Lecture 3:

A Modern Multi-Core
Processor

(Forms of parallelism + understanding
latency and bandwidth)

Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2021

Quick review

1. Why has single-instruction-stream performance only
improved very slowly in recent years? *

2. What prevented us from obtaining maximum speedup
from the parallel programs we performed in the first
lecture?

* Self check 1: What do | mean by “single-instruction stream”?
Self check 2: When we talked about the optimization of superscalar execution, were we talking about
optimizing the

performance of executing a single-instruction stream? CMU 155-4}18/2601281,
pring

Today

* Today we will talk computer architecture

" Four key concepts about how modern computers
work

- Two concern parallel execution

- Two concern challenges of accessing memory

* Understanding these architecture basics will help
you

- Understand and optimize the performance of your parallel
programs

- Gain intuition about what workloads might benefit from fast

parallel machines CMU 15-418/618,
Spring 2021

Part 1: Parallel Execution

CMU 15-418/618,
Spring 2021

Example program

Compute sin(x) using Taylor expansion: sin(X) = x - x3/3! + x/5! - X//7! +

for each element of an array of N floating-point numbers

void sinx(int N, int terms, float* x, float* result)

{

for (int i=0; i<N; i++)

{

float value = x[i];
float numer = x[i] * x[i] * x[i];
int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{
value += sign * numer / denom;
numer *= x[i] * x[1i];
denom *= (2*j+2) * (2*j+3);

sign *= -1;

result[i] = value;

CMU 15-418/618,
Spring 2021

Compile program

void sinx(int N, int terms, float* x, float* result)

{

for (int i=0; i<N; i++)

{

float value x[1i];

float numer = x[i] * x[i] * x[i];

int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{
value += sign * numer / denom;
numer *= x[i] * x[1i];
denom *= (2*j+2) * (2*j+3);

sign *= -1;

x[1]

!

ld roe, addr[ri]
mul rl1l, roe, ro

mul rl1, rl, ro

st addr[r2], ro

[result[i]]

CMU 15-418/618,
Spring 2021

Execute program (on an idealized
machine)

x[1i]

= .

ld ro, addr[ri]

mul rl, roe, ro
ALU mul rl1, rl, ro
(Execute)

st addr[r2], ro

[rrrrrr [11

CMU 15-418/618,
Spring 2021

Execute program

My very simple processor: executes one instruction per clock

x[1i]

b 1d ro, addr[ri]

mul rl, roe, ro
ALU mul rl1, rl, ro

(Execute)

EE Y

‘r‘esult[i]l

CMU 15-418/618,
Spring 2021

Execute program

My very simple processor: executes one instruction per clock

x[1i]

ld ro, addr[ri]
b mul rl1, ro, ro

ALU mul rl1, rl, ro
(Execute)

EE Y

‘r‘esult[i]l

CMU 15-418/618,
Spring 2021

Execute program

My very simple processor: executes one instruction per clock

x[1i]

!

ld ro, addr[ri]
mul rl, roe, ro

mul rl, rl, ro

ALU
(Execute)

EE Y

‘r‘esult[i]l

CMU 15-418/618,
Spring 2021

Superscalar (in-order) processor

Recall from last class: instruction level parallelism (ILP)
Decode and execute two instructions per clock (if possible)

Exec Exec

x[1i]

ro, addr[ri]
rli, ro, ro
rli, rl, ro

addr[r2], roe

[r'esult[i]]

Note: No ILP exists in this region of the program

CMU 15-418/618,
Spring 2021

Aside: Pentium 4

Systemn Bus (External L2 Cache
i Cache Bus
. |
Bus Interface Unit -

. '

|
Instruction Fetch Unit | Instruction Cache (L1)

| Y
Memaory
Instruction Decoder R;S;ri?'
Simple Simple Complex i
Instuction Instuction Instuction .
Decoder Decoder Decoder Microcode From
Instructon Integer
Sequencer Uit
Reqgister Alias Table
| |
_ Retirement
Retirement Linit Reqgister File Data Cache
(Intel Arch. Unit {L1)
)i Reorder Buffer (Instruction Pool) Registers)
- &
Reservation Station
1 .
Execution Unit
SIMD FP | | Floabng- Memory
Lirit Point Unit I"Lt_ﬁﬁfr I"ETF Interface ||
{(FPL (FPU) Unit
= ¥ L

Internal Data-Hesults Busas

Image credit: http://ixbtlabs.com/articles/pentium4/index.html

CMU 15-418/618,
Spring 2021

Processor: pre multi-core era

Majority of chip transistors used to perform operations that help a single

instruction stream run fast

0]e]0,
Execution Unit

Data cache
(a big one)

More transistors = larger cache, smarter out-of-order logic, smarter branch
predictor, etc.

