
CMU 15-418/618,
Spring 2021

GPU Architecture &
CUDA Programming

Lecture 7:

Parallel Computer Architecture and Programming

CMU 15-418, Spring 2021

CMU 15-418/618,
Spring 2021

Announcements

▪ Written Assignment 1 is due Wednesday

▪ Supplemental Lecture Notes are available for this and later
lectures via Canvas

CMU 15-418/618,
Spring 2021

Today

▪ History: how graphics processors, originally designed to
accelerate 3D games like Quake, evolved into highly parallel
compute engines for a broad class of applications

▪ Programming GPUs using the CUDA language

▪ A more detailed look at GPU architecture

CMU 15-418/618,
Spring 2021

Recall basic GPU architecture

Memory
DDR5 DRAM

(~1 GB)

~150-300 GB/sec
(high end GPUs)

GPU
Multi-core chip
SIMD execution within a single core (many execution units performing the same instruction)
Multi-threaded execution on a single core (multiple threads executed concurrently by a core)

CMU 15-418/618,
Spring 2021

Graphics 101 + GPU history
(for fun)

CMU 15-418/618,
Spring 2021

Image credit: Henrik Wann Jensen

Input: description of a scene:
3D surface geometry (e.g., triangle mesh)

surface materials, lights, camera, etc.

Output: image of the scene

Simple definition of rendering task: computing how each triangle in 3D
mesh contributes to appearance of each pixel in the image?

What GPUs were originally designed to do:
3D rendering

CMU 15-418/618,
Spring 2021

What GPUs are still designed to do

Unreal Engine Kite Demo (Epic Games 2015)

Real-time (30 fps) on a high-end GPU

CMU 15-418/618,
Spring 2021

What GPUs are still designed to do

CMU 15-418/618,
Spring 2021

Tip: how to explain a system

▪ Step 1: describe the things (key entities) that are manipulated

- The nouns

CMU 15-418/618,
Spring 2021

Vertices
(points in space)

Primitives
(e.g., triangles, points, lines)

1

2

3

4

Real-time graphics primitives (entities)
Represent surface as a 3D triangle mesh

CMU 15-418/618,
Spring 2021

Vertices
(points in space)

Primitives
(e.g., triangles, points, lines)

Pixels (in an image)

1

2

3

4

Fragments

Real-time graphics primitives (entities)

CMU 15-418/618,
Spring 2021

How to explain a system

▪ Step 1: describe the things (key entities) that are manipulated

- The nouns

▪ Step 2: describe operations the system performs on the entities

- The verbs

CMU 15-418/618,
Spring 2021

Rendering a picture

Input: a list vertices in 3D space
(and their connectivity into primitives)

list_of_positions = {

v0x, v0y, v0z,

v1x, v1y, v1x,

v2x, v2y, v2z,

v3x, v3y, v3x

};

Example: every three vertices defines a triangle

triangle 0 = {v0, v1, v2}
triangle 1 = {v1, v2, v3}

Vertex Generation

3D vertex stream

Input vertex
buffer

CMU 15-418/618,
Spring 2021

Rendering a picture

Step 1: given a scene camera position,
compute where the vertices lie on screen

v1

Vertex Processing

Vertex Generation

3D vertex stream

Projected vertex
stream

Input vertex
buffer

v0

v2

v3

v0

v1

v2

v3

CMU 15-418/618,
Spring 2021

Rendering a picture

Step 2: group vertices into primitives

t0 t1

Vertex Processing

Vertex Generation

3D vertex stream

Projected vertex
stream

Primitive Generation

Primitive stream

Input vertex
buffer

v1

v0

v2

v3

CMU 15-418/618,
Spring 2021

Rendering a picture

Step 3: generate one fragment for each pixel a
primitive overlaps

t0 t1

Vertex Processing

Vertex Generation

3D vertex stream

Projected vertex
stream

Primitive Generation

Primitive stream

Fragment Generation

Fragment stream

Input vertex
buffer

CMU 15-418/618,
Spring 2021

Rendering a picture

Step 4: compute color of primitive for each
fragment (based on scene lighting and
primitive material properties) Vertex Processing

Vertex Generation

3D vertex stream

Projected vertex
stream

Primitive Generation

Primitive stream

Fragment Generation

Fragment stream

Fragment Processing

Colored fragment
stream

Input vertex
buffer

CMU 15-418/618,
Spring 2021

Rendering a picture

to the camera in the output image
Vertex Processing

Vertex Generation

3D vertex stream

Projected vertex
stream

Primitive Generation

Primitive stream

Fragment Generation

Fragment stream

Fragment Processing

Colored fragment
stream

Pixel Operations

Output image
buffer

(pixels)

Input vertex
buffer

CMU 15-418/618,
Spring 2021

Real-time graphics pipeline

Abstracts process of rendering a picture
as a sequence of operations on vertices,
primitives, fragments, and pixels.

Vertex Processing

Vertex Generation

3D vertex stream

Projected vertex
stream

Primitive Generation

Primitive stream

Fragment Generation

Fragment stream

Fragment Processing

Colored fragment
stream

Pixel Operations

Output image
buffer

(pixels)

Input vertex
buffer

CMU 15-418/618,
Spring 2021

Fragment processing computations simulate
reflection of light off of real-world materials

Example materials:

Images from Matusik et al. SIGGRAPH 2003

CMU 15-418/618,
Spring 2021

Early graphics programming (OpenGL API)

▪ Graphics programming APIs provided programmer mechanisms
to set parameters of scene lights and materials

▪ glLight(light_id, parameter_id, parameter_value)

- Examples of light parameters: color, position, direction

▪ glMaterial(face, parameter_id, parameter_value)

- Examples of material parameters: color, shininess

CMU 15-418/618,
Spring 2021

Great diversity of materials and lights in the world!

