SGI Origin 2000

30

—8— |deal
25 —=— QOcean: 258 x 258

Speedup

I N I N I O O B

012 4 8 16 32

Processors

CMU 15-418/618,

Figure credit: Culler, Singh, and Gupta Spring 2021

Remember: work assignment in ocean

2D blocked assignment: Nx N grid
B R
SIS
e e ofe 5 ofe &% o

N? elements
P Drocessors

2
elements computed: N~
(per processor) P
elements communicated: &V
(per processor) \/F

arithmetic intensity:

Small N yields low arithmetic intensity!

CMU 15-418/618,
Sprina 2021

Pitfalls of fixed Broblem Size speedup analysis

Ocean execution on 32 processor SGI Origin 2000

- |deal
30 -| —&— N =130 4
—8— N =258
o5 || —— N =514 |
®- N =1,026 No benefit! (slight slowdown)
o 20 |
S Problem size is just too small for the machine
§_ 15 (large communication-to-computation ratio)
10 L Scaling the performance of small problem may
not be all that important anyway (it might
. already execute fast enough on asingle core)
oW L VT Q
12 4 8 16
Processors
258 x 258 grid on 32 processors: ~ 310 grid cells per processor
1K x 1K grid on 32 processors: ~ 32K grid cells per processor

CMU 15-418/618,

Figure credit: Culler, Singh, and Gupta .
Spring 2021

Pitfalls of fixed problem size speedup analysis

Execution on 32 processor SGI Origin 2000

50 . .
- i |
a— Crid solver 12 K x 12 K Here: super-linear spee_dup. Wlth enough
49 — _e— |deal processors, chunk of grid assigned to each
40 |- processor begins to fit in cache (key working
as set fits in per-processor cache)
30 |-
=
3 25
& 20 |- Another example: If problem size Is too large
5 for a single machine, working set may not fit in
memory: causing thrashing to disk
10
5 (this would make speedup on a bigger parallel
o™ittty machine with more memory look amazing)
12 4 8 16 32
Processors

CMU 15-418/618,

Figure credit: Culler, Singh, and Gupta .
Spring 2021

Understanding scaling: size matters!

= There can be complex interactions between the size of the problem and the

size of the parallel computer.

- Canimpact load balance, overhead, arithmetic intensity, locality of data access
- Effects can be dramatic and application dependent

= Evaluating a machine with a fixed problem size can be problematic
- Toosmalla problem:
- Parallelism overheads dominate parallelism benefits (may even result in slow downs)

- Problem size may be appropriate for small machines, but inappropriate for large ones
(does not reflect realistic usage of large machine!)

- Too large a problem: (problem size chosen to be appropriate for large machine)
- Key working set may not “fit” in small machine

(causing thrashing to disk, or key working set exceeds cache capacity, or cant run at all)

- When problem working set “fits” in a large machine but not small one, super-linear
speedups can occur

= (an be desirable to scale problem size as machine sizes grow

(buy a bigger machine to compute more, rather than just compute the same problem faster)

CMU 15-418/618,
Sprina 2021

Lecture Checkpoint 1

= How does the size of a problem affect execution time?
= Why does this matter for scaling?

CMU 15-418/618,
Sprina 2021

Architects also think about scaling

A common question: “Does an architecture scale?”

= Scaling up: how does architecture’s performance scale with increasing core count?
- Will design scale to the high end?
= Scaling down: how does architecture’s performance scale with decreasing core count?
- Will design scale to the low end?
= Parallel architectures are designed to work in a range of contexts
- Same architecture used for low-end, medium-scale, and high-end systems
- GPUsare agreat example
- Same SMM core architecture, different numbers of SMM cores per chip

'.__~ % ‘

Tegra X1: 2 SMM cores GTX950: 6 SMM cores GTX980: 16 SMM cores Titan X: 24 SMM cores

(mobile SoC) (90 watts) (165 watts) (250 watts)
CMU 15-418/618,

Sprina 2021

Common Scaling Terminology

= For mapping problem X on system with P processors

= Strong scaling
- Runtime of X on P processors, vs. of X on 1 processor
- (Goal =Px faster, or 1/Px runtime
- Q. Does having more processors get job done faster?
= \Weak scaling
- Runtime of (P*X) on P processors, vs. of X on 1 processor
- Goal =1.0x runtime
- Q. Does having more processors let me do bigger jobs?

CMU 15-418/618,
Sprina 2021

Questions to ask when scaling a problem

= Under what constraints should the problem be scaled?

- “Work done by program” may no longer be the quantity that is fixed
- Fixed data set size, fixed memory usage per processor, fixed execution time, etc.?

