Lecture /;

GPU Architecture &
CUDA Programming

Parallel Computer Architecture and Programming
CMU 15-418, Spring 2021

Sprina 2021

Announcements

= Written Assignment 1 is due Wednesday

= Supplemental Lecture Notes are available for this and later
lectures via Canvas

CMU 15-418/618,
Sprina 2021

Today

= History: how graphics processors, originally designed to
accelerate 3D games like Quake, evolved into highly parallel
compute engines for a broad class of applications

= Programming GPUs using the CUDA language
= Amore detailed look at GPU architecture

CMU 15-418/618,
Sprina 2021

Recall basic GPU architecture

| | N | | O || e
cooo || oooo | oooo || oogs
I | | e ||| e
cooo || oooe | aoag | oooe ~150-300 GB/sec
(high end GPUs) MemOry
- DDR5 DRAM
| | N | | O || e
NN NN NN NN
L L L L (~1GB)
I | | N | | O || e
oo || ooge | aoag | ooes
GPU

Multi-core chip
SIMD execution within a single core (many execution units performing the same instruction)

Multi-threaded execution on a single core (multiple threads executed concurrently by a core)
CMU 15-418/618,
Sprina 2021

Graphics 101 + GPU history
(for fun)

Sprina 2021

What GPUs were originally designed to do:
3D rendering

l o\\ //

iy - 5\ ‘b.- .
o~

?
_--s

; . - %

. [~ s R TS gy . — - v |

b-cgb* "'.,.) ,.’ . ‘{ o : . - " " :)ﬂr\\
o ‘ ‘ = - - “ -

’x > S .

Image credit: Henrik Wann Jensen

Input: description of a scene: Output: Image of the scene

3D surface geometry (e.g., triangle mesh)
surface materials, lights, camera, etc.

Simple definition of rendering task: computing how each triangle in 3D
mesh contributes to appearance of each pixel in the Image?

CMU 15-418/618,
Sprina 2021

What GPUs are still designed to do

Real-time (30 fps) on a high-end GPU

Unreal Engine Kite Demo (Epic Games 2015)

CMU 15-418/618,
Spring 2021

—_s

What GPUs are still designed to do

l
!
i
B
ﬁ‘ .

g

[Mi.;rror’s Edge 2008]

CMU 15-418/618,
Sprina 2021

TIp: how to explain a system

= Step 1: describe the things (key entities) that are manipulated
- The nouns

CMU 15-418/618,
Sprina 2021

Real-time graphics primitives (entities)

Represent surface as a 3D triangle mesh

® 3
®]
®/
®)
Vertices Primitives
(points In space) (e.q., triangles, points, lines)

CMU 15-418/618,
Sprina 2021

e/

Vertices
(points in space)

[
LICC
LICICC
LI
ENEEEE
LICIC]
INEEEE
I:IHEI

L0

LI

[

Fragments

Real-time graphics primitives (entities)

Primitives
(e.q., triangles, points, lines)

Pixels (Inan image)

CMU 15-418/618,
Sprina 2021

How to explain a system

= Step 1: describe the things (key entities) that are manipulated
- The nouns

= Step 2: describe operations the system performs on the entities
- The verbs

CMU 15-418/618,
Sprina 2021

- - Input vertex
Rendering a picture g
Input: a list vertices in 3D space
(and their connectivity into primitives) 3D vertexstream

Example: every three vertices defines a triangle

list_of_positions = {

vox, vey, vOz, _

triangle 0 ={v0, v1, v2}
vlx, vly, vix, i e 1=l v2 V3
V2X, V2y, Vv2z, rangle 1=1{v1,v2, v3)

v3x, v3y, V3X

}s

CMU 15-418/618,
Sprina 2021

Rendering a picture

Step 1: given a scene camera position,
compute where the vertices lie on screen

.v2
v3’
X Sl
o
V0
®\2
®y3
®v]
.VO

Input vertex
buffer

|

Vertex Generation

¢

3D vertex stream

'
Vertex Processing

Projected vertex
stream

CMU 15-418/618,
Sprina 2021

Input vertex

Rendering a picture

|
Step 2: group vertices into primitives

i 3D vertex stream
o\ .
C eV3 Vertex Processing
oVl
Projected vertex
| stream

Primitive Generation

Primitive stream

CMU 15-418/618,
Sprina 2021

Input vertex

Rendering a picture =

Vertex Generation

Step 3: generate one fragment for each pixel a i
primitive overlaps 3D vertexstream

'
Vertex Processing

Projected vertex
| stream
Primitive Generation

Primitive stream

Fragment Generation

(“Rasterization”)

Fragment stream

CMU 15-418/618,
Sprina 2021

Input vertex

Rendering a picture =

Step 4: compute color of primitive for each

fragment (based on scene lighting and | vertexstream

primitive material properties)

Projected vertex
| stream

Primitive Generation

Primitive stream

Fragment Generation
(“Rasterization”)

Fragment stream

|

Fragment Processing

}

Colored fragment
stream

CMU 15-418/618,
Sprina 2021

Rendering a picture

Step 5: put color of the “closest fragment”

to the camera In the output image

Output image
buffer
(pixels)

Input vertex
buffer

Vertex Generation

|
v

Vertex Processing

3D vertex stream

Projected vertex
stream

Primitive stream

Fragment Generation

(“Rasterization”)

Fragment stream

Fragment Processing

'
|

Pixel Operations

Colored fragment
stream

CMU 15-418/618,
Sprina 2021

Input vertex

Real-time graphics pipeline

Vertex Generation

<I_I<l_

Abstracts process of rendering a picture D vertexstream

as a sequence of operations on vertices, -
- e : Vertex Processing
primitives, fragments, and pixels. —
Projected vertex
l stream

Primitive Generation

Primitive stream

Fragment Generation
(“Rasterization”)

Fragment stream

‘
Fragment Processing
' Colored fragment
: stream
Output image
buffer _ _
(pixels) Pixel Operations

t |

CMU 15-418/618,
Sprina 2021

Fragment processing computations simulate
reflection of light off of real-world materials

oxample materials: |} A R e 6 A

Images from Matusi

k etal. SIGGRAPH 2003

Al
! 9
- v
- [
!

tarly graphics programming (OpenGL API)

= Graphics programming APIs provided programmer mechanisms
to set parameters of scene lights and materials

» gllight(light _id, parameter_id, parameter_value)
- Examples of light parameters: color, position, direction

= glMaterial(face, parameter _id, parameter_value)

- Examples of material parameters: color, shininess

CMU 15-418/618,
Sprina 2021

Great diversity of materials and lights in the world!

Input vertex

Graphics shading languages i

o _ _ Vertex Generation
= Allow application to extend the functionality of the |
graphics pipeline by specifying materials and lights | 3D vertex stream
program matical Iyl VELIEXIUCCSSI]
- Support drversrty rn rrrate_rrals - ! oroected vertex
- Support diversity in lighting conditions) stream
Primitive Generation
' .
. . ‘ Primitive stream
. Programmer proyrdes mini-programs (“shaders”) P rapment seneration
that define pipeline logic for certain stages (“Rasterization”)
- Pipeline maps shader function onto all Fragment stream
elements of input stream '
A AQITIENTRE OCESSINIY
!