CMU 15-418/618,
Spring 2021

Graphics shading languages

▪ Allow application to extend the functionality of the
graphics pipeline by specifying materials and lights
programmatically!

- Support diversity in materials

- Support diversity in lighting conditions

▪ Programmer provides mini-
that define pipeline logic for certain stages

- Pipeline maps shader function onto all
elements of input stream

Vertex Processing

Vertex Generation

3D vertex stream

Projected vertex
stream

Primitive Generation

Primitive stream

Fragment Generation

Fragment stream

Fragment Processing

Colored fragment
stream

Pixel Operations

Output image
buffer

(pixels)

Input vertex
buffer

CMU 15-418/618,
Spring 2021

Example fragment shader program *

uniform sampler2D myTexture;

uniform float3 lightDir;

varying vec3 norm;

varying vec2 uv;

vec4 myFragmentShader()

{

vec3 kd = texture2D(myTexture, uv);

kd *= clamp(dot(lightDir, norm), 0.0, 1.0);

return vec4(kd, 1.0);

}

OpenGL shading language (GLSL) shader program:
defines behavior of fragment processing stage

myTexture is a texture map

Run once per fragment (per pixel covered by a triangle)

read-only global variables

per-fragment inputs

per-fragment output: RGBA surface color at pixel

(a.k.a kernel function mapped onto
input fragment stream)

* Syntax/details of this code not important to 15-418.

CMU 15-418/618,
Spring 2021

Shaded result
Image contains output of myFragmentShader for each pixel covered by surface
(pixels covered by multiple surfaces contain output from surface closest to camera)

CMU 15-418/618,
Spring 2021

Observation circa 2001-2003
These GPUs are very fast processors for performing the same computation (shader
programs) on large collections of data (streams of vertices, fragments, and pixels)

Wait a minute! That sounds a lot like
data-parallelism to me! I remember
data-parallelism from exotic
supercomputers in the 90s.

CMU 15-418/618,
Spring 2021

Hack! early GPU-based scientific computation

Render 2 triangles that exactly cover screen
(one shader computation per pixel = one shader computation output image element)

v0=(0,0) v1=(512,0)

v2=(512, 512)v3=(0, 512)We now can use the GPU like a data-parallel
programming system.

Fragment shader function is mapped over
512 x 512 element collection.

Hack!

Set OpenGL output image size to be output array size (e.g., 512 x 512)

CMU 15-418/618,
Spring 2021

-2003

Coupled Map Lattice Simulation [Harris 02]

Ray Tracing on Programmable Graphics Hardware [Purcell 02]

Sparse Matrix Solvers [Bolz 03]

CMU 15-418/618,
Spring 2021

Brook stream programming language (2004)

▪ Stanford graphics lab research project

▪ Abstract GPU hardware as data-parallel processor
kernel void scale(float amount, float a<>, out float b<>)
{

b = amount * a;
}

float scale_amount;
float input_stream<1000>; // stream declaration
float output_stream<1000>; // stream declaration

// omitting stream element initialization...

// map kernel onto streams
scale(scale_amount, input_stream, output_stream);

▪ Brook compiler converted generic stream program into OpenGL
commands such as drawTriangles() and a set of shader programs.

[Buck 2004]

CMU 15-418/618,
Spring 2021

Lecture Checkpoint 1

▪ What challenge(s) lead to making GPUs programmable?

▪
general compute capability

CMU 15-418/618,
Spring 2021

GPU compute mode

CMU 15-418/618,
Spring 2021

Review: how to run code on a CPU

Lets say a user wants to run a program on a
multi-

- OS loads program text into memory

- OS selects CPU execution context

- OS interrupts processor, prepares execution
context (sets contents of registers, program
counter, etc. to prepare execution context)

- Go!

- Processor begins executing instructions from
within the environment maintained in the
execution context.

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Multi-core CPU

CMU 15-418/618,
Spring 2021

How to run code on a GPU (prior to 2007)

- Application (via graphics driver) provides GPU vertex
and fragment shader program binaries

- Application sets graphics pipeline parameters
(e.g., output image size)

- Application provides hardware a buffer of vertices

- Go! (drawPrimitives(vertex_buffer))

Vertex Processing

Vertex Generation

Primitive Generation

Fragment Generation

Fragment Processing

Pixel Operations

Output
image buffer

(pixels)

Input vertex
buffer

This was the only interface to GPU hardware.

GPU hardware could only execute graphics
pipeline computations.

CMU 15-418/618,
Spring 2021

NVIDIA Tesla architecture (2007)

First alternative, non-graphics-

(GeForce 8xxx series GPUs)

Lets say a user wants to run a non-graphics

- Application can allocate buffers in GPU memory
and copy data to/from buffers

- Application (via graphics driver) provides GPU a
single kernel program binary

- Application tells GPU to run the kernel in an

- Go! (launch(myKernel, N))

Aside: interestingly, this is a far simpler
operation than drawPrimitives()

CMU 15-418/618,
Spring 2021

CUDA programming language

▪ Introduced in 2007 with NVIDIA Tesla architecture

▪ -
using the compute-mode hardware interface

▪ Relatively low-
capabilities/performance characteristics of modern GPUs
(design goal: maintain low abstraction distance)

▪ Note: OpenCL is an open standards version of CUDA
- CUDA only runs on NVIDIA GPUs
- OpenCL runs on CPUs and GPUs from many vendors
- Almost everything I say about CUDA also holds for OpenCL
- CUDA is better documented, thus I find it preferable to teach with

CMU 15-418/618,
Spring 2021

The plan

1. CUDA programming abstractions

2. CUDA implementation on modern GPUs

3. More detail on GPU architecture

Things to consider throughout this lecture:
- Is CUDA a data-parallel programming model?