= How should be the problem be scaled?

- Problem size is often determined by more than one parameter
- Ocean example: problem defined by (N, ¢, At, T\

total time simulated by program
(one day of ocean flow)

grid size: (Nx N) time step size

convergence threshold of solver

CMU 15-418/618,
Sprina 2021

Scaling constraints

= Application-oriented scaling properties (specific to application)
- Particles per processor
- Transactions per processor

= Resource-oriented scaling properties
1. Problem constrained scaling (PC)
2. Memory constrained scaling (MC)
3. Time constrained scaling (TC)

User-oriented properties often more intuitive, but resource-
oriented properties are more general, and apply across domains.
(so we'll talk about them today)

CMU 15-418/618,
Sprina 2021

Problem-constrained scaling *

= Focus: use a parallel computer to solve the same problem faster

time 1 processor
Speedup= ———
time P processors
= Recall pitfalls from earlier in lecture (small problems may not be
realistic workloads for large machines, big problems may not fit on
small machines)
= Examples of problem-constrained scaling:

- Almost everything we've considered parallelizing in class so far
- Assignments 1 and 2

* Problem-constrained scaling is often called “hard scaling”. MU 15.418/618

Sprina 2021

Time-constrained scaling *

= Focus: completing more work in a fixed amount of time

Sneed work done by P processors
eedup= ———
pestitt work done by 1 processor

- Execution time kept fixed as the machine (and problem) scales

" How to measure “work"?
- Challenge: “work done” may not be linear function of values of problem inputs

(e.g. matrix multiplication is O(N®) work for O(N?) sized inputs)

- One approach: “work done” is defined by execution time of same computation on a
single processor (but consider effects of thrashing if problem too big)

- |deally, a measure of work Is:
- Simple to understand

- Scales linearly with sequential run time (So ideal speedup remains linear in P)

CMU 15-418/618,
Sprina 2021

TiIme-constrained scaling example

Real-time 3D graphics: more compute power allows for rendering of much more complex scene
Problem size metrics: number of polygons, texels sampled, shader length, etc. s

Half-Life (1998)

Assassin's Creed Unity (2014)
Image credits:

http://www.gamespot.com/forums/system-wars-314159282/assassin-s-creed-unity-best-graphics-of-2014-31696528/

http://www.game-weavers.com/?page_id=490 CMU 15-418/618,

Spring 2021

Time-constrained scaling example

Large Synoptic Survey Telescope (LSST)

- Estimated completionin 2021

- Acquire high-resolution survey of sky (3-gigapixel
Image every 15 seconds, every night for many years)

Rapid Image analysis compute platform
(detect “potentially”
Interesting events)

LSST will be located on top of Cerro Pachon Mountain, Chile
Notify other observatoriesif > ™.
potential event detected. N . .
. g Increasing compute capability allows

for more sophisticated detection
algorithms (fewer false positives,
detect broader class of events)

Image credits:
http://www.lsst.org CMU 15-418/618,

http://mcdonaldobservatory.org » - Sprina 2021

http://www.lsst.org

More time-constrained scaling examples

= Computational finance
- Run most sophisticated model possible in: 1 ms, 1 minute, overnight, etc.

= Modern web sites

- Want to generate complex page, respond to user in X milliseconds
(studies show site usage directly corresponds to page load latency)

= Real-time computer vision for robotics
- Consider self-driving car: best quality pedestrian detection in 10 ms

CMU 15-418/618,
Sprina 2021

Memory-constrained scaling *

= Focus: run the largest problem possible without overflowing main memory **
= Memory per processor Is held fixed (e.g., add more machines to cluster)

Speedun = work (P processors) x time (1 processor)
PR time (P processors) x work (1 processor)

work per unit time on P processors
work per unit time on 1 processor

= Neither work or execution time are held constant
= Note: scaling problem size can make runtimes very large

- Consider O(N®) matrix multiplication on O(N%) matrices

* Memory-constrained scaling is often called “weak scaling”

** Assumptions: (1) memory resources scale with processor count (2) spilling to disk is infeasible behavior (too slow)
CMU 15-418/618,

Sprina 2021

Memory-constrained scaling examples

o

|

{

]

.
a e [

—
a1

= One motivation to use supercomputers and
large clusters is simply to be able to fit large
problems in memory

= Large N-body problems

- 2012 Supercomputing Gordon Bell Prize Winner:
1,073,741,824,000 particle N-body simulation on K-
Computer (MPI implementation)

=

2D domain decomposition of N-body simulation

= |arge-scale machine learning
- Billions of clicks, documents, etc.