Colored fragment

Output image stream
buffer _ _
(pixels) Pixel Operations

CMU 15-418/618,
Sprina 2021

Example fragment shader program *

Run once per fragment (per pixel covered by a triangle)

myTexture Is a texture map

OpenGL shading language (GLSL) shader program:
defines behavior of fragment processing stage v

uniform sampler2D myTexture; .
_ . _ read-only global variables
uniform float3 lightDir;

varying vec3 norm; .
. per-fragment inputs
varying vec2 uv;

vec4d myFragmentShader()

{
vec3 kd = texture?D(myTexture, uv); “fragment shader”
kd *= clamp(dot(lightDir, norm), 0.0, 1.0); (a.k.a kernel function mapped onto
return vec4(kd, 1.0); Input fragment stream)

}

per-fragment output: RGBA surface color at pixel

* Syntax/details of this code not important to 15-418.
What is important is that it’s a kernel function operating on a stream of inputs. LMU éi'r?:s/z%lfl’

Shaded result

Image contains output of myFragmentShader for each pixel covered by surface
(pixels covered by multiple surfaces contain output from surface closest to camera)

CMU 15-418/618,
Sprina 2021

Observation circa 2001-2003

These GPUs are very fast processors for performing the same computation (shader
programs) on large collections of data (streams of vertices, fragments, and pixels)

10,000,000

Wait a minute! That sounds a lot like
data-parallelism to me! | remember
data-parallelism from exotic
supercomputers in the 90s.

| Dua,I-Core:Itanium 2

Intel CPU Trends B

(sources: Intel, Wikipedia, K. Olukotun)

100,000

10,000

1,000

100

10

® Transistors (000)
® Clock Speed (MHz)
® o0 A Power (W)

@ Perf/Clock (ILP)

0
1970 1975 1980 1985 1990 1995 2000 2005 2010

CMU 15-418/618,
Sprina 2021

Hack! early GPU-based scientific computation

Set OpenGL output Image size to be output array size (e.g., 512 x 512)

Render 2 triangles that exactly cover screen
(one shader computation per pixel = one shader computation output image element)

We now can use the GPU like a data-parallel v3=(0, 512) V2=(512,512
programming system.

Fragment shader function Is mapped over
512 x 512 element collection.

| |
Hack! V0=(0,0) v1=(512,0)

CMU 15-418/618,
Sprina 2021

“GPGPU" 2002-2003

GPGPU = “general purpose” computation on GPUs

Coupled Map Lattice Simulation [Harris 02]
Sparse Matrix Solvers [Bolz 03]

Ray Tracing on Programmable Graphics Hardware [Purcell 02]

CMU 15-418/618,
Sprina 2021

Brook stream programming language (2004)

= Stanford graphics lab research project [Buck2004
= Abstract GPU hardware as data-parallel processor

kernel void scale(float amount, float a<>, out float b<>)

{

b = amount * a;

}

float scale_amount;
float input_stream<1000>; // stream declaration
float output_stream<1000>; // stream declaration

// omitting stream element initialization...

// map kernel onto streams
scale(scale amount, input stream, output_stream);

= Brook compiler converted generic stream program into OpenGL
commands such as drawTriangles() and a set of shader programs.

CMU 15-418/618,
Sprina 2021

Lecture Checkpoint 1

= What challenge(s) lead to making GPUs programmable?

= Describe how this programmability got “hacked” into a
general compute capability

CMU 15-418/618,
Sprina 2021

GPU compute mode

Review: how to run code on a CPU

Lets say a user wants to run a programon a
multi-core CPU...

0S loads program text into memory

0S selects CPU execution context

OS interrupts processor, prepares execution

context (sets conte
counter, etc. to pre

Go!

nts of registers, program

nare execution context)

Processor begins executing instructions from
within the environment maintained in the

execution context.

ALU
(Execute)

ALU
(Execute)

Multi-core CPU

CMU 15-418/618,
Sprina 2021

How to run code on a GPU (prior to 2007)

Input vertex
Lets say a user wants to draw a picture using a GPU... el
- Application (via graphics driver) provides GPU vertex
and fragment shader program binaries '
- Application sets graphics pipeline parameters o .‘ ‘
(e.g., output image size) et
- Application provides hardware a buffer of vertices Y
- Go! (drawPrimitives(vertex_bufter))

- dUITIENUE OCESSING:

This was the only interface to GPU hardware. |

GPU hardware could only execute graphics output
: . : Image buffer : :
pipeline computations. pixels) Plxel Operations

CMU 15-418/618,
Sprina 2021

NVIDIA Tesla architecture (2007)

(GeForce 8xxx series GPUs)
First alternative, non-graphics-specific (“compute mode”) interface to GPU hardware

Lets say a user wants to run a non-graphics
program on the GPU’s programmable cores...

- Application can allocate buffers in GPU memory
and copy data to/from buffers

- Application (via graphics driver) provides GPU a
single kernel program binary

- Application tells GPU to run the kernel inan
SPMD fashion (“run N instances”)

- Go! (launch(myKernel, N))

LHUE A0 CALE
LHUE A0 CAUE
LHUE 80 CAUE
LHUE 80 CAUE

Aside: interestingly, this is a far simpler
operation than drawPrimitives()

CMU 15-418/618,
Sprina 2021

CUDA programming language
= |ntroduced in 2007 with NVIDIA Tesla architecture

= “C-like” language to express programs that run on GPUs
using the compute-mode hardware interface

= Relatively low-level: CUDA’s abstractions closely match the
capabilities/performance characteristics of modern GPUs
(design goal: maintain low abstraction distance)

= Note: OpenCL Is an open standards version of CUDA

- CUDA only runs on NVIDIA GPUs

- OpenCL runs on CPUs and GPUs from many vendors

- Almost everything | say about CUDA also holds for OpenCL

- CUDAIs better documented, thus | find it preferable to teach with

CMU 15-418/618,
Sprina 2021

The plan

1. CUDA programming abstractions
2. CUDA Implementation on modern GPUs
3. More detail on GPU architecture

Things to consider throughout this lecture:

- |s CUDA a data-parallel programming model?
- IS CUDA an example of the shared address space model?

- Or the message passing model?
- Canyou draw analogies to ISPC instances and tasks? What about pthreads?

CMU 15-418/618,
Sprina 2021

Clarification (here we go again...)