- Is CUDA an example of the shared address space model?

- Or the message passing model?

- Can you draw analogies to ISPC instances and tasks? What about pthreads?

CMU 15-418/618,
Spring 2021

Clarification (here we go again...)

▪ I am going to describe CUDA abstractions using CUDA
terminology

▪ Specifically, be careful with the use of the term CUDA thread.
A CUDA thread presents a similar abstraction as a pthread in
that both correspond to logical threads of control, but the
implement of a CUDA thread is very different

▪ We will discuss these differences at the end of the lecture

CMU 15-418/618,
Spring 2021

CUDA programs consist of a hierarchy of concurrent threads
Thread IDs can be up to 3-dimensional (2D example below)

Multi-dimensional thread ids are convenient for problems that are naturally N-D

const int Nx = 12;

const int Ny = 6;

dim3 threadsPerBlock(4, 3, 1);

dim3 numBlocks(Nx/threadsPerBlock.x,

Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will trigger execution of 72 CUDA threads:

// 6 thread blocks of 12 threads each

matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

CMU 15-418/618,
Spring 2021

CUDA programs consist of a hierarchy of concurrent threads

▪ Basic design process in CUDA

▪ Given X*Y*Z units of work

-

▪

▪ For most cases, we expect:

-

CMU 15-418/618,
Spring 2021

Basic CUDA syntax

Each thread computes its overall grid thread id
from its position in its block (threadIdx) and its

blockIdx)

Bulk launch of many CUDA threads

Call returns when all threads have terminated

Running as part of normal C/C++
application on CPU

SPMD execution of device kernel function:

const int Nx = 12;

const int Ny = 6;

dim3 threadsPerBlock(4, 3, 1);

dim3 numBlocks(Nx/threadsPerBlock.x,

Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will trigger execution of 72 CUDA threads:

// 6 thread blocks of 12 threads each

matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

// kernel definition

__global__ void matrixAdd(float A[Ny][Nx],

float B[Ny][Nx],

float C[Ny][Nx])

{

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y;

C[j][i] = A[j][i] + B[j][i];

}

CUDA kernel definition
__global__

denotes a CUDA kernel function) runs on GPU

CMU 15-418/618,
Spring 2021

Clear separation of host and device code

const int Nx = 12;

const int Ny = 6;

dim3 threadsPerBlock(4, 3, 1);

dim3 numBlocks(Nx/threadsPerBlock.x,

Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will cause execution of 72 threads

// 6 blocks of 12 threads each

matrixAddDoubleB<<<numBlocks, threadsPerBlock>>>(A, B, C);

Separation of execution into host and device code is performed statically by the programmer

__device__ float doubleValue(float x)

{

return 2 * x;

}

// kernel definition

__global__ void matrixAddDoubleB(float A[Ny][Nx],

float B[Ny][Nx],

float C[Ny][Nx])

{

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y;

C[j][i] = A[j][i] + doubleValue(B[j][i]);

}

CMU 15-418/618,
Spring 2021

Number of SPMD threads is explicit in program
Number of kernel invocations is not determined by size of data collection
(a kernel launch is not map(kernel, collection) as was the case with graphics shader programming)

const int Nx = 11; // not a multiple of threadsPerBlock.x

const int Ny = 5; // not a multiple of threadsPerBlock.y

dim3 threadsPerBlock(4, 3, 1);

dim3 numBlocks((Nx+threadsPerBlock.x-1)/threadsPerBlock.x,

(Ny+threadsPerBlock.y-1)/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will cause execution of 72 threads

// 6 blocks of 12 threads each

matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

__global__ void matrixAdd(float A[Ny][Nx],

float B[Ny][Nx],

float C[Ny][Nx])

{

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y;

// guard against out of bounds array access

if (i < Nx && j < Ny)

C[j][i] = A[j][i] + B[j][i];

}

CUDA kernel definition

CMU 15-418/618,
Spring 2021

CUDA execution model

Host
(serial execution)

CUDA device
(SPMD execution)

Implementation: CPU Implementation: GPU

CMU 15-418/618,
Spring 2021

CUDA memory model
Distinct host and device address spaces

Host
(serial execution)

CUDA device
(SPMD execution)

Host memory
address space memory address space

Implementation: CPU Implementation: GPU

CMU 15-418/618,
Spring 2021

memcpy primitive
Move data between address spaces

Host Device

Host memory
address space memory address space

float* A = new float[N]; // allocate buffer in host mem

// populate host address space pointer A

for (int i=0 i<N; i++)

A[i] = (float)i;

int bytes = sizeof(float) * N

float* deviceA; // allocate buffer in

cudaMalloc(&deviceA, bytes); // device address space

// populate deviceA

cudaMemcpy(deviceA, A, bytes, cudaMemcpyHostToDevice);

// note: deviceA[i] is an invalid operation here (cannot

// manipulate contents of deviceA directly from host.

// Only from device code.)

What does cudaMemcpy remind you of?