(Also: more transistors > smaller transistors - higher clock frequencies) .. . /618

Spring 2021

Processor: multi-core era

ALU
(Execute)

Idea #1:

Use increasing transistor count to add more
cores to the processor

Rather than use transistors to increase
sophistication of processor logic that
accelerates a single instruction stream
(e.g., out-of-order and speculative
operations)

CMU 15-418/618,
Spring 2021

Two cores: compute two elements in

parallel

0
|

1d re, addr[ri]
mul ri, ro, ro
mul ri, rl, ro

st addr[r2], re

[result[i]]

ALU
(Execute)

ALU
(Execute)

B
L |

1d ro, addr[ri]
mul ril, ro, ro
mul ri, rli, ro

st addr[r2], re

[r‘esult[j]]

Simpler cores: each core is slower at running a single instruction stream than our

original “fancy” core (e.g., 25% slower)

But there are now two cores: 2 x 0.75=1.5

(potential for speedup!)

CMU 15-418/618,
Spring 2021

But our program expresses no parallelism!

void sinx(int N, int terms, float* x, float* result)

{

for (int i=0; i<N; i++)

{

This program, compiled with gcc
will run as one thread on one of
the processor cores.

float value = x[i];
float numer = x[i] * x[i] * x[i];

iy N If each of the simpler processor
in enom = 6; !

cores was 25% slower than the

int sign = -1; o])

original single complicated one,
for (int j=1; j<=terms; j++) our program now runs 25%
{ slower. :-(

value += sign * numer / denom;
numer *= x[i] * x[i];
denom *= (2*j+2) * (2*j+3);

sign *= -1;

result[i] = value;

CMU 15-418/618,
Spring 2021

Expressing parallelism using pthreads

typedef struct {
int N;
int terms;
float* x;

float* result;

} my_args;

void parallel_sinx(int N, int terms, float* x, float* result)

{
pthread_t thread _id;

my_args args;

args.N = N/2;
args.terms = terms;
args.x = X;

args.result = result;

pthread create(&thread _id, NULL, my_thread_start, &args); // launch thread
sinx(N - args.N, terms, x + args.N, result + args.N); // do work

pthread_join(thread_id, NULL);

void my thread _start(void* thread_arg)

{
my_args* thread_args = (my_args*)thread_arg;

sinx(args->N, args->terms, args->x, args->result); // do work

void sinx(int N, int terms, float* x, float* result)

{
for (int i=0@; i<N; i++)
{
float value = x[i];
float numer = x[i] * x[i] * x[i];
int denom = 6; // 3!
int sign = -1;
for (int j=1; j<=terms; j++)
{
value += sign * numer / denom
numer *= x[i] * x[i];
denom *= (2*j+2) * (2*j+3);
sign *= -1;
}
result[i] = value;
}
}

Child thread does first half of range
Main thread does second half

CMU 15-418/618,
Spring 2021

Data-parallel expression

(in our fictitious data-parallel language)

void sinx(int N, int terms, float* x, float* result)

{

// declare independent loop iterations

forall (int i from 0 to N-1)

{

float value

x[1i];

float numer = x[i] * x[i] * x[i];
int denom = 6; // 3!

int sign

for (int
{
value
numer

denom

j=1; j<=terms; j++)

+= sign * numer / denom;
*= x[i] * x[i];

*= (2%542) * (2%5+43);

sign *= -1;

result[i]

= value;

Loop iterations declared by the
programmer to be independent

With this information, you could
imagine how a compiler might
automatically generate parallel
threaded code

CMU 15-418/618,

Spring 2021

Four cores: compute four elements in parallel

_
!

4—[3 [34-

[] =

.
!

-] []e=

B

compute sixteen elements in parallel

Sixteen cores

ALU

ALU

ALU

ALU

ALU

ALU

ALU

Sixteen cores, sixteen simultaneous instruction

streams

CMU 15-418/618,

Spring 2021

Multi-core examples

3%

]

o L
I [
niF, s ¢)
i %, y $ =)
: 9 p 3 & F
) = B i k]
& % B
' & =
2 | .
| -
= | =
% k HENEE.
P = ETTEE T
b TTTTT
TTTTT
. T "
3 . | & LI EL]
E TTTE]
—~
—
=
=
—
b
L
ol =
E
1 : . E
2 e i
- B 5 I
o A |-

IR

l

!

Intel “Skylake” Core i7 quad-core CPU

Each core is sophisticated, out-of-
order processor to maximize ILP data

L L] L]
L LR L]
L L Ll
LLEL R L]
Ll L]
LLELEL]
LLLEL L]

ANNANN

JELEL L
FLLEELRL
L LEELLL]
L EELEL L]
L LELEL]
L LEELE L]
L LELLEL]
LLELLE L]
LE L
LR L)
LL L
L 1]

iNEaNEE
FELEL L]
L LEELL]
LLEL L L
i AN
EEELL L]
L LELE L

L]
LLELE]
LL L]
LLLL R
LLLEL L]
aEaNNaN
LL R L]

i

e S L b - S b - S - S R T - R : : HHHH

[LTTTT

L L L L L L] iSNNEa.
d1 1111} ImNN
NNy iNEN N
a1 1il]]
Ll L])]
Ll L]
1111]]

Ll L]

L LD L]

LLLLEL L] NN
L ELL L anan
LELEL L] INmEa NN
LLEL L] PLLELL)
LELEL L L] INmn

I
0
LLLLELL L

TIEEET
O
TET]

|

Gl

NVIDIA GTX 980 GPU
(2015) 16 replicated processing cores (“SM”)