= Memcached (in memory caching system for web apps)
- More servers = more avallable cache

CMU 15-418/618,

Image credit: Ishiyama et al. 2012 _
g y Spring 2021

Scaling examples at PIXAR

= Rendering a “shot” (a sequence of frames) in a movie
- Goal: minimize time to completion (problem constrained)
- Assign each frame to a different machine in the cluster

= Artists working to design lighting for a scene
- Provide Interactive frame rate to artist (time constrained)
- More performance = higher fidelity representation shown to artist in allotted time

= Physical simulation: e.qg., fluid simulation
- Parallelize simulation across multiple machines to fit simulation grid in aggregate
memory of processors (memory constrained)

= Final render of Images for movie
- Scene complexity is typically bounded by memory available on farm machines

- One barrier to exploiting additional parallelism within a machine Is that required
footprint often increases with number of processors (consider your implementation
of assignment 2!)

CMU 15-418/618,
Sprina 2021

Case study: our 2D grid solver

For Nx N grid:
- O(N?) memory requirement

- O(N?) grid elements x O(N) convergence iterations... so total work increases as O(N?)

Problem-constrained scaling:
- Execution time: 1/P
- Elements per processor: N%/P

- Available concurrency: fixed at P
- Comm-to-comp ratio: O(PY?)
(for a 2D-blocked assignment)

2D blocked assignment

® & & 0|0 O & O | o 0o o
® I'P 1' oo O P 2' |0 'P 3' ®
® ¢ & 0|0 & & 0|0 o 0 o
® & & 0|0 & & o | o 0o o
® © & 0|0 O & O | o 0 o
® & ® 0|0 & 0 0| & 0 o
® IP4. oo © Psl e .P ﬁ. ®
® & & 0| & & o | 0o 0o o
® ¢ & |0 O & O |0 o 0o o
® ® | & & o o o o
o :P?I o0 'P 8. e :Pgi ®
® ¢ & 0o & & 0| o 0o o

N?elements
P processors

elements computed: N*

(per processor) P

elements communicated: - N

(per processor) JP

CMU 15-418/618,
Sprina 2021

Scaling the 2D grid solver

For Nx N grid:
- O(N?) memory requirement
- O(N?) grid elements x O(N) convergence iterations... so total work increases as O(N°)

Problem-constrained scaling: (note: N Is constant here)
Exec
Elerr

Com
Com

ution time: O(1/P) .
ents per processor: O(1/P)
munication per processor: O(1/PY?)

m-to-comp ratio: O(PY?)

(for a 2D-blocked assignment)

notice: execution time
Increases with MC scaling

Memory-constrained scaling:

Let scaled grid size be NPY2 x NPY/2
Execution time: O((NPY2)3/P) =0(PY?)
Elements per processor: fixed! (N?)

(by definition of memory-constrained scaling)

Time-constrained scaling:

Let scaled grid size be Kx K
Assume linear speedup: K3/P = N3 (so K= NPY3)
(recall computation time for Kx K grid on P processors =

com
Exec

Elem

Co
Co

putation time for N x N grid on 1 processor)
ution time: fixed at O(N®) (by defn of TC scaling)
ents per processor: K/P = N?/p1/3

1

1

unication per processor: K/PY2=0(1/P%%)

1

1

-to-comp ratio: O(P°)

Comm-to-comp ratio: fixed at 1/N

Implications:

Expect best “speedup” with MCscaling,
then TC scaling, worst with PC scaling.
(due to communication overheads)

CMU 15-418/618,
Sprina 2021

Word of caution about problem scaling

= Problem size in the previous examples was a single parameter »

= |npractice, problem size is a combination of parameters
- Recall Ocean example: problem is =(n, ¢, At, T)

= Problem parameters are often related (not independent)

- Example from Barnes-Hut: increasing particle count » changes required
simulation time step and force calculation accuracy parameter

= Must be cognizant of these relationships under situations of TC or MC scaling

CMU 15-418/618,
Sprina 2021

Scaling summary

= Performance improvement due to parallelism is measured by speedup
= But speedup metrics take different forms for different scaling models
- Which model matters most is application/context specific

= |naddition to assignment and orchestration, behavior of a parallel

program depends significantly on the scaling properties of the problem
and also the machine.

- When analyzing performance, be careful to analyze realistic regimes
of operation (realistic sizes and realistic problem size parameters)

- This requires application knowledge

CMU 15-418/618,
Sprina 2021

Lecture Checkpoint 2

= Briefly describe the three different resource-oriented scaling
properties

CMU 15-418/618,
Sprina 2021

Back to our example of your hypothetical future job...

You have an idea for how to design a parallel machine to
meet the needs of your boss.