CMU 15-418/618,
Spring 2021

CUDA device memory model
Three distinct types of memory visible to kernels

Per-block
shared memory

Per-thread
private memory

Readable/ writable by
all threads in block

Readable/ writable by
thread

Device global
memory

Readable/writable
by all threads

Software
controlled
L1 cache Effectively lots

of registers

CMU 15-418/618,
Spring 2021

CUDA example: 1D convolution

input[0]

output[0] output[1] output[2] output[3] output[4] output[5] output[6] output[7]

input[1] input[2] input[3] input[4] input[5] input[6] input[7] input[8] input[9]

output[i] = (input[i] + input[i+1] + input[i+2]) / 3.f;

CMU 15-418/618,
Spring 2021

1D convolution in CUDA (version 1)
One thread per output element

#define THREADS_PER_BLK 128

__global__ void convolve(int N, float* input, float* output) {

int index = blockIdx.x * blockDim.x + threadIdx.x; // thread local variable

float result = 0.0f; // thread-local variable

for (int i=0; i<3; i++)

result += input[index + i];

output[index] = result / 3.f;

}

write result to global
memory

each thread computes
result for one element

int N = 1024 * 1024

cudaMalloc(&devInput, sizeof(float) * (N+2)); // allocate array in device memory

cudaMalloc(&devOutput, sizeof(float) * N); // allocate array in device memory

// property initialize contents of devInput here ...

convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput);

Host code

CUDA Kernel

.

.

input[0] input[N+1]

output[0]

input[129]

output[127] output[N-1]output[N-128]

input[N-128]

CMU 15-418/618,
Spring 2021

1D convolution in CUDA (version 2)
One thread per output element: stage input data in per-block shared memory

#define THREADS_PER_BLK 128

__global__ void convolve(int N, float* input, float* output) {

__shared__ float support[THREADS_PER_BLK+2]; // per-block allocation

int index = blockIdx.x * blockDim.x + threadIdx.x; // thread local variable

support[threadIdx.x] = input[index];

if (threadIdx.x < 2) {

support[THREADS_PER_BLK + threadIdx.x] = input[index+THREADS_PER_BLK];

}

__syncthreads();

float result = 0.0f; // thread-local variable

for (int i=0; i<3; i++)

result += support[threadIdx.x + i];

output[index] = result / 3.f;

}

All threads cooperatively load

global memory into shared
memory
(total of 130 load instructions
instead of 3 * 128 load instructions)

barrier (all threads in block)

write result to global
memory

each thread computes
result for one element

int N = 1024 * 1024

cudaMalloc(&devInput, sizeof(float) * (N+2)); // allocate array in device memory

cudaMalloc(&devOutput, sizeof(float) * N); // allocate array in device memory

// property initialize contents of devInput here ...

convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput);

Host code

CUDA Kernel

CMU 15-418/618,
Spring 2021

CUDA synchronization constructs

▪ __syncthreads()
- Barrier: wait for all threads in the block to arrive at this point

▪ Atomic operations
- e.g., float atomicAdd(float* addr, float amount)

- Atomic operations on both global memory and shared memory variables

▪ Host/device synchronization
- Implicit barrier across all threads at return of kernel

CMU 15-418/618,
Spring 2021

CUDA abstractions
▪ Execution: thread hierarchy

-
- Two-level hierarchy: threads are grouped into thread blocks

▪ Distributed address space
- Built-in memcpy primitives to copy between host and device address spaces
- Three different types of device address spaces
-

▪ Barrier synchronization primitive for threads in thread block

▪ Atomic primitives for additional synchronization (shared and global variables)

CMU 15-418/618,
Spring 2021

CUDA semantics
#define THREADS_PER_BLK 128

__global__ void convolve(int N, float* input, float* output) {

__shared__ float support[THREADS_PER_BLK+2]; // per-block allocation

int index = blockIdx.x * blockDim.x + threadIdx.x; // thread local var

support[threadIdx.x] = input[index];

if (threadIdx.x < 2) {

support[THREADS_PER_BLK+threadIdx.x] = input[index+THREADS_PER_BLK];

}

__syncthreads();

float result = 0.0f; // thread-local variable

for (int i=0; i<3; i++)

result += support[threadIdx.x + i];

output[index] = result / 3.f;

}

// host code //

int N = 1024 * 1024;

cudaMalloc(&devInput, N+2); // allocate array in device memory

cudaMalloc(&devOutput, N); // allocate array in device memory

// property initialize contents of devInput here ...

convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput);
launch over 1 million CUDA
threads (over 8K thread blocks)

Will running this CUDA program
create 1 million instances of
local variables/stack?

8K instances of shared
variables? (support)

Consider implementation of call to
pthread_create():

Allocate thread state:
- Stack space for thread
- Allocate control block so OS can

schedule thread

CMU 15-418/618,
Spring 2021

Assigning work

High-end GPU
(16 cores)

Mid-range GPU
(6 cores)

Want CUDA program to run on all of these
GPUs without modification

Note: there is no concept of num_cores in the
CUDA programs I have shown you. (CUDA
thread launch is similar in spirit to a forall
loop in data parallel model examples)

CMU 15-418/618,
Spring 2021

CUDA compilation
#define THREADS_PER_BLK 128

__global__ void convolve(int N, float* input, float* output) {

__shared__ float support[THREADS_PER_BLK+2]; // per block allocation

int index = blockIdx.x * blockDim.x + threadIdx.x; // thread local var

support[threadIdx.x] = input[index];

if (threadIdx.x < 2) {

support[THREADS_PER_BLK+threadIdx.x] = input[index+THREADS_PER_BLK];