(2014)

Each core processors vectors of

CMU 15-418/618,
Spring 2021

More multi-core examples

5

.-
L

'::uum,fquf 81 .:'|- e
M HH s LU R

R AT,

Intel Xeon Phi “Knights Landing “ 76-core CPU Apple A9 dual-core CPU
(2015) (2015)

A9 image credit: Chipworks (obtained via Anandtech)

http://www.anandtech.com/show/9686/the-apple-iphone-6s-and-iphone-6s-plus-review/3 CMU 15-418/618,

Spring 2021

Data-parallel expression

(in our fictitious data-parallel language)

void sinx(int N, int terms, float* x, float* result)

{

// declare independent loop iterations

forall (int i from 0 to N-1)

{

float value = x[i];
float numer = x[i] * x[i] * x[i];
int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{

value += sign * numer / denom;
numer *= x[i] * x[1i];
denom *= (2*j+2) * (2*j+3);

sign *= -1;

result[i] = value;

Another interesting property of
this code:

Parallelism is across iterations of
the loop.

All the iterations of the main loop
do the same thing: compute the

sine of a single input number

The inner loop is executed the
same humber of times every time

There are no conditionals

CMU 15-418/618,
Spring 2021

Add ALUs to increase compute capability

ALUO

ALU 1

ALU 2

ALU 3

ALU 4

ALU 5

ALU 6

ALU 7

Idea #2:
Amortize cost/complexity of managing an
instruction stream across many ALUs

SIMD processing

Single instruction, multiple data

Same instruction broadcast to all ALUs
Executed in parallel on all ALUs

CMU 15-418/618,
Spring 2021

Add ALUs to increase compute capability

ALUO

ALU 1

ALU 2

ALU 3

ALU 4

ALU 5

ALU 6

ALU 7

1d re, addr[ri]
mul rl1l, roe, ro

mul rl1, rl, ro

st addr[r2], ro

Recall original compiled program:

Instruction stream processes one array

element at a time using scalar

instructions on scalar registers (e.g., 32-

bit floats)

CMU 15-418/618,
Spring 2021

Scalar program

void sinx(int N, int terms, float* x, float* result)

{

for (int i=0@; i<N; i++)

{

float value = x[i];
float numer = x[i] * x[i] * x[i];
int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{

value += sign * numer / denom;
numer *= x[1] * x[1i];
denom *= (2*j+2) * (2*j+3);

sign *= -1;

result[i] = value;

Original compiled program:

Processes one array element using scalar
instructions on scalar registers (e.g., 32-

bit floats)

1d
mul

mul

st

re, addr|[ril]
rl, ro, ro
ri, rl, ro

addr[r2], ro

CMU 15-418/618,
Spring 2021

Vector program (using AVX intrinsics)

#include <immintrin.h>

void sinx(int N, int terms, float* x, float* result) Intrinsics aValIable to C

{ programmers
float three fact = 6; // 3!

for (int i=0@; i<N; 1i+=8)
{
__m256 origx = mm256_load ps(&x[i]);
__m256 value = origx;
__m256 numer = _mm256_mul ps(origx, _mm256 _mul ps(origx, origx));
__m256 denom = mm256_setlps(three_fact);
float sign = -1;

for (int j=1; j<=terms; j++)
{
// value += sign * numer / denom

__m256 tmp = mm256_div_ps(_mm256_mul ps(_mm256 setlps(sign), numer), denom);
value = mm256_add_ps(value, tmp);

numer = mm256_mul_ ps(numer, mm256 mul ps(origx, origx));
denom = mm256 _mul ps(denom, mm256 setlps((2*j+2) * (2*j+3)));
sign *= -1;

}

_mm256_store ps(&result[i], value);

CMU 15-418/618,
Spring 2021

Vector program (using AVX intrinsics)

#include <immintrin.h>

void sinx(int N, int terms, float* x, float* result)

__m256 tmp = _mm256_div_ps(_mm256_mul_ps(_mm256_setlps(sign), numer), denom);

{
float three fact = 6; // 3!
for (int i=0; i<N; 1i+=8)
{
__m256 origx = _mm256_load ps(&x[i]);
__m256 value = origx;
__m256 numer = _mm256_mul_ps(origx, _mm256 _mul ps(origx, origx));
__m256 denom = _mm256_setlps(three_fact);
float sign = -1;
for (int j=1; j<=terms; j++)
{
// value += sign * numer / denom
value = mm256_add_ps(value, tmp);
numer = _mm256_mul_ps(numer, _mm256 _mul ps(origx, origx));
denom = mm256_mul _ps(denom, _mm256_setlps((2*j+2) * (2*j+3)));
sign *= -1;
}
_mm256_store_ps(&result[i], value);
}
}

vloadps xmm@, addr[rl]
vmulps Xmml, Xmmo@, Xmmo
vmulps Xxmml, xmml, Xmmo

vstoreps addr[xmm2], xmm@

Compiled program:

Processes eight array elements
simultaneously using vector
instructions on 256-bit vector
registers

256 =8 * 32

CMU 15-418/618,
Spring 2021

What about conditional execution?