= | am going to describe CUDA abstractions using CUDA
terminology

= Specifically, be careful with the use of the term CUDA thread.
A CUDA thread presents a similar abstraction as a pthread In
that both correspond to logical threads of control, but the
Implement of a CUDA thread is very different

= We will discuss these differences at the end of the lecture

CMU 15-418/618,
Sprina 2021

CUDA programs consist of a hierarchy of concurrent threads

Grid

Block (0, 0) Block (1,0) Block (2, 0)
Block (0, 1}° Block (1,1) “-Block (2, 1)

Block (1, 1)

Thread IDs can be up to 3-dimensional (2D example below)

Multi-dimensional thread ids are convenient for problems that are naturally N-D

Regular application thread running on CPU (the “host”)

const int Nx = 12;
const int Ny = 6;

dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks (Nx/threadsPerBlock.x,
Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays
// this call will trigger execution of 72 CUDA threads:

// 6 thread blocks of 12 threads each
matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

CMU 15-418/618,
Sprina 2021

CUDA programs consist of a hierarchy of concurrent threads

Grid

Block (0, 0)

Block (1,0)

Block (2, 0)

Block (0, 1}~

Block (1, 1)

“Block (2, 1)

Block (1, 1)

Basic design process in CUDA
(we'll revisit)

Glven X*Y*Z units of work
- Mapped to X'*Y'*Z’ threads

X"*Y"*7" threads are defined as
a schedulable unit, “block”

For most cases, we expect:
- X>X'>X

CMU 15-418/618,
Sprina 2021

Basic CUDA syntax

Regular application thread running on CPU (the “host”)

const int Nx = 12;
const int Ny = 6;
/| /4 " ° °
Host” code : serial execution dim3 threadsperBlock(4, 3, 1);
Running as part of normal C/C++ dim3 numBlocks(Nx/threadsPerBlock.x,

Ny/threadsPerBlock.y, 1);

application on CPU

// assume A, B, C are allocated Nx x Ny float arrays

Bulk launch of many CUDA threads // this call will trigger execution of 72 CUDA threads:
" . ” N // 6 thread blocks of 12 threads each
launcha g"d of CUDA thread blocks matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

Call returns when all threads have terminated

SPMD execution of device kernel function:
CUDA kernel definition

“CUDA device” code: kernel function (__global 7/ g'{i;:‘lﬂ d\‘jﬁzi;i‘t’:imdd(ﬂoat R
denotes a CUDA kernel function) runs on GPU — N float B[Ny][Nx].
float C[Ny][Nx])
{
Fach thread computes its overall grid thread id B koL + throndlix.y.
from its position in its block (threadldx) and its
block’s position in the grid (blockldx) y HIL = SRS LR

CMU 15-418/618,
Sprina 2021

Clear separation of host and device code

Separation of execution into host and device code Is performed statically by the programmer

“Host” code : serial execution on CPU

“Device” code (SPMD execution on GPU)

const int Nx = 12;
const int Ny = 6;

dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks (Nx/threadsPerBlock.x,
Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will cause execution of 72 threads

// 6 blocks of 12 threads each

matrixAddDoubleB<<<numBlocks, threadsPerBlock>>>(A, B, C);

__device float doubleValue(float x)
{

return 2 * x;

}

// kernel definition

__global void matrixAddDoubleB(float A[Ny][Nx]

dJ

float B[Ny][Nx]

do

float C[Ny][Nx])

{
int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;

C[j1[i] = A[j][i] + doubleValue(B[j][i]);

CMU 15-418/618,
Sprina 2021

Number of SPMD threads Is explicit in program

Number of kernel invocations Is not determined by size of data collection
(a kernel launch is not map(kernel, collection) as was the case with graphics shader programming)

Regular application thread running on CPU (the “host”)

11; // not a multiple of threadsPerBlock.Xx
55 // not a multiple of threadsPerBlock.y

Grid
const int Nx

Block (0, 0) Block(1,0) Block (2, 0) const int Ny

dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks ((Nx+threadsPerBlock.x-1)/threadsPerBlock.x,

Block (0, 1}’- Block (1,1) “-Block (2, 1) (Ny+threadsPerBlock.y-1)/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays

g | “u // this call will cause execution of 72 threads
. / " "\, // 6 blocks of 12 threads each
: N R matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

Block (1, 1)

CUDA kernel definition

__global void matrixAdd(float A[Ny][Nx],
float B[Ny][Nx],

float C[Ny][Nx])

blockIdx.x * blockDim.x + threadIdx.x;
blockIdx.y * blockDim.y + threadIdx.y;

int 1
int j

// guard against out of bounds array access
if (i < Nx & j < Ny)
C[JI[i] = A[3][i] + B[J][i];

CMU 15-418/618,
Sprina 2021

CUDA execution model

Host CUDA device
(serial execution) (SPMD execution)

Implementation: CPU Implementation: GPU

CMU 15-418/618,
Sprina 2021

CUDA memory model

Distinct host and device address spaces

Host CUDA device
(serial execution) (SPMD execution)

Host memory Device “global”
address space memory address space

Implementation: CPU Implementation: GPU

CMU 15-418/618,
Sprina 2021

memcpy primitive
Move data between address spaces

Host Device

Host memory Device “global”
address space memory address space

float* A = new float[N]; // allocate buffer in host mem

// populate host address space pointer A What does cudaMemcpy remind you of?
for (int i=0 i<N; i++)
A[i] = (float)i;

int bytes = sizeof(float) * N
float* deviceA; // allocate buffer in
cudaMalloc(&deviceA, bytes); // device address space

// populate deviceA
cudaMemcpy(deviceA, A, bytes, cudaMemcpyHostToDevice);

// note: deviceA[i] is an invalid operation here (cannot
// manipulate contents of deviceA directly from host.

// Only from device code.)
CMU 15-418/618,

Sprina 2021

CUDA device memory model

Three distinct types of memory visible to kernels

Grid 0

Per-block
Readable writable by | ghared memory

all threads in block

, Block (0,0) | Block(1,0) |Block(2,0)

Block (0,1) Block(1,1) Block(2,1)
Readable/ writable by Per-thread i
thread private memory

I YW Y

Software \ Device global
controlled memory
L1 cache Effectively lots

of registers

Readable/writable
by all threads

CMU 15-418/618,
Sprina 2021

CUDA example: 1D convolution

output[i] = (input[i] + input[i+1] + input[i+2]) / 3.f;

CMU 15-418/618,
Sprina 2021

1D convolution in CUDA (version 1)

One thread per output element

Input[0] Input[129] Input[N-128] INput[N+1]
! 1 ! !