}

__syncthreads();

float result = 0.0f; // thread-local variable

for (int i=0; i<3; i++)

result += support[threadIdx.x + i];

output[index] = result;

}

launch 8K thread blocks

A compiled CUDA device binary includes:

Program text (instructions)
Information about required resources:

- 128 threads per block
- B bytes of local data per thread
- 130 floats (520 bytes) of shared space

per thread block

int N = 1024 * 1024;

cudaMalloc(&devInput, N+2); // allocate array in device memory

cudaMalloc(&devOutput, N); // allocate array in device memory

// property initialize contents of devInput here ...

convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput);

CMU 15-418/618,
Spring 2021

CUDA thread-block assignment

Thread block scheduler

Shared mem Shared mem Shared mem Shared mem

Device global memory
(DRAM)

Kernel launch command from host
launch(blockDim, convolve)

. . .
Grid of 8K convolve thread blocks (specified by kernel launch)

Block resource requirements:
(contained in compiled kernel binary)
128 threads
520 bytes of shared mem
(128 x B) bytes of local mem

Major CUDA assumption: thread block
execution can be carried out in any order
(no dependencies between blocks)

GPU implementation maps thread blocks

scheduling policy that respects resource
requirements

Shared mem is fast
on-chip memory

Special HW
in GPU

CMU 15-418/618,
Spring 2021

Data to Thread Mapping

▪ Looking at 1D data, what is its assignment to thread(s)
- 1:1 Each thread maps to one unique element

.

.

input[0] input[N+1]

output[0]

input[129]

output[127] output[N-1]output[N-128]

input[N-128]

Thread Block Thread Block Thread Block

CMU 15-418/618,
Spring 2021

Data to Thread Mapping

▪ Looking at 1D data, what is its assignment to thread(s)
- N:1 Each thread maps to multiple adjacent elements

.

.

input[0] input[N+1]

output[0]

input[129]

output[127] output[N-1]output[N-128]

input[N-128]

Thread Block Thread Block

CMU 15-418/618,
Spring 2021

Data to Thread Mapping

▪ Looking at 1D data, what is its assignment to thread(s)
- N:1 Each thread maps to multiple non-adjacent elements

.

.

input[0] input[N+1]

output[0]

input[129]

output[127] output[N-1]output[N-128]

input[N-128]

Thread Block

CMU 15-418/618,
Spring 2021

Another instance of our common design pattern:

Problem to solve

Sub-problems

Worker Threads

Decomposition

Assignment

- One worker per parallel execution resource (e.g., CPU core, core execution context)
- May want N workers per core (where N is large enough to hide memory/IO latency)
- Pre-allocate resources for each worker
- Dynamically assign tasks to worker threads (reuse allocation for many tasks)

Other examples:
-
- Creates one pthread for each hyper-thread on CPU. Threads kept alive for remainder of program

- Thread pool in a web server
- Number of threads is a function of number of cores, not number of outstanding requests
- Threads spawned at web server launch, wait for work to arrive

CMU 15-418/618,
Spring 2021

NVIDIA GTX 980 (2014)

SMM resource limits:
- Max warp execution contexts: 64

(2,048 total CUDA threads)
- 96 KB of shared memory

= SIMD functional unit,
control shared across 32 units
(1 MUL-ADD per clock)

Fetch/
Decode

Fetch/
Decode

Warp Selector

Fetch/
Decode

Fetch/
Decode

Warp Selector

Fetch/
Decode

Fetch/
Decode

Warp Selector

Fetch/
Decode

Fetch/
Decode

Warp Selector (96 KB)

Warp execution contexts
(max 64)
(256 KB)

Warp 0

Warp 1

Warp 2

. . .

L1 cache

L1 cache

. . .

Warp 63

CMU 15-418/618,
Spring 2021

SMM core operation each clock:

- Select up to four runnable warps from 64 resident on SMM core (thread-level parallelism)

- Select up to two runnable instructions per warp (instruction-level parallelism) *

support
(520 bytes)

#define THREADS_PER_BLK 128

__global__ void convolve(int N, float* input,

float* output)

{

__shared__ float support[THREADS_PER_BLK+2];

int index = blockIdx.x * blockDim.x +

threadIdx.x;

support[threadIdx.x] = input[index];

if (threadIdx.x < 2) {

support[THREADS_PER_BLK+threadIdx.x]

= input[index+THREADS_PER_BLK];

}

__syncthreads();

float result = 0.0f; // thread-local

for (int i=0; i<3; i++)

result += support[threadIdx.x + i];

output[index] = result;

}Recall, CUDA kernels execute as SPMD programs

A convolve thread block is executed by 4 warps (4 warps x 32 threads/warp = 128 CUDA threads per block)

(Warps are an important GPU implementation detail, but not a CUDA abstraction!)

c.)

CMU 15-418/618,
Spring 2021

L2 Cache (2 MB)

Shared (96 KB)

Shared (96 KB)

Shared (96 KB)

Shared (96 KB)

Shared (96 KB)

Shared (96 KB)

Shared (96 KB)

Shared (96 KB)

Shared (96 KB)

Shared (96 KB)

Shared (96 KB)

Shared (96 KB)

Shared (96 KB)

Shared (96 KB)

Shared (96 KB)

Shared (96 KB)

GPU memory
DDR5 DRAM

224 GB/sec
(256 bit interface)

NVIDIA GTX 980 (16 SMMs)

CMU 15-418/618,
Spring 2021

L2 Cache (2 MB)

GPU memory
(DDR5 DRAM)

224 GB/sec

NVIDIA GTX 980 (2014)

1.1 GHz clock

16 SMM cores per chip

16 x 128 = 2,048 SIMD mul-add ALUs
= 4.6 TFLOPs

Up to 16 x 64 = 1024 interleaved warps
per chip (32,768 CUDA threads/chip)

TDP: 165 watts

CMU 15-418/618,
Spring 2021

Lecture Checkpoint 2

▪ How is a thread identified?