Time (clocks)

1 2

3

ALU1 ALU2 ...

. ALU 8

(assume logic below is to be executed for
each element in input array ‘A’, producing
output into the array ‘result’)

<unconditional code>
float x = A[i];
if (x > 0) {
float tmp = exp(x,5.f);
tmp *= kMyConstl;

X = tmp + kMyConst2;
} else {

float tmp = kMyConstl;

X = 2.f * tmp;
}

<resume unconditional code>»

result[i] = Xx;

CMU 15-418/618,
Spring 2021

What about conditional execution?

Time (clocks)

1 |

2 |

|

|

|

|

|

8 I (assume logic below is to be executed for

ALU1 ALU2 ...

each element in input array ‘A’, producing

ALU 8 output into the array ‘result’)

<unconditional code>
float x = A[i];
if (x > 0) {
float tmp = exp(x,5.f);
tmp *= kMyConstl;

X = tmp + kMyConst2;
} else {

float tmp = kMyConstl;

X = 2.f * tmp;
}

<resume unconditional code>»

result[i] = Xx;

CMU 15-418/618,
Spring 2021

Mask (discard) output of ALU

‘]_ | ‘ 2 | ‘ | ‘ | ‘ | ‘ | ‘ | ‘ 8 | (assume logic below is to be executed for
—_ — each element in input array ‘A’, producing

ALU1 ALU2 ALUS

Time (clocks)

output into the array ‘result’)

<unconditional code>
float x = A[i];

if (x > 0) {

}

<resume unconditional code>»

Not all ALUs do useful work!

result|[i] = x;

Worst case: 1/8 peak performance

CMU 15-418/618,
Spring 2021

After branch: continue at full performance

‘ 1 I ‘ 2 I ‘ I ‘ I ‘ I ‘ I ‘ I ‘ 8 I (assume logic below is to be executed for
— — each element in input array ‘A’, producing

ALU1 ALU2 ALUS

Time (clocks)

output into the array ‘result’)

<unconditional code>
float x = A[i];

if (x > 0) {

}

<resume unconditional code>»

result[i] = x;

CMU 15-418/618,
Spring 2021

Terminology

Instruction stream coherence (“coherent execution”)

- Same instruction sequence applies to all elements operated upon
simultaneously

- Coherent execution is necessary for efficient use of SIMD
processing resources

- Coherent execution IS NOT necessary for efficient parallelization
across cores, since each core has the capability to fetch/decode a
different instruction stream

“Divergent” execution
- A lack of instruction stream coherence

Warning: don’t confuse instruction stream
coherence with “cache coherence” (a major topic
later in the course)

CMU 15-418/618,
Spring 2021

SIMD execution on modern CPUs

= SSE instructions: 128-bit operations: 4x32 bits or 2x64 bits (4-wide float vectors)
= AVX instructions: 256-bit operations: 8x32 bits or 4x64 bits (8-wide float vectors)
= AVX512 instructions: 512-bit ops: 16x32 bits or 8x64 bits (16-wide float vectors)

" Instructions are generated by the compiler
- Parallelism explicitly requested by programmer using intrinsics
- Parallelism conveyed using parallel language semantics (e.g., forall example)

- Parallelism inferred by dependency analysis of loops (hard problem, even best
compilers are not great on arbitrary C/C++ code)

* Terminology: “explicit SIMD”: SIMD parallelization is performed at compile time

- Can inspect program binary and see instructions (vstoreps, vmulps, etc.)

CMU 15-418/618,
Spring 2021

SIMD execution on many modern GPUs

= “Implicit SIMD”

Compiler generates a scalar binary (scalar instructions)

But N instances of the program are always run together on the
processor

execute(my function, N) // execute my_ function N times

In other words, the interface to the hardware itself is data-parallel

Hardware (not compiler) is responsible for simultaneously
executing the same instruction from multiple instances on
different data on SIMD ALUs

= SIMD width of most modern GPUs ranges from 8 to 32

Divergence can be a big issue: poorly written code might execute
at 1/32 the peak capability of the machine!

CMU 15-418/618,
Spring 2021

SIMD + Multi-core

Q000
Q000

!

00
00
00
00

0000
0000

00
00
00
00

Q000
Q000

00
00
00
00

Q000
Q000

!
000
000

00

16 cores, 128 ALUs, 16 simultaneous instruction streams ,,.;..:5/6:5

Spring 2021

Q0000
0000

!

00
00
00
00

0000
0000

00
00
00
00

Q0000
Q000

00
00
00
00

Q0000
0000

!
0000
0000

Q0000
0000

!

00
00
00
00

0000
0000

00
00
00
00

Q0000
Q000

00
00
00
00

Q0000
0000

!
0000
0000

Q0000
0000

!