\l/ B \l/ B \l/ B \I/
I 1 I 1

output[0] output[127] output[N-128] output[N-1]

CUDA Kernel

#define THREADS PER_BLK 128
__global _ void convolve(int N, float* input, float* output) {

int index = blockIdx.x * blockDim.x + threadIdx.x; // thread local variable

float result = 0.0f; // thread-local variable each thread computes

for (int i=0; i<3; i++) result for one element
result += input[index + 1i];

write result to global

output[index] = result / 3.f;
} memaory

Host code

int N = 1024 * 1024
cudaMalloc(&devInput, sizeof(float) * (N+2)); // allocate array in device memory
cudaMalloc(&devOutput, sizeof(float) * N); // allocate array in device memory

// property initialize contents of devInput here ...

convolve<<<N/THREADS PER BLK, THREADS PER BLK>>>(N, devInput, devOutput);
CMU 15-418/618,

Sprina 2021

1D convolution in CUDA (version 2)

One thread per output element: stage input data in per-block shared memory

CUDA Kernel

#define THREADS_PER_BLK 128

__global __ void convolve(int N, float* input, float* output) {

__shared__ float support[THREADS PER_BLK+2]; // per-block allocation All threads COOperatiVGIYIOad
int index = blockIdx.x * blockDim.x + threadIdx.x; // thread local variable block’s support region from

. . global memory into shared
support[threadIdx.x] = input[index]; memory

if (threadIdx.x < 2) {
support[THREADS PER_BLK + threadIdx.x] = input[index+THREADS_ PER_BLK];

}

(total of 130 load instructions
Instead of 3 * 128 load instructions)

float result = 0.0f; // thread-local variable each thread computes
Ve (e A= a5y ke result for one element
result += support|[threadIdx.x + i];
output[index] = result / 3.f; write result to global
} memory
Host code

int N = 1024 * 1024
cudaMalloc(&devInput, sizeof(float) * (N+2)); // allocate array in device memory
cudaMalloc(&devOutput, sizeof(float) * N); // allocate array in device memory

// property initialize contents of devInput here ...

convolve<<<N/THREADS PER_BLK, THREADS PER_BLK>>>(N, devInput, devOutput);

CMU 15-418/618,
Sprina 2021

CUDA synchronization constructs
= syncthreads()

- Barrier: wait for all threads in the block to arrive at this point

= Atomic operations
- €.0., float atomicAdd(float* addr, float amount)

- Atomic operations on both global memory and shared memory variables

= Host/device synchronization
- Implicit barrier across all threads at return of kernel

CMU 15-418/618,
Sprina 2021

CUDA abstractions

= Execution: thread hierarchy
- Bulk launch of many threads (this is imprecise... I'll clarify later)

- Two-level hierarchy: threads are grouped into thread blocks

= Distributed address space
- Built-in memcpy primitives to copy between host and device address spaces

- Three different types of device address spaces
- Per thread, per block (“shared”), or per program (“global”)

= Barrier synchronization primitive for threads in thread block
= Atomic primitives for additional synchronization (shared and global variables)

CMU 15-418/618,
Sprina 2021

CUDA semantics

#define THREADS_PER_BLK 128

__global _ void convolve(int N, float* input, float* output) {

__shared__ float support[THREADS PER BLK+2]; // per-block allocation
int index = blockIdx.x * blockDim.x + threadIdx.x; // thread local var

support[threadIdx.x] = input[index];
if (threadIdx.x < 2) {

support[THREADS PER_BLK+threadIdx.x] = input[index+THREADS PER BLK];

}

__syncthreads();

float result = 0.0f; // thread-local variable
for (int i=0; i<3; i++)
result += support[threadIdx.x + i];

output[index] = result / 3.f;
}

[/ host code ////////////7777777/17/1//7/77777777777/77/777777//////////
int N = 1024 * 1024;

cudaMalloc(&devInput, N+2); // allocate array in device memory
cudaMalloc(&devOutput, N); // allocate array in device memory

// property initialize contents of devInput here ...

convolve<<<N/THREADS_ PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput);

Consider implementation of call to
pthread_create():

Allocate thread state:
- Stack space for thread
- Allocate control block so OS can
schedule thread

Will running this CUDA program
create 1 million instances of
local variables/stack?

8K Instances of shared
variables? (support)

T launch over 1 million CUDA
threads (over 8K thread blocks)

CMU 15-418/618,
Sprina 2021

Ooog | | 0000 | | Doog 000D | | Oooo | | Ooog
Oooo | | 0000 | | Oooo Oooo | | 0000 | | O0oog
||:||::|_ ||:||::|_ ||:||::|_ EE ||:||::|_ ||:||::|_
I|:||: = I|:||: = I|:||: = L] I|:||: = I|:||: =
OO0 Oooo | | OOOo | | Dogg OoogD | | OOOo | | Dogg
OO0 Oooo | | 0000 | | Ooog Oo0g | | 0000 | | 0000
IEI — :I|:| II: :I|:I — :I|:|I ||:||::|_ — :I|:II - :I|:|I
ll: ll: ll: ll: I|:||: [= =
Sooo | | Oooo | | 0000 | | 000 Mid-range GPU
IIZI -~ :IIZI I|: :IIZI - :I|:|I
= . (6 cores)
= = = =
OO0 Ooo0 | | OOOo | | Dogg
[1 o o o [Want CUDA program to run on all of these
C] = | == = | == = |[EE - " g "
- E - GPUs without modificatior

High-end GPU

Note: there Is no concept of num_cores In the
(16 cores)

CUDA programs | have shown you. (CUDA
thread launch is similar in spirit to a forall
loop In data parallel model examples)

CMU 15-418/618,
Sprina 2021

CUDA compllation

#define THREADS_PER_BLK 128 A compiled CUDA device binary includes:

__global _ void convolve(int N, float* input, float* output) {

__shared__ float support[THREADS_PER_BLK+2]; // per block allocation Program _teXt (mStrUCtIO_nS)
int index = blockIdx.x * blockDim.x + threadIdx.x; // thread local var |nf0rmat|0n about requn‘ed resources:

support[threadIdx.x] = input[index];) 128 threads per bIOCk
if (threadIdx.x < 2) { - B bytes of local data per thread
support[THREADS PER_BLK+threadIdx.x] = input[index+THREADS PER_BLK];
; - 130 floats (520 bytes) of shared space
per thread block
__syncthreads();

float result = 0.06f; // thread-local variable
for (int i=0; i<3; i++)
result += support[threadIdx.x + i];

output[index] = result;

int N = 1024 * 1024;
cudaMalloc(&devInput, N+2); // allocate array in device memory
cudaMalloc(&devOutput, N); // allocate array in device memory

// property initialize contents of devInput here ...

convolve<<<N/THREADS PER_BLK, THREADS PER BLK>>>(N, devInput, devOutput); launch 8K thread blocks

CMU 15-418/618,
Sprina 2021

CUDA thread-block assignment
000000000 - Qoc

Grid of 8K convolve thread blocks (specified by kernel launch)

Block resource requirements:
(contained in compiled kernel binary)

Kernel launch command from host 128 threads
launch(blockDim, convolve) 520 bytes of shared mem
. (128 x B) bytes of local mem
Special HW
NGPU = Thread block schedul - '
read biock sthedurer Major CUDA assumption: thread block
I l execution can be carried out in any order
(no dependencies between blocks)

I - I | | I - I I
L1100 C1CCIC] L1100 C1CIC00]

]

]
L

L]
L]

=
=

=

GPU implementation maps thread blocks
(“work”) to cores using a dynamic

[
L]
I
=

[
L]
I
=

[
L]
I
=

[
=
I
L]

= = = L]

, : : . .
Shared mem Shared mem shared mem onaredmen | scheduling policy that respects resource
requirements