▪ What is the schedulable unit on GPUs?

▪ What granularity of work does a GPU execute each cycle?

CMU 15-418/618,
Spring 2021

Review
(If you understand this example you understand how CUDA

programs run on a GPU)

CMU 15-418/618,
Spring 2021

Running the kernel
convolve k

Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

-side kernel launch generates thousands of thread blocks.
#define THREADS_PER_BLK 128

convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, input_array, output_array);

Fetch/Decode

Execution context
storage for 384 CUDA

threads
(12 warps)

storage (1.5 KB)

GPU Work Scheduler

-core GPU below.

units, support for fewer active threads, less shared memory, etc.)

Fetch/Decode

Execution context
storage for 384 CUDA

threads
(12 warps)

storage (1.5 KB)

Core 0 Core 1

CMU 15-418/618,
Spring 2021

Running the CUDA kernel
Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Fetch/Decode

Execution context
storage for 384 CUDA

threads
(12 warps)

storage (1.5 KB)

GPU Work Scheduler

Fetch/Decode

Execution context
storage for 384 CUDA

threads
(12 warps)

storage (1.5 KB)

Core 0 Core 1

EXECUTE: convolve

ARGS: N, input_array, output_array

NUM_BLOCKS: 1000

CMU 15-418/618,
Spring 2021

Fetch/Decode

Execution context
storage for 384 CUDA

threads storage (1.5 KB)

GPU Work Scheduler

Fetch/Decode

Core 0 Core 1

EXECUTE: convolve

ARGS: N, input_array, output_array

NUM_BLOCKS: 1000

Step 2: scheduler maps block 0 to core 0 (reserves execution contexts for 128 threads and
520 bytes of shared storage)

NEXT = 1

TOTAL = 1000

Execution context
storage for 384 CUDA

threads storage (1.5 KB)

Block 0: support
(520 bytes)

Running the CUDA kernel
Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Block 0 (contexts 0-127)

CMU 15-418/618,
Spring 2021

Fetch/Decode

Execution context
storage for 384 CUDA

threads storage (1.5 KB)

GPU Work Scheduler

Fetch/Decode

Core 0 Core 1

EXECUTE: convolve

ARGS: N, input_array, output_array

NUM_BLOCKS: 1000

Step 3: scheduler continues to map blocks to available execution contexts
(interleaved mapping shown)

NEXT = 2

TOTAL = 1000

Execution context
storage for 384 CUDA

threads storage (1.5 KB)

Block 0: support
(520 bytes @ 0x0)

Block 0 (contexts 0-127)

Running the CUDA kernel
Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Block 1: support
(520 bytes @ 0x0)

Block 1 (contexts 0-127)

CMU 15-418/618,
Spring 2021

Fetch/Decode

Execution context
storage for 384 CUDA

threads storage (1.5 KB)

GPU Work Scheduler

Fetch/Decode

Core 0 Core 1

EXECUTE: convolve

ARGS: N, input_array, output_array

NUM_BLOCKS: 1000

Step 3: scheduler continues to map blocks to available execution contexts
(interleaved mapping shown)

NEXT = 3

TOTAL = 1000

Execution context
storage for 384 CUDA

threads storage (1.5 KB)

Block 0: support
(520 bytes @ 0x0)

Block 0 (contexts 0-127)

Running the CUDA kernel
Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Block 1: support
(520 bytes @ 0x0)

Block 2: support
(520 bytes 0x520)

Block 2 (contexts 128-255)

Block 1 (contexts 0-127)

CMU 15-418/618,
Spring 2021

Fetch/Decode

Execution context
storage for 384 CUDA

threads storage (1.5 KB)

GPU Work Scheduler

Fetch/Decode

Core 0 Core 1

EXECUTE: convolve

ARGS: N, input_array, output_array

NUM_BLOCKS: 1000

Step 3: scheduler continues to map blocks to available execution contexts (interleaved mapping shown).
Only two thread blocks fit on a core

NEXT = 4

TOTAL = 1000

Execution context
storage for 384 CUDA

threads storage (1.5 KB)

Block 0: support
(520 bytes @ 0x0)

Block 0 (contexts 0-127)

Running the CUDA kernel
Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Block 1: support
(520 bytes @ 0x0)

Block 2: support
(520 bytes 0x520)

Block 2 (contexts 128-255) Block 3: support
(520 bytes @ 0x520)

Block 1 (contexts 0-127)

Block 3 (contexts 128-255)

CMU 15-418/618,
Spring 2021

Fetch/Decode

Execution context
storage for 384 CUDA

threads storage (1.5 KB)

GPU Work Scheduler

Fetch/Decode

Core 0 Core 1

EXECUTE: convolve

ARGS: N, input_array, output_array

NUM_BLOCKS: 1000

Step 4: thread block 0 completes on core 0

NEXT = 4

TOTAL = 1000

Execution context
storage for 384 CUDA

threads storage (1.5 KB)

Running the CUDA kernel
Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Block 1: support
(520 bytes @ 0x0)

Block 2: support
(520 bytes 0x520)