00
00
00
00

0000
0000

00
00
00
00

Q0000
Q000

00
00
00
00

Q0000
0000

!
0000
0000

el el R R

ceell il 1

el el RN R

eell il 1

Example: Intel Core i7

ALU O

ALU1

ALU 2

ALU 3

ALU 4

ALUS5

ALU 6

ALU 7

ALU O

ALU 1

ALU 2

ALU 3

ALU 4

ALU 5

ALU 6

ALU 7

4+ cores
Out-of-order
Speculation
Wide superscalar
One thread per core
8 SIMD ALUs per core
AVX instructions
32-bit floats

| I
| I

ALUO

ALU 1

ALU 2

ALU 3

ALU 4

ALU S5

ALU 6

ALU 7

i

ALU O

ALU 1

ALU 2

ALU 3

ALU 4

ALU 5

ALU 6

ALU 7

i

On campus:

GHC machines:
8 cores
8 SIMD ALUs per core

Latedays cluster:
12 cores
8 SIMD ALUs per code

CMU 15-418/618,
Spring 2021

NVIDIA GTX RTX 2080 (in the Gates 5 lab)

Example

16 TFLOPS

46 cores (“streaming multiprocessors”)

10 SIMD ALUs per core

Special hardware for ray tracing

- Special hardware for neural nets

In-order, narrow superscalar

Many threads per core

CMU 15-418/618, Spring 2021

Data-parallel expression

(in our fictitious data-parallel language)

void sinx(int N, int terms, float* x, float* result)

{

// declare independent loop iterations
forall (int i from 0 to N-1)
{
float value = x[i];
float numer = x[1i] * x[i] * x[i];
int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{

value += sign * numer / denom
numer *= x[i] * x[1i];
denom *= (2*j+2) * (2*j+3);

sign *= -1;

result[i] = value;

Compiler understands loop
iterations are independent, and
that same loop body will be
executed on a large number of
data elements.

Goal: Abstraction facilitates
automatic generation of both
multi-core parallel code, and
vector instructions to make use
of SIMD processing capabilities
within a core.

CMU 15-418/618,
Spring 2021

Summary: parallel execution

Several forms of parallel execution in modern processors

" Multi-core: use multiple processing cores

- Provides thread-level parallelism: simultaneously execute a completely different
instruction stream on each core

- Software decides when to create threads (e.g., via pthreads API)
= SIMD: use multiple ALUs controlled by same instruction stream (within a core)
- Efficient design for data-parallel workloads: control amortized over many ALUs
- Vectorization can be done by compiler (explicit SIMD) or at runtime by hardware

- [Lack of] dependencies is known prior to execution (usually declared by
programmer, but can be inferred by loop analysis by advanced compiler)

= Superscalar: exploit instruction-level parallelism (ILP) within an instruction stream.
Process different instructions from the same stream in parallel (within a core)

- Parallelism automatically and dynamically discovered by the hardware during
execution (not programmer visible)

CMU 15-418/618,
Spring 2021

Aside: Simultaneous Multi-Threading
(Hyperthreading)

Data cache
(a big one)

0]e]0,
Execution Unit

====

Single core does the work of multiple cores
Fetch/decode independent instruction streams from different threads
Map onto shared out-of-order execution unit
Make fuller use of execution unit when ILP is low
Reduce impact of stalls / mispredictions
(Relatively) small cost to add to an out-of-order superscalar core

CMU 15-418/618,
Spring 2021

Another View of SMT

Instruction Buffer

P

Fetch Decode

~ I
S——— Execute Execute Execute
Fetch Decode
i
\]\)\ J
| | |
In-order Out-of-order In-order

Replicate in-order resources

Share out-of-order resources
Does not improve (or penalize) single-thread performance
May get improved multi-threaded performance

CMU 15-418/618,
Spring 2021

Part 2: accessing memory

CMU 15-418/618,
Spring 2021

Terminology

" Memory latency

- The amount of time for a memory request (e.g., load,

store) from a processor to be serviced by the memory
system

- Example: 100 cycles, 100 nsec

" Memory bandwidth

- The rate at which the memory system can provide data to
a processor

- Example: 20 GB/s

CMU 15-418/618,
Spring 2021

Stalls

= A processor “stalls” when it cannot run the next
instruction in an instruction stream because of a
dependency on a previous instruction.

= Accessing memory is a major source of stalls

1d r@ mem[r2]
1d rl mem[r3] i| Dependency: cannot execute ‘add’ instruction until data at
add ro, ro, ri mem|r2] and mem|r3] have been loaded from memory

= Memory access times ~ 100’s of cycles
- Memory “access time” is a measure of latency

CMU 15-418/618,
Spring 2021

Review: why do modern processors have caches?