Device global memory
(DRAM) Shared mem is fast

on-chip memory

CMU 15-418/618,
Sprina 2021

Data to Thread Mapping

= |ooking at 1D data, what Is Its assignment to thread(s)
- 1:1Each thread maps to one unique element

Input[0] inpult[129] Input[N-128] INput[N+1]
} ! !
\l/ \l/ - \l/ \Il/

output[0] output[127] output[N-128] output[N-1]

L L VI RN VL L
[Thread Block][Thread Block] [Thread Block J

CMU 15-418/618,
Sprina 2021

Data to Thread Mapping

= |ooking at 1D data, what Is Its assignment to thread(s)
- N:1 Each thread maps to multiple adjacent elements

Input[0] Input[129] Input[N-128] INput[N+1]
} } ! !
\l/ B \l/ B \l/ B \l/

output[1127]

|
vAVAVARRVAVasiavaVEVAVAVAVERVAVAVERS vA VAV A VAVAVA YV
[Thread Block][Thread Block]

output[0]

CMU 15-418/618,
Sprina 2021

Data to Thread Mapping

= |ooking at 1D data, what Is Its assignment to thread(s)
- N:1Each thread maps to multiple non-adjacent elements

Input[0] inpult[129] input[i\l-128] inputl[N+1]
}
\l/ \/ \l/ \/
output[0] output[N-128] output[N-1]

output[1127]

VAV AV VA VAR a7V Va4
[Thread Block]

CMU 15-418/618,
Sprina 2021

Another instance of our common design pattern:

a pool of worker “threads”

[Problem to solve J

.’ Decompositior
C JC JOC o I

Sub-probl
(aka l’J’taflig”, ’(’evToSrk”) [] [] [] [j []

Worker Threads

Best practice: create enough workers to “fill” parallel machine, and no more:
- One worker per parallel execution resource (e.g., CPU core, core execution context)
- May want N workers per core (where N is large enough to hide memory/I0 latency)
- Pre-allocate resources for each worker
- Dynamically assign tasks to worker threads (reuse allocation for many tasks)

Other examples:
- ISPC's implementation of launching tasks
- Creates one pthread for each hyper-thread on CPU. Threads kept alive for remainder of program
- Thread pool in aweb server
- Number of threads is a function of number of cores, not number of outstanding requests
- Threads spawned at web server launch, wait for work to arrive

CMU 15-418/618,
Sprina 2021

NVIDIA GTX 980 (2014)

This is one NVIDIA Maxwell GM204 architecture SMM unit (one “core”)

Warp 0 Fetch/ Fetch/
Warp 1 Decode Decode
Warp 2 Warp Selector
Fetch/ Fetch/
Decode Decode
: Warp Selector
Warp execution contexts P
(max 64) L1 cache
(256 KB)
Fetch/ Fetch/
Decode Decode
Warp Selector
Fetch/ Fetch/
Decode Decode “Shared” memory
Warp Selector (96 KB)
= SIMD functional unit, SMM resource |imitS'

control shared across 32 units

(1 MUL-ADD per clock) - Max warp execution contexts: 64

(2,048 total CUDA threads)

- 96 KB of shared memory

CMU 15-418/618,
Sprina 2021

Running a single thread block on a SMM “core”

Warp 0 Fetch/ Fetch/ I:I I:l I:l I:I I:l I:l I:I I:l I:l I:l I:I I:l I:l I:I I:l I:l #define THREADS_PER_BLK 128
Warp 1 Decode || Decode | {0) i .
Warp 2 Warp Selector __global__ void convolve(int N, float* input,
| | float* output)
retch/ || Fetch/ || OO 00O OCCOOOOOOOOCOE | {
Decode | | Decode __shared__ float support[THREADS PER BLK+2];
Warp execution el T])))} e int index = blockIdx.x * blockDim.x +
contexts L1 cache o o o o threadIdx.x;
(max 64)
(256 KB) ;::::L J::;:‘l‘; | g o o o support[threadIdx.x] = input[index];
Warp Selector OOo0Qoooooooooo@s if (threadIdx.x < 2) {
support[THREADS PER_BLK+threadIdx.x]
FetChf FetChf i --------------------------------- § - input[indeX+THREADS_PER_BLK];
Decode || Decode i support : “Shared” memory }
Warp Selector (520 bytes) (96 KB)
- 1 cacha | | __syncthreads();
float result = 0.0f; // thread-local
for (int i=0; i<3; i++)
result += support[threadIdx.x + i];
output[index] = result;
Recall, CUDA kernels execute as SPMD programs }

On NVIDIA GPUs groups of 32 CUDA threads share an instruction stream. These groups called “warps”.
A convolve thread block is executed by 4 warps (4 warps x 32 threads/warp = 128 CUDA threads per block)

(Warpsarean i

SMM core o
- Selectu
- Selectu

* This diagram doesn’t show additional units used to execute load/store instructions or “special math” (like pow, sin/cos, etc.)

neration eac

portant GPU implementation detalil, but not a CUDA abstraction!)

N clock:

0 to four run

nable warps from 64 resident on SMM core (thread-level parallelism)

0 to two runnable instructions per warp (instruction-level parallelism) *

CMU 15-418/618,
Sprina 2021

NVIDIA GTX 980 (16 SMMs)

00 OO0 OO OO0
OO0 OO0 OO OO
00 OO0 OO0 OO
00 OO0 OO0 OO0

Shared (96 KB)

OO0 OO OO OO
OO0 OO0 OO OO
00 OO0 OO0 OO
OO0 OO OO0 OO0

— Shared (96 KB)

OO0 OO OO OO
OO0 OO0 OO OO
00 OO0 OO0 OO
OO0 OO OO0 OO0

Shared (96 KB)

[
—

OO0 OO OO OO
OO0 OO0 OO OO
00 OO0 OO0 OO
OO0 OO OO0 OO0

Shared (96 KB)

00 OO0 OO OO0
OO0 OO OO0 OO0
00 OO0 OO0 O
00 OO0 OO0 OO0

Shared (96 KB)

00 OO0 OO OO0
OO0 OO OO0 OO0

Shared (96 KB)

]
—

00 OO0 OO OO0
OO0 OO OO0 OO0

Shared (96 KB)

]
—

00 OO0 OO OO0
OO0 OO0 OO OO

Shared (96 KB)

L]
L]
—

OO0 OO OO OO
OO0 OO0 OO OO
00 OO0 OO0 OO
OO0 OO OO0 OO0
OO0 OO0 OO OO
00 OO0 Og0 o
OO0 OO OO0 OO0

Shared (96 KB)

OO0 OO OO OO
OO0 OO0 OO OO
00 OO0 OO0 OO
OO0 OO OO0 OO0
OO0 OO0 OO OO
00 OO0 Og0 o
OO0 OO OO0 OO0

Shared (96 KB)

OO0 OO OO OO
OO0 OO0 OO OO
00 OO0 OO0 OO
OO0 OO OO0 OO0
OO0 OO0 OO OO
00 OO0 Og0 o
OO0 OO OO0 OO0

e Shared (96 KB)