How are you going to test this idea?

CMU 15-418/618,
Sprina 2021

Evaluating an architectural idea: simulation

= Architects evaluate architectural decisions quantitatively using
chip simulators
- Let's say an architect is considering adding a feature

- Architect runs simulations with new feature, runs simulations without new
feature, compare simulated performance

- Simulate against a wide collection of benchmarks

= Design detailed simulator to test new architectural feature

- Very expensive to simulate a parallel machine in full detail

- Often cannot simulate full machine configurations or realistic problem sizes
(must scale down workloads significantly!)

- Architects need to be confident scaled down simulated results predict reality
(otherwise, why do the evaluation at all?)

CMU 15-418/618,
Sprina 2021

Execution-driven simulator

Mem

Mem,

$1

> —
‘i'r”ﬁfﬁfﬁrr $3

Mems

@) B

Memp

A= O ~0 2

Memory Reference Generator

= Executes simulated program in software

Memory Hierarchy Simulator

- Simulated processors generate memory references, which are processed by the

simulated memory hierarchy

= Performance of simulator is typically inversely proportional to level

of simulated detall

- Simulate every Instruction? Simulate every bit on every wire?

CMU 15-418/618,
Sprina 2021

Trace-driven simulator

= |nstrument real code running on real machine to record a trace of all

Memaory aCCesses

- Statically (or dynamically) modify program binary

- Example: Intel’s PIN (www.pintool.org)
Contech (http://bprail.github.io/contech/)

- May also need to record timing information to model contention in subsequent simulation

= (Qrgenerate trace using an execution-driven simulator

= Then play back trace on simulator

Trace _—

log

Mem

Mem,

Mems

Mem

= 0=~ 2

S

i
{

/

CMU 15-418/618,
Sprina 2021

http://www.pintool.org/

Architectural simulation state space

= Another evaluation challenge: dealing with large parameter space of machines
- Num processors, cache sizes, cache line sizes, memory bandwidths, etc.

Pareto Curve: (here: plots energy/perf trade-off)
4 |

........... Maximum performance
o per unit chip area
(but high energy consumption)

Energy Per Operation (nJ/op)

High energy efficiency
(but lower performance density) |

Performance Density (ops/nS/mm?)

CMU 15-418/618,
Sprina 2021

The challenges of scaling problems up or down also
apply to software developers debugging/tuning
parallel programs on real machines

Common examples:

= May want to log behavior of code when debugging
- Debug logs get untenable in size when running full problem
- Instrumentation slows down code significantly
- Instrumentation removes contention by changing timing of application

= May want to debug/test/tune code on small problem size on small
machine before running two-week simulation on full problem size on a
supercomputer

CMU 15-418/618,
Sprina 2021

Challenges of scaling down (or up)

= Preserve ratio of time spent in different program phases
- Assignment 2: “bin circles” phase, process lists phase

- Ray-trace and Barnes-Hut: both have tree build and tree traverse phases

- Shrinking screen size changes cost of tracing rays but not cost of bu

- Changir

Ilding tree

g density of particles changes per particle cost in Barnes-H

= Preserve Important behavioral characteristics

- arithmetic intensity, load balance, locality, working set sizes
- e.0., shrinking grid size in solver changes arithmetic intensity

= Preserve contention and communication patterns
- Tough to preserve contention since contention is a function of timing and ratios

Ut

= Preserve scaling relationships between problem parameters

- e.0., Barnes-Hut: scaling up particle count requires scaling down time step for
physics reasons

CMU 15-418/618,
Sprina 2021

Example: scaling down Barnes-Hut

= Problemsize =(n, e,at, J) — wvtatmeto

\ simulate gl Y P

/ time step e J |

grid size R ﬂ\
accuracy threshold)

Spatial Domain Quad-Tree Representation

= Easiest parameter to scale down is likely T (Just simulate less time)
- Independent of the other parameters if simulation characteristics don’t vary much
over time (but they probably do: gravity brings particles together over time and

performance depends on particle density)
- One solution: select a few representative periods of time

(e.g., sequence of time steps at beginning of sim, at end of sim)

CMU 15-418/618,
Sprina 2021

Example: scaling down assignment 2

= Problemsize ;(W,h,num circles, ...)

:

image width, height number of scene circles | |
Alternative solution:

Render crop of full-size image

width-4 crop of
original image
Original image Smaller Image .
(w=8) (1/2 size: w=4) riginal image
(w=8)

shrink image, but keep circle data the same:
- Ratio of circle/box “filtering” work to per-pixel work changes

- With fixed tile size: number of circles in a tile changes
CMU 15-418/618,
Sprina 2021

There 1s simply no substitute for the experience of
writing and tuning your own parallel programs.