Core 1l

Core N

L1 cache
(32 KB)

L2 cache
(256 KB)

L1 cache
(32 KB)

L2 cache
(256 KB)

L3 cache
(8 MB)

25 GB/sec

<)

Memory
DDR3 DRAM

(Gigabytes)

CMU 15-418/618,
Spring 2021

Caches reduce length of stalls (reduce latency)

Processors run efficiently when data is resident in caches
Caches reduce memory access latency & increase bandwidth

L1 cache
(32 KB)

Core 1l

L2 cache
(256 KB)

L1 cache
(32 KB)

Core N

L2 cache
(256 KB)

L3 cache
(8 MB)

25 GB/sec

<)

Memory
DDR3 DRAM

(Gigabytes)

CMU 15-418/618,
Spring 2021

Prefetching reduces stalls (hides latency)

= All modern CPUs have logic for prefetching data into caches

- Dynamically analyze program’s access patterns, predict what it will access soon

- Microarchitectural optimization (i.e., invisible to software)

- Software prefetching instructions also exist (not used very often)

= Reduces stalls since data is resident in cache when accessed

predict value of r2, initiate load

predict value of r3, initiate load

data arrives in cache

data arrives in cache

1d re mem[r2]

1d rl mem[r3]] These loads are cache hits
add roe, ro, ri

Note: Prefetching can also reduce
performance if the guess is wrong
(hogs bandwidth, pollutes caches)

CMU 15-418/618,
Spring 2021

Prefetching in Action

iMac Core 2 Duo (2008 Penryn?)

GHC32: Xeon E5-1660v4 (2016 Broadwell)

Three levels of cache

BW falls off
. .
Stride (x8 bytes) 7 sg 32m “am g Size (bytes) Stride (x8 bytes) 7 sg 32m "‘.3;“ o Size (bytes)
" Two levels of cache Prefetching
" No prefetching Stride=1 performance high as
= Big drop-off in performance for long as fit into L3 cache
stride=1 as fall out of L1 cache
|

CMU 15-418/618, Spring 2021

Multi-threading reduces stalls

" |dea: interleave processing of multiple threads on
the same core to hide stalls

" Helps even with in-order processing of instructions

= Like prefetching, multi-threading is a latency
hiding, not a latency reducing technique

= We will consider several forms of multi-threading

CMU 15-418/618,
Spring 2021

Hiding stalls with Multi-Threading

Thread 1

. Elements 0...7
Time

—_

1 Core (1 thread)

ALU 0| ALU 1|

ALU 2|

ALU 3|

ALU 4| ALU 5|

ALU 6|

ALU 7|

CMU 15-418/618,

Spring 2021

Hiding stalls with Multi-Threading

Thread 1 Thread 2 Thread 3 Thread 4
Elements 0...7 Elements 8 ... 15 Elements 16 ... 23 Elements 24 ... 31
cJodJJoJoJdouguainy I | O | | | cJuJoJdoJdoJdoaaoiny cJoJoJdoudJdouaiouJgy

Ilmll Q/J QJ @}
1 Core (4 hardware threads)

Time

CMU 15-418/618,
Spring 2021

Hiding stalls with Multi-Threading

Thread 1 Thread 2 Thread 3 Thread 4
] Elements0...7 Elements 8 ... 15 Elements 16 ... 23 Elements 24 ... 31
Tlmeluuuuuuul OOoO0OOOCOO OOOoOoOoOoO0OO0 OOoOooooOod
!!Ilﬂﬂll Q/} QJ @J
- - 1 Core (4 hardware threads)
Stall
Runnable

CMU 15-418/618,
Spring 2021

Hiding stalls with Multi-Threading

Thread 1

) Elements0...7
Time

Thread 2
Elements 8 ... 15

Thread 3
Elements 16 ... 23

Runnable

2

Done!

vy

Stall

f/f

Runnable

3

Done!

i

Stall
A\/\\[\

Runnable

Thread 4

Elements 24 ... 31

4

1 Core (4 hardware threads)

i

Stall

dAh

Runnable

ALU 0

ALU 1

ALU 2

ALU 3

ALU 4

ALU 5

ALU 6

ALU 7

gl i
i

9
-

CMU 15-418/618,

Spring 2021

Throughput computing trade-off

Thread 1 Thread 2 Thread 3 Thread 4
Elements 0 ... 7 Elements 8 ... 15 Elements 16 ... 23 Elements 24 ... 31
'Me S ooooooo oooooooo cooooooo oooooooo
~.i Key idea of throughput-oriented systems:

Cstall It is OK to increase time to complete work in any one
any one thread, in order to increase overall system
throughput when running multiple threads.

Runnable : N : : .Y
During this time, this thread is runnable, but it is not
being executed by the processor. (The core is running
some other thread.)

Done!

CMU 15-418/618,
Spring 2021

Hardware-supported multi-threading

= Core manages execution contexts for multiple threads

- Runs instructions from runnable threads (processor makes decision
about which thread to run each clock, not the operating system)

- Core still has the same number of ALU resources: multi-threading
only helps use them more efficiently in the face of high-latency
operations like memory access

" Interleaved multi-threading (a.k.a. temporal multi-
threading)

- As described on the previous slides: each clock, the core chooses a
thread, and runs an instruction from the thread on the ALUs

* Simultaneous multi-threading (SMT)

- Extension of out-of-order CPU design
- Example: Intel Hyper-threading (2 threads per core)

CMU 15-418/618,
Spring 2021

Multi-threading summary

" Benefit: Use core’s execution resources more
efficiently

- Hide memory latency
- Fill multiple functional units of superscalar architecture (when
one thread has insufficient ILP)

= Costs

- Requires additional storage for thread contexts

- Increases run time of any single thread (often not a problem, we
usually care about throughput in parallel apps)

- Requires additional independent work in a program (more
independent work than ALUs!)