00 OO0 OO OO0
OO0 OO OO0 OO0
00 OO0 OO0 O
00 OO0 OO0 OO0
OO0 OO OO0 o0
00 OO0 OO0 oo
00 OO0 OO0 OO

Shared (96 KB)

00 OO0 OO OO0
OO0 OO OO0 OO0
00 OO0 OO0 O
00 OO0 OO0 OO0
OO0 OO OO0 o0
00 OO0 OO0 oo
00 OO0 OO0 OO

00 OO0 OO OO0
OO0 OO0 OO OO
00 OO0 OO0 OO
00 OO0 OO0 OO0
00 OO OO OO
00 OO0 OO0 Oo
00 OO0 OO OO0

00 OO0 OO OO0
OO0 OO0 OO OO
00 OO0 OO0 OO
00 OO0 OO0 OO0
00 OO OO OO
00 OO0 OO0 Oo
00 OO0 OO OO0

Shared (96 KB)

[
—

OO0 OO OO OO
OO0 OO0 OO OO
00 OO0 OO0 OO
OO0 OO OO0 OO0
OO0 OO0 OO OO
00 OO0 Og0 o
OO0 OO OO0 OO0

L2 Cache (2 MB)

N
D
S
O

o =
< 3
o
D -
4.._“.
AN O
26
LO
(@N|
N

GPU memory

DDR5 DRAM

CMU 15-418/618,

Sprina 2021

NVIDIA GTX 980 (2014)

1.1 GHz clock

16 SMM cores per chip

16 x 128 = 2,048 SIMD mul-add ALUs

4.6 TFLOPs

1024 interleaved warps

per chip (32,768 CUDA threads/chip)

Upto 1o x 64

165 watts

TDP

OO OO0 OO0 OO
OO OO OO0 o0
OO OO0 00 O

OO OO OO o0

OO OO OO o0

OO0 OO0 OO0 OO

OO OO0 OO OO
OO0 OO0 OO oD

OO OO0 OO OO
OO0 OO0 OO oD

OO OO0 OO OO
OO0 OO0 OO oD

OO OO0 OO0 OO
OO OO OO0 o0
OO OO0 00 O

OO0 OO0 OO0 OO

OO0 OO0 OO0 OO

OO0 OO0 OO0 OO

OO OO0 OO0 OO
OO OO OO0 o0

OO0 OO0 OO0 OO0

OO OO OO o0

OO OO OO o0

OO0 OO0 OO0 OO

L2 Cache (2 MB)

O
(ab)
w
~
(el
(@D
<
([@N|
([@N

GPU memory
(DDR5 DRAM)

CMU 15-418/618,

Sprina 2021

Lecture Checkpoint 2

= How s athread identified?
= What Is the schedulable unit on GPUS?
= What granularity of work does a GPU execute each cycle?

CMU 15-418/618,
Sprina 2021

Review

(If you understand this example you understand how CUDA
programs run on a GPU)

CMU 15-418/618,
Sprina 2021

Running the kernel

convolve Kernel's execution requirements:

Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Let’s assume array size N is very large, so the host-side kernel launch generates thousands of thread blocks.
#define THREADS PER_BLK 128

convolve<<<N/THREADS PER_BLK, THREADS PER_BLK>>>(N, input_array, output_array);

Let’s run this program on the fictitious two-core GPU below.

(Note: my fictitious cores are much “smaller” than the GTX 980 cores discussed in lecture: fewer execution
units, support for fewer active threads, less shared memory, etc.)

GPU Work Scheduler
Fetch/Decode Fetch/Decode
Execution context Execution context
“Shared” memory “Shared” memory
storag;:‘ fer; d834 Lo storage (1.5KB) storag;f ?er: d854 Hubl storage (1.5KB)
(12 warps) (12 warps)
Core(Corel CMU 15-418/618,

Sprina 2021

Running the CUDA kernel

Kernel’s execution requirements:
Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Step 1: host sends CUDA device (GPU) a command (“execute this kernel”)

1

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000
GPU Work Scheduler
Fetch/Decode Fetch/Decode
Execution context “Shared” memory Execution context “Shared” memory
storage for 384 CUDA storage (L5 KB) storage for 384 CUDA storage (1.5 KB)
threads threads
(12 warps) (12 warps)
Core 0 Core 1

CMU 15-418/618,
Sprina 2021

Running the CUDA kernel

Kernel’s execution requirements:
Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Step 2: scheduler maps block 0 to core 0 (reserves execution contexts for 128 threads and
520 bytes of shared storage) 1

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

NEXT = 1 GPU Work Scheduler
TOTAL = 1000

Block O (contexts 0-127) Block O: support

(520 bytes)

Execution context Execution context
storage for 384 CUDA “Shared” memory storage for 384 CUDA “Shared” memory
threads storage (1.5KB) threads storage (1.5KB)
Core 0 Corel

CMU 15-418/618,
Sprina 2021

Running the CUDA kernel

Kernel’s execution requirements:
Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Step 3: scheduler contin

(Interleaved mapping shown)

EXECUTE:
ARGS:

1

convolve

Jes to map blocks to available execution contexts

N, input_array, output_array
NUM_BLOCKS: 1000

NEXT = 2
TOTAL = 1000

GPU Work Scheduler

Block 1 (contexts 0-127)

Block 1: support
(520 bytes @ 0x0)

Execution context
storage for 384 CUDA “Shared” memory
threads storage (1.5 KB)

Block O (contexts 0-127) Block 0: support
EEsssEEEEEEEEEEEEEEEEEEESE - (520 bytes @ 0x0) a
‘ IIIIIIIIIIIIIIIIIIIIIIII |
Execution context
storage for 384 CUDA “Shared” memory
threads storage (1.5 KB)
Core(Q

Core 1

CMU 15-418/618,
Sprina 2021

Running the CUDA kernel

Kernel’s execution requirements:
Each thread block must execute 128 CUDA threads

Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Step 3: scheduler continues to map blocks to available execution contexts
(Interleaved mapping shown) 1

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

NEXT = 3 GPU Work Scheduler
TOTAL = 1000

- Block 0 (contexts 0-127) Block 0: support - Block1(contexts0-127) : Block 1: support
T L - (520 bytes @ 0x0) e L il . ‘ (520 bytes @ 0x0) ;
‘ IIIIIIIIIIIIIIIIIIIIIIII Bl | | | L 00 [-
Block 2 (contexts 128-255) il B aR
(520 bytes 0x520)
Execution context Execution context
storage for 384 CUDA “Shared” memory storage for 384 CUDA “Shared” memory
threads storage (1.5KB) threads storage (1.5KB)
Core 0 Core 1

CMU 15-418/618,
Sprina 2021

Running the CUDA kernel

Kernel’s execution requirements:
Each thread block must execute 128 CUDA threads

Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Step 3: scheduler continues to map blocks to available execution contexts (interleaved mapping shown).