But today’s take-away Is; BE CAREFUL!

It can be very tricky to evaluate and tune parallel software and parallel machines.

It can be very easy to obtain misleading results or tune code (or a billion dollar
hardware design) for a workload that is not representative of real-world use cases.

It Is helpful to start by precisely stating your application performance goals. Then
determine If your evaluation approach Is consistent with these goals.

CMU 15-418/618,
Sprina 2021

Here are some tricks for understanding the
performance of parallel software

Always, always, always try the simplest
parallel solution first, then measure
performance to see where you stand.

A useful performance analysis strategy

= Determine If your performance Is limited by computation,
memory bandwidth (or memory latency), or synchronization?

* Try and establish “high watermarks”
- What's the best you can do in practice?
- How close Is your implementation to a best-case scenario?

CMU 15-418/618,
Sprina 2021

Roofline model

= Use microbenchmarks to compute peak performance of a machine as a function of
arithmetic intensity of application

" Then compare application’s performance to known peak values

diagonal region: memor . . .
J J Y horizontal region: compute limited

§~~
1 o
~

I
[|
I
[]
\ '
128 v ’-‘~~ ; '
\ .. ' \ | Opteron X4
S .
B4 .
Q* lI
o 32 5
-~ 4 Opteron X2
n. 1 —
8 16 . -
& -
q \ A
= 8 e
8 _ -
a
= 4
L=

1/& 1/2 1 2 =) 16
Operational Intensity (Flops/Byte)

CMU 15-418/618,

Figure credit: Williams et al. 2009 Spring 2021

Roofline model: optimization regions

= Use various levels of optimization in benchmarks
(e.g., best performance with and without using SIMD Iinstructions)

128

64

Cad
(o

peak floating-point performance

I IE'.Iﬁ'{'.I

1. ILP or SIMD

f
()

Attainable GFlops/sec
o

L
I
4 3 o
‘ A [
i o
2 = - , TLP only
-
Atk
1 e | |
et
B Kernel 1 Kernel 2
1/2
1/8 1/4 1/2 1 2 - B 16

Operational Intensity (Flops/Byte)

CMU 15-418/618,

Figure credit: Williams et al. 2009 Spring 2021

Establishing high watermarks *

Add “math” (non-memory instructions)

Does execution time increase linearly with operation count as math is added?
(If so, this Is evidence that code Is instruction-rate limited)

Remove almost all math, but load same data
How much does execution-time decrease? If not much, suspect memory bottleneck

Change all array accesses to A[O}

How much faster does your code get?
(This establishes an upper bound on benefit of improving locality of data access)

Remove all atomic operations or locks

How much faster does your code get? (provided it still does approximately the same amount of work)
(This establishes an upper bound on benefit of reducing sync overhead.)

* Computation, memory access, and synchronization are almost never perfectly overlapped. As aresult, overall performance will
rarely be dictated entirely by compute or by bandwidth or by sync. Even so, the sensitivity of performance change to the above

program modifications can be a good indication of dominant costs
CMU 15-418/618,

Sprina 2021

Use profilers/performance monitoring tools

Image is “CPU usage” from resource monitor in Windows while browsing the
web in Chrome (my laptop has a hex-core Core i7 CPU)

- Graph plots percentage of time OS has scheduled a process thread onto a
processor execution context

- Not very helpful for optimizing performance
All modern processors have low-level event “performance counters”
- Registers that count important details such as: instructions completed,

clock ticks, L2/L3 cache hits/misses, bytes read from memory controller, etc.

Example: Intel’s Performance Counter Monitor Tool provides a (++ API for
accessing these registers.

Also see Intel VTune, PAPI, oprofile, etc.

Lecture on performance monitoring tools after Exam 1

PCM *m = PCM::getInstance();
SystemCounterState begin = getSystemCounterState();

// code to analyze goes here
SystemCounterState end = getSystemCounterState();
printf(“Instructions per clock: %f\n”, getIPC(begin, end));

printf(“L3 cache hit ratio: %f\n”, getlL3CacheHitRatio(begin, end));
printf(“Bytes read: %d\n”, getBytesReadFromMC(begin, end));

CPLU - Total 100%

Service CPL Usage 100%

CPUD 100%

CPU T 100%

cPU 2 100%

CPU 3 100%

CPU4 100%

I

CPUS5 1DD.r

CPUB 100%

CPU7 100%

I

CPUZ 1DD;

cPUS 100%

CPU10 100%

CPU 11 100%

CMU 15-418/618,
Sprina 2021