- Relies heavily on memory bandwidth
- More threads - larger working set - less cache space per

thread

- May go to memory more often, but can hide the latency

CMU 15-418/618,
Spring 2021

Our fictitious multi-core chip

16 cores X
8 SIMD ALUs per core
=128 total ALUs

X 4 threads / core

=» > 512 independent
operations needed to
run chip at peak
efficiency

in 64 total concurrent
instruction streams

with 16 running
simultaneously

CMU 15-418/618,
Spring 2021

GPUs: Extreme throughput-oriented
processors

NVIDIA GTX 480 core

Fetch/
Decode

= SIMD function unit,

Execution contexts
(128 KB)

“Shared” memory
(16+48 KB)

Source: Fermi Compute Architecture Whitepaper
CUDA Programming Guide 3.1, Appendix G

control shared across 16 units
(1 MUL-ADD per clock)

Instructions operate on 32 pieces
of data at a time (called
“warps”).

Think: warp = thread issuing 32-
wide vector instructions

Up to 48 warps are
simultaneously interleaved

48 x 32 = 1536 elements can be
processed concurrently by a core

CMU 15-418/618,
Spring 2021

NVIDIA GTX 480: more detail (just for the

curious)
NVIDIA GTX 480 core
Fetch/ = SIMD function unit,
Decode control shared across 16 units

(1 MUL-ADD per clock)

e Why is a warp 32 elements and
there are only 16 SIMD ALUs?

Execution contexts

(128 KB) e [t’s a bit complicated: ALUs run

at twice the clock rate of rest of
chip. So each decoded
instruction runs on 32 pieces of

“Shared” memory

(16+48 KB)
data on the 16 ALUs over two
Source: Fermi Compute Architecture Whitepaper ALU clocks. (bUt to the
CUDA Programming Guide 3.1, Appendix G programmer, it behaves |Ike 3

32-wide SIMD operation)

CMU 15-418/618,
Spring 2021

NVIDIA GTX 480: more detail (just for the

= SIMD function unit,

curious)
NVIDIA GTX 480 core
Fetch/
Decode
Fetch/
Decode

Execution contexts
(128 KB)

“Shared” memory
(16+48 KB)

Source: Fermi Compute Architecture Whitepaper
CUDA Programming Guide 3.1, Appendix G

control shared across 16 units
(1 MUL-ADD per clock)

This process occurs on another
set of 16 ALUs as well

So there are 32 ALUs per core

15 cores x 32 =480 ALUs per
chip

CMU 15-418/618,
Spring 2021

NVIDIA GTX 480

]

]|

(o] [m]
[

]|]
]]
]]

o]]
]]]
o] o]]
]]]
o]]]
]]]
o] o]]
o]]

Recall, there are 15 cores on the

That’s 48 x 32 x 15 = 23,040 pieces

of data being processed

concurrently!

]]
]]
]]

(][]
(][]
(][]

]|]
][]

o]]

] o] o
]]]
]] o
]]]
]]]
]]]

]|]

][

08| GTX 480:

]]
]]
]]

(][]
(][]
(][]

]]
]]
]]

]]]
o]]
o] o]]
]]
0 o]]
]]]
o]]]
]]]

]]
]]
]]

]
])
]]

(o] [m]
[m1][m]
(3] [m]

]]
Og

]]]

]] o [0
]]]
]] o
]]]
]]]
]]]

]]
Og

CMU 15-418/618,
Spring 2021

CPU vs. GPU memory hierarchies

L1 cache
(32 KB)
Core 25 GB/sec Memory
1) ¢
(256 KB)
(Gigabytes)
L3 cache
L1 cache (8 MB)
21 CPU:
C‘I’\Ire Big caches, few threads, modest memory BW
g;;f(*; Rely mainly on caches and prefetching
GFX
I N A O | texture
o) o o | o | cache
oooooooo 12X
Core Execution Scratchpad 177 GB/sec Memory
1 contexts L1 cache DDR5 DRAM
(128 KB) (64 k8)
L2 cache (~*1 GB)
— (768 KB)
I N A t::::Le
o s GPU:
Core : Small caches, many threads, huge memory BW
N Execution Scratchpad))]
contexts L1 cache Rely mainly on multi-threading
(128 KB) (64 KB) CMU 15-418/618,

Spring 2021

Thought experiment

Element-wise multiplication of two vectors A and B

Assume vectors contain millions of elements
- Load input A[i]
- Load input BJi]
- Compute A[i] x BJi]
- Store result into C[i]

0 (1l P |IX P>

Three memory operations (12 bytes) for every MUL
NVIDIA GTX 480 GPU can do 480 MULs per clock (@ 1.2 GHz)
Need ~6.4 TB/sec of bandwidth to keep functional units busy (only have 177 GB/sec)

~ 3% efficiency... but 7x faster than quad-core CPU!

(2.6 GHz Core i7 Gen 4 quad-core CPU connected to 25 GB/sec memory bus
will exhibit similar efficiency on this computation)

CMU 15-418/618,
Spring 2021

Bandwidth limited!