Only two thread blocks fit ona core
(third block won't fit due to insufficient shared storage 3 x 520 bytes > 1.5 KB)

}

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

NEXT = 4 GPU Work Scheduler
TOTAL = 1000

- Block 0 (contexts 0-127) Block 0: support - Block1(contexts0-127) : Block 1: support
A] (520 bytes @ 0x0) : R ; : (520 bytes @ 0x0) ;
. m LTEEsEEEEEEEEEEEEEEEEEEEEN o I R . 1 A A AA AREY e e
1 _ L LssEEEssEsssnnssaREEERnay 3 Block 3 (Contexts 128_255)

] (520 bytes 0x520) : (520 bytes @ 0x520)

‘ IIIIIIIIIIIIIIIIIIIIIIII |

Execution context Execution context
storage for 384 CUDA “Shared” memory storage for 384 CUDA “Shared” memory
threads storage (1.5KB) threads storage (1.5KB)
Core 0 Corel

CMU 15-418/618,
Sprina 2021

Running the CUDA kernel

Kernel’s execution requirements:
Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Step 4: thread block 0 completes on core 0

EXECUTE:
ARGS:

1

convolve
N, input_array, output_array
NUM_BLOCKS: 1000

NEXT = 4
TOTAL = 1000

GPU Work Scheduler

Block 2 (contexts 128-255)

Execution context
storage for 384 CUDA
threads

Block 2: support
(520 bytes 0x520)

|]
LYassssssssssssssssssmnmns L

“Shared” memory
storage (1.5 KB)

Core 0

Execution context
storage for 384 CUDA
threads

Block 1: support
(520 bytes @ 0x0)

Block 3: support
(520 bytes @ 0x520)

. u
‘ IIIIIIIIIIIIIIIIIIIIIIII |

“Shared” memory
storage (1.5 KB)

Core 1

CMU 15-418/618,
Sprina 2021

Running the CUDA kernel

Kernel’s execution requirements:
Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Step 5: block 4 1s scheduled on core 0 (mapped to execution contexts 0-127)

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

NEXT = 5 GPU Work Scheduler

TOTAL = 1000

threads

Block 4 (contexts 0-127)

Block 2 (contexts 128-255)

Execution context
storage for 384 CUDA

Block 4: support

(520 bytes @ 0x0)

Block 2: support
(520 bytes 0x520)

LYassssssssssssssssssmnmns L

“Shared” memory
storage (1.5 KB)

Execution context
storage for 384 CUDA
threads

Block 1: support
(520 bytes @ 0x0)

Block 3: support
(520 bytes @ 0x520)

|]
Lassssssssssssssssssmnmns L

“Shared” memory
storage (1.5 KB)

Core 0

Core 1

CMU 15-418/618,
Sprina 2021

Running the CUDA kernel

Kernel’s execution requirements:
Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Step 6: thread block 2 completes on core 0

EXECUTE:
ARGS:

1

convolve
N, input_array, output_array
NUM_BLOCKS: 1000

Block 4 (contexts 0-127)

Execution context
storage for 384 CUDA
threads

NEXT = 5 GPU Work Scheduler
TOTAL = 1000
"""" . © Block1(contexts0-127) :
(520 bytes @ 0x0) ; S RRARARRARARRRRAARARASRSS
‘ IIIIIIIIIIIIIIIIIIIIIIII | E BIOCk3(C0nteXtS 128-255)
Execution context
“Shared” memory storage for 384 CUDA
storage (1.5KB) threads

Core 0

Block 1: support
(520 bytes @ 0x0)

Block 3: support
(520 bytes @ 0x520)

. u
‘ IIIIIIIIIIIIIIIIIIIIIIII |

“Shared” memory
storage (1.5 KB)

Core 1

CMU 15-418/618,
Sprina 2021

Running the CUDA kernel

Kernel’s execution requirements:
Each thread block must execute 128 CUDA threads

Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Step 7: thread block 5 1s scheduled on core 0 (mapped to execution contexts 128-255)

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

NEXT = 6 GPU Work Scheduler
TOTAL =1000

- Block 4 (contexts 0-127) Block 4: support - Block1(contexts0-127) : Block 1: support
MassssssssssssmmsEsEEnnEE . - (520 bytes @ 0x0) : SARIIIIIIIIIIIIIIIIININ -:|. (520 bytes @ 0x0)
‘ IIIIIIIIIIIIIIIIIIIIIIII I ol N

_ 3 BIOCk 3 (ConteXtS 128_255) . : lllllllllllllllllllllllll

BIOCkS(ConteXtS 128 255) BIOCk 5: Support :IIIIIIIIIIIIIIIIIIIIIIII: : BIOCk 3: Support
(520 bytes 0x520) : (520 bytes @ 0x520) ;

Execution context Execution context
storage for 384 CUDA “Shared” memory storage for 384 CUDA “Shared” memory
threads storage (1.5KB) threads storage (1.5KB)
Core(Q Core 1

CMU 15-418/618,
Sprina 2021

Review: what is a “warp”?

= AwarpisaCUDA implementation detail on NVIDIA GPUs

= Onmodern NVIDIA hardware, groups of 32 CUDA threads in a thread block are
executed simultaneously using 32-wide SIMD execution.

<+— Warp 0 context

In this fictitious NVIDIA GPU example:
Core maintains contexts for 12 warps
Selects one warp to run each clock

<+— \Narp 1 context

thread 64 ctx

<+— \\arp 11 context

CMU 15-418/618,
Sprina 2021

Review: what is a “warp”?

Awarp Is a CUDA implementation detail on NVIDIA GPUs

On modern NVIDIA hardware, groups of 32 CUDA threads in a thread block are
executed simultaneously using 32-wide SIMD execution.

- These 32 logical CUDA threads share an instruction stream and therefore
performance can suffer due to divergent execution.

- This mapping is similar to how ISPC runs program instances in a gang.

The group of 32 threads sharing an instruction stream Is called a warp.
- Inathread block, threads 0-31 fall into the same warp (so do threads 32-63, etc.)
- Therefore, a thread block with 256 CUDA threads Is mapped to 8 warps.

- Each “SMM” core in the GTX 980 we discussed last time is capable of scheduling
and Interleaving execution of up to 64 warps.

- S0 a“SMM” core is capable of concurrently executing multiple CUDA thread
blocks.

CMU 15-418/618,
Sprina 2021

A more advanced review

(If you understand the following examples you really understand how
CUDA programs run on a GPU, and also have a good handle on the work
scheduling issues we've discussed in class to this point.)

CMU 15-418/618,
Sprina 2021

Fetch/ Fetch/ LI) () |23 |) () |) ()) (0 {0 (0 | EE |
Decode || Decode | [O
Warp 0 Warp Selector
1/ 131 |E3] |E33) | 23] | E3) (2] |3 (3] () |) |) (COf (C2f | O | 2
Fetch/ Fetch/
Decode | | Decode N N o
Warp 1 Warp Selector) o] o o)) e} T] [
L1 cache N
;3:2 ;3:»; I |
Warp 2 Warp Selector L 3) |20 |2 |20 |0 0)) 0 0 0 (0 | EE |
Fetch/ Fetch/
Decode || Decode “Shared” memory
Warp 3 Warp Selector (96 KB)
L1 cache

Why allocate execution context for all threads in a block?