Block 2 (contexts 128-255) Block 3: support
(520 bytes @ 0x520)

Block 1 (contexts 0-127)

Block 3 (contexts 128-255)

CMU 15-418/618,
Spring 2021

Fetch/Decode

Execution context
storage for 384 CUDA

threads storage (1.5 KB)

GPU Work Scheduler

Fetch/Decode

Core 0 Core 1

EXECUTE: convolve

ARGS: N, input_array, output_array

NUM_BLOCKS: 1000

Step 5: block 4 is scheduled on core 0 (mapped to execution contexts 0-127)

NEXT = 5

TOTAL = 1000

Execution context
storage for 384 CUDA

threads storage (1.5 KB)

Block 4: support
(520 bytes @ 0x0)

Block 4 (contexts 0-127)

Running the CUDA kernel
Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Block 1: support
(520 bytes @ 0x0)

Block 2: support
(520 bytes 0x520)

Block 2 (contexts 128-255) Block 3: support
(520 bytes @ 0x520)

Block 1 (contexts 0-127)

Block 3 (contexts 128-255)

CMU 15-418/618,
Spring 2021

Fetch/Decode

Execution context
storage for 384 CUDA

threads storage (1.5 KB)

GPU Work Scheduler

Fetch/Decode

Core 0 Core 1

EXECUTE: convolve

ARGS: N, input_array, output_array

NUM_BLOCKS: 1000

Step 6: thread block 2 completes on core 0

NEXT = 5

TOTAL = 1000

Execution context
storage for 384 CUDA

threads storage (1.5 KB)

Block 4: support
(520 bytes @ 0x0)

Block 4 (contexts 0-127)

Running the CUDA kernel
Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Block 1: support
(520 bytes @ 0x0)

Block 3: support
(520 bytes @ 0x520)

Block 1 (contexts 0-127)

Block 3 (contexts 128-255)

CMU 15-418/618,
Spring 2021

Fetch/Decode

Execution context
storage for 384 CUDA

threads storage (1.5 KB)

GPU Work Scheduler

Fetch/Decode

Core 0 Core 1

EXECUTE: convolve

ARGS: N, input_array, output_array

NUM_BLOCKS: 1000

Step 7: thread block 5 is scheduled on core 0 (mapped to execution contexts 128-255)

NEXT = 6

TOTAL = 1000

Execution context
storage for 384 CUDA

threads storage (1.5 KB)

Block 4: support
(520 bytes @ 0x0)

Block 4 (contexts 0-127)

Running the CUDA kernel
Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Block 1: support
(520 bytes @ 0x0)

Block 3: support
(520 bytes @ 0x520)

Block 1 (contexts 0-127)

Block 3 (contexts 128-255)
Block 5: support

(520 bytes 0x520)

Block 5 (contexts 128-255)

CMU 15-418/618,
Spring 2021

▪ A warp is a CUDA implementation detail on NVIDIA GPUs

▪ On modern NVIDIA hardware, groups of 32 CUDA threads in a thread block are
executed simultaneously using 32-wide SIMD execution.

Fetch/Decode

thread 0 ctx

thread 31 ctx

thread 32 ctx

thread 63 ctx

thread 64 ctx

thread 383 ctx

Warp 0 context

Warp 1 context

thread 352 ctx

Warp 11 context

In this fictitious NVIDIA GPU example:
Core maintains contexts for 12 warps
Selects one warp to run each clock

CMU 15-418/618,
Spring 2021

▪ A warp is a CUDA implementation detail on NVIDIA GPUs

▪ On modern NVIDIA hardware, groups of 32 CUDA threads in a thread block are
executed simultaneously using 32-wide SIMD execution.

- These 32 logical CUDA threads share an instruction stream and therefore
performance can suffer due to divergent execution.

- This mapping is similar to how ISPC runs program instances in a gang.

▪ The group of 32 threads sharing an instruction stream is called a warp.

- In a thread block, threads 0-31 fall into the same warp (so do threads 32-63, etc.)

- Therefore, a thread block with 256 CUDA threads is mapped to 8 warps.

-
and interleaving execution of up to 64 warps.

-
blocks.

CMU 15-418/618,
Spring 2021

A more advanced review
(If you understand the following examples you really understand how
CUDA programs run on a GPU, and also have a good handle on the work

CMU 15-418/618,
Spring 2021

Why allocate execution context for all threads in a block?

Imagine a thread block with 256 CUDA threads
(see code, top-right)

Assume a fictitious SMM core with only 4 warps worth of
parallel execution in HW (illustrated above)

Why not just run four warps (threads 0-127) to completion
then run next four warps (threads 128-255) to completion in
order to execute the entire thread block?

#define THREADS_PER_BLK 256

__global__ void convolve(int N, float* input,

float* output)

{

__shared__ float support[THREADS_PER_BLK+2];

int index = blockIdx.x * blockDim.x +

threadIdx.x;

support[threadIdx.x] = input[index];

if (threadIdx.x < 2) {

support[THREADS_PER_BLK+threadIdx.x]

= input[index+THREADS_PER_BLK];

}

__syncthreads();

float result = 0.0f; // thread-local

for (int i=0; i<3; i++)

result += support[threadIdx.x + i];

output[index] = result;

}

CUDA kernels may create dependencies between
threads in a block

Simplest example is __syncthreads()

Threads in a block cannot be executed by the
system in any order when dependencies exist.