#define THREADS_PER_BLK 256

__global _ void convolve(int N, float* input,

{

float* output)

__shared__ float support[THREADS_ PER_BLK+2];
int index = blockIdx.x * blockDim.x +
threadIdx.x;

support[threadIdx.x] = input[index];
if (threadIdx.x < 2) {
support[THREADS PER_BLK+threadIdx.x]
= input[index+THREADS PER_BLK];

Imagine a thread block with 256 CUDA threads
(see code, top-right)

Assume a fictitious SMM core with only 4 warps worth of
parallel execution in HW (illustrated above)

Why not just run four warps (threads 0-127) to completion
then run next four warps (threads 128-255) to completion In
order to execute the entire thread block?

}

__syncthreads();

float result = 0.0f; // thread-local
for (int i=0; i<3; i++)
result += support[threadIdx.x + i];

output[index] = result;

}

CUDA kernels may create dependencies between
threads in a block

Simplest example is __ syncthreads()

Threads in a block cannot be executed by the
system in any order when dependencies exist.

CUDA semantics: threads in a block ARE running
concurrently. Ifathread inablock is runnable it

will eventually be run! (no deadlock)
CMU 15-418/618,
Sprina 2021

Implementation of CUDA abstractions

= Thread blocks can be scheduled in any order by the system

- System assumes no dependencies between blocks
- Logically concurrent
- Alot like ISPC tasks, right?

= CUDA threadsinsame block DO run at the same time

- When block begins executing, all threads are running
(these semantics impose a scheduling constraint on the system)
- ACUDA thread block Is itself an SPMD program (like an ISPC gang of program instances)

- Threadsin

thread-block are concurrent, cooperating “workers”

= CUDA Implementation:

- AKeplerG
an ISPC ga
- Allwarpsi

PU warp has performance characteristics akin to an ISPC gang of instances (but unlike
ng, the warp concept does not exist in the programming model*)

nathread block are scheduled onto the same core, allowing for high-BW/low latency

communication through shared memory variables
- When all threads in block complete, block resources (shared memory allocations, warp execution
contexts) become available for next block

* Exceptions to this statement include intra-warp builtin operations like swizzle and vote CMU 15-418/618,

Sprina 2021

Consider a program that creates a histogram:

= Thisexample: build a histogram of values in an array

- Al CUDA threads atomically update shared variables in global memory

= Notice | have never claimed CUDA thread blocks were guaranteed to be independent. |
only stated CUDA reserves the right to schedule them in any order.

= Thisisvalid code! This use of atomics does not impact implementation’s ability to
schedule blocks in any order (atomics used for mutual exclusion, and nothing more)

atomicAdd(&counts[A[i]], 1); . . atomicAdd(&counts[A[i]], 1);
Thread block 0 Thread block N

Global memory

Int counts|10]

int A[N]
int*A={0,3,4,1,9,2, ... ,8,4,1} // array of integers between 0-9

CMU 15-418/618,
Sprina 2021

But 1s this reasonable CUDA code?

= Consider implementation of on a single core GPU with resources
for one CUDA thread block per core
- What happens if the CUDA implementation runs block 0 first?
- What happens if the CUDA implementation runs block 1 first?

while(atomicAdd(&myFlag, ©0) == 0)
{1}

// do stuff here

// do stuff here

atomicAdd(&myFlag, 1);

Thread block 0 Thread block 1

Global memory

Int myFlag

(assume myFlag is initialized to 0)

CMU 15-418/618,
Sprina 2021

“Persistent thread” CUDA programming style

#define THREADS PER_BLK 128
#define BLOCKS PER_CHIP 16 * (2048/128) // specific to a certain GTX 980 GPU

device__ int workCounter = 0;

// global mem variable

__global __ void convolve(int N, float* input, float* output) {

}

__sShared__ int startingIndex;
__Shared__ float support[THREADS PER_BLK+2];

while (1) {

if (threadIdx.x == 0)
startingIndex =

__syncthreads();

if (startingIndex >= N)
break;

// shared across block

atomicInc(workCounter, THREADS PER BLK);

int index = startingIndex + threadIdx.x; // thread local

support[threadIdx.x] = input[index];
if (threadIdx.x < 2)

support[THREADS PER_BLK+threadIdx.x] =

__syncthreads();

float result = 0.0f;
for (int i=0; i<3; i++)

result += support[threadIdx.x + i];
output[index] = result;

__syncthreads();
}

input[index+THREADS PER_BLK];

// thread-local variable

[/ host code ////////7/1117711771777777777777777777777/7777/7/7//77/77
int N = 1024 * 1024;

cudaMalloc(&devInput, N+2);
cudaMalloc(&devOutput, N);

// allocate array in device memory
// allocate array in device memory

// properly initialize contents of devInput here ...

convolve<<<BLOCKS PER CHIP, THREADS PER BLK>>>(N, devInput, devOutput);

dea: write CUDA code that requires
knowledge of the number of cores and
nlocks per core that are supported by
underlying GPU implementation.

Programmer launches exactly as many
thread blocks as will fill the GPU

(Program makes assumptions about GPU
iImplementation: that GPU will in fact run
all blocks concurrently. Ugg!)

Now, work assignment to blocks Is
Implemented entirely by the application

(circumvents GPU thread block scheduler)

Now programmer’s mental model is that
all threads are concurrently running on
the machine at once.

CMU 15-418/618,
Sprina 2021

CUDA summary

= Execution semantics

- Partitioning of problem into thread blocks Is in the spirit of the data-parallel model

(Intended to be machine independent:

system schedules blocks onto any number of cores)

- Threads in a thread block actually do run concurrently (they have to, since they cooperate)

- Inside asingle thread block: SPMD

shared address space programming

- There are subtle, but notable differences between these models of execution. Make sure
you understand it. (And ask yourself what semantics are being used whenever you
encounter a parallel programming system)

= Memory semantics
- Distributed address space: host/device

memories

- Thread local/block shared/global variables within device memory

- Loads/stores move data betweent
local/shared/global memory as bel

= Keyimplementation details:

nem (so It is correct to think about

ng distinct address spaces)

- Threads in a thread block are scheduled onto same GPU core to allow fast communication

through shared memory

- Threadsinathread block are are grouped into warps for SIMD execution on GPU hardware

CMU 15-418/618,
Sprina 2021

One last point...

= |nthis lecture, we talked about writing CUDA programs for
the programmable cores in a GPU
- Work (resulting from a CUDA kernel launch) was mapped onto the cores via a

hardware work scheduler

= Remember, there is still the graphics pipeline interface for

driving GPU execution

- And much of the interesting non-programmable functionality of the GPU is

present to accelerate exec

ution of graphics pipeline operations

- It's more or less “turned off” when running CUDA programs

= How the GPU iImplements the graphics pipeline efficiently is a
topic for an advanced graphics class...

CMU 15-418/618,
Sprina 2021