CUDA semantics: threads in a block ARE running
concurrently. If a thread in a block is runnable it
will eventually be run! (no deadlock)

(96 KB)

Warp 0

L1 cache

Warp 1

Warp 2

Warp 3

L1 cache

CMU 15-418/618,
Spring 2021

Implementation of CUDA abstractions
▪ Thread blocks can be scheduled in any order by the system

- System assumes no dependencies between blocks
- Logically concurrent
- A lot like ISPC tasks, right?

▪ CUDA threads in same block DO run at the same time
- When block begins executing, all threads are running
(these semantics impose a scheduling constraint on the system)
- A CUDA thread block is itself an SPMD program (like an ISPC gang of program instances)
- Threads in thread-

▪ CUDA implementation:
- A Kepler GPU warp has performance characteristics akin to an ISPC gang of instances (but unlike

an ISPC gang, the warp concept does not exist in the programming model*)
- All warps in a thread block are scheduled onto the same core, allowing for high-BW/low latency

communication through shared memory variables
- When all threads in block complete, block resources (shared memory allocations, warp execution

contexts) become available for next block

* Exceptions to this statement include intra-warp builtin operations like swizzle and vote

CMU 15-418/618,
Spring 2021

Consider a program that creates a histogram:
▪ This example: build a histogram of values in an array

- All CUDA threads atomically update shared variables in global memory

▪ Notice I have never claimed CUDA thread blocks were guaranteed to be independent. I
only stated CUDA reserves the right to schedule them in any order.

Global memory

int counts[10]

Thread block 0 Thread block N

. . .atomicAdd(&counts[A[i]], 1); atomicAdd(&counts[A[i]], 1);

int* A = {0, 3, 4, 1, 9 , 2, . . . , 8, 4 , 1 }; // array of integers between 0-9

▪ This is valid code! This use of atomics does not
schedule blocks in any order (atomics used for mutual exclusion, and nothing more)

. . .
int A[N]

CMU 15-418/618,
Spring 2021

. . .

But is this reasonable CUDA code?
▪ Consider implementation of on a single core GPU with resources

for one CUDA thread block per core

- What happens if the CUDA implementation runs block 0 first?

- What happens if the CUDA implementation runs block 1 first?

Global memory
int myFlag

// do stuff here

atomicAdd(&myFlag, 1);

while(atomicAdd(&myFlag, 0) == 0)
{ }

// do stuff here

(assume myFlag is initialized to 0)

Thread block 0 Thread block 1

CMU 15-418/618,
Spring 2021

#define THREADS_PER_BLK 128
#define BLOCKS_PER_CHIP 16 * (2048/128) // specific to a certain GTX 980 GPU

__device__ int workCounter = 0; // global mem variable

__global__ void convolve(int N, float* input, float* output) {
__shared__ int startingIndex;
__shared__ float support[THREADS_PER_BLK+2]; // shared across block
while (1) {

if (threadIdx.x == 0)
startingIndex = atomicInc(workCounter, THREADS_PER_BLK);

__syncthreads();
if (startingIndex >= N)

break;

int index = startingIndex + threadIdx.x; // thread local
support[threadIdx.x] = input[index];
if (threadIdx.x < 2)

support[THREADS_PER_BLK+threadIdx.x] = input[index+THREADS_PER_BLK];

__syncthreads();

float result = 0.0f; // thread-local variable
for (int i=0; i<3; i++)
result += support[threadIdx.x + i];

output[index] = result;

__syncthreads();
}

}

// host code //
int N = 1024 * 1024;
cudaMalloc(&devInput, N+2); // allocate array in device memory
cudaMalloc(&devOutput, N); // allocate array in device memory
// properly initialize contents of devInput here ...

convolve<<<BLOCKS_PER_CHIP, THREADS_PER_BLK>>>(N, devInput, devOutput);

Idea: write CUDA code that requires
knowledge of the number of cores and
blocks per core that are supported by
underlying GPU implementation.

Programmer launches exactly as many
thread blocks as will fill the GPU

(Program makes assumptions about GPU
implementation: that GPU will in fact run
all blocks concurrently. Ugg!)

Now, work assignment to blocks is
implemented entirely by the application

(circumvents GPU thread block scheduler)

all threads are concurrently running on
the machine at once.

CMU 15-418/618,
Spring 2021

CUDA summary
▪ Execution semantics

- Partitioning of problem into thread blocks is in the spirit of the data-parallel model
(intended to be machine independent: system schedules blocks onto any number of cores)

- Threads in a thread block actually do run concurrently (they have to, since they cooperate)
- Inside a single thread block: SPMD shared address space programming

- There are subtle, but notable differences between these models of execution. Make sure
you understand it. (And ask yourself what semantics are being used whenever you
encounter a parallel programming system)

▪ Memory semantics
- Distributed address space: host/device memories
- Thread local/block shared/global variables within device memory

- Loads/stores move data between them (so it is correct to think about
local/shared/global memory as being distinct address spaces)

▪ Key implementation details:
- Threads in a thread block are scheduled onto same GPU core to allow fast communication

through shared memory
- Threads in a thread block are are grouped into warps for SIMD execution on GPU hardware

CMU 15-418/618,
Spring 2021

▪ In this lecture, we talked about writing CUDA programs for
the programmable cores in a GPU
- Work (resulting from a CUDA kernel launch) was mapped onto the cores via a

hardware work scheduler

▪ Remember, there is still the graphics pipeline interface for
driving GPU execution
- And much of the interesting non-programmable functionality of the GPU is

present to accelerate execution of graphics pipeline operations

-

▪ How the GPU implements the graphics pipeline efficiently is a