If processors request data at too high a rate, the
memory system cannot keep up.

No amount of latency hiding helps this.

Overcoming bandwidth limits are a common
challenge for application developers on throughput-
optimized systems.

CMU 15-418/618,
Spring 2021

Bandwidth is a critical resource

Performant parallel programs will:

Organize computation to fetch data from memory less often
- Reuse data previously loaded by the same thread

(traditional intra-thread temporal locality optimizations)
- Share data across threads (inter-thread cooperation)

Request data less often (instead, do more arithmetic: it’s
llfree")

- Useful term: “arithmetic intensity” — ratio of math
operations to data-access operations in an instruction
stream

- Main point: programs must have high arithmetic intensity
to utilize modern processors efficiently

CMU 15-418/618,
Spring 2021

Summary

" Three major ideas that all modern processors employ to varying
degrees

- Employ multiple, simpler processing cores
- Embrace thread-level parallelism over instruction-level parallelism

- Amortize instruction fetch & decode over many ALUs (SIMD)
- Increase compute capability with little extra cost

- Use multi-threading to make more efficient use of processing
resources

- Hide latencies, fill all available resources

" Due to high arithmetic capability on modern chips, many parallel
applications (on both CPUs and GPUs) are bandwidth-bound

" GPU architectures use these same throughput-computing ideas as
CPUs, but GPUs push these concepts to extreme scales

CMU 15-418/618,
Spring 2021

For the rest of this class, know these terms

" Multi-core processor
= SIMD execution
" Coherent control flow
* Hardware multi-threading
- Interleaved multi-threading
- Simultaneous multi-threading
" Memory latency
" Memory bandwidth
= Bandwidth bound application
" Arithmetic intensity

CMU 15-418/618,
Spring 2021

Another example:
for review and to check your understanding

(if you understand the following sequence you understand this lecture)

CMU 15-418/618,
Spring 2021

Running code on a simple processor

My very simple program:
compute sm(x% using Taylor expansion

void sinx(int N, int terms, float* x, float* result)

{ :
My very simple processor:
for (int 1=0; i<N; i++) y y] P'€ P]
¢ completes one instruction per clock
float value = x[1i];
float numer = x[1i] * x[1i] * x[1i];
int denom = 6; // 3! Fetch/
int sign = -1; Decode
for (int j=1; j<=terms; j++) ALU
((Execute)
value += sign * numer / denom; :
numer *= x[i] * x[i]; Execution
, , Context
denom *= (2*j+2) * (2*j+3);
sign *= -1;
}
result[i] = value;
}
}

CMU 15-418/618,
Spring 2021

Review: superscalar execution

void sinx(int N, int terms, float* x, float* result)

{

for (int i=0; i<N; i++)

{

Unmodified program

My single core, superscalar processor:

executes up to two instructions per clock

float value = x[i];
float numer = x[i] * x[i] * x[i];
int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{

} Independent operations in
instruction stream

(They are detected by the
processor at run-time and may
be executed in parallel on
execution units 1 and 2)

result[i] = value;

from a single instruction stream.

Exec

Exec

CMU 15-418/618,
Spring 2021

Review: multi-core execution (two cores)

Modify program to create two threads
of control (two instruction streams)

typedef struct {
int N;
int terms;
float* x;
float* result;

} my_args;

void parallel _sinx(int N, int terms, float* x, float* result)
{
pthread_t thread _id;

my_args args;

args.N = N/2;
args.terms = terms;
args.x = X;

args.result = result;

pthread create(&thread_id, NULL, my thread_start, &args); // launch thread
sinx(N - args.N, terms, x + args.N, result + args.N); // do work
pthread_join(thread_id, NULL);

void my_thread_start(void* thread_arg)

{
my_args* thread_args = (my_args*)thread_arg;

sinx(args->N, args->terms, args->x, args->result); // do work

My dual-core processor:

executes one instruction per clock

from an instruction stream on each core.

ALU
(Execute)

ALU

(Execute)

CMU 15-418/618,
Spring 2021

Review: multi-core + superscalar execution

Modify program to create two threads
of control (two instruction streams)

typedef struct {
int N;
int terms;
float* x;
float* result;

} my_args;

void parallel _sinx(int N, int terms, float* x, float* result)
{
pthread_t thread _id;

my_args args;

args.N = N/2;
args.terms = terms;
args.x = X;

args.result = result;

pthread create(&thread_id, NULL, my thread_start, &args); // launch thread
sinx(N - args.N, terms, x + args.N, result + args.N); // do work
pthread_join(thread_id, NULL);

void my_thread_start(void* thread_arg)

{
my_args* thread_args = (my_args*)thread_arg;

sinx(args->N, args->terms, args->x, args->result); // do work

My superscalar dual-core processor:

executes up to two instructions per clock

from an instruction stream on each core.

Exec

Exec

Exec

Exec

CMU 15-418/618,
Spring 2021

Review: multi-core (four cores)

Modify program to create many threads of
control: recall our fictitious language

My quad-core processor:
void sinx(int N, int terms, float* x, float* result) YO P

{ executes one instruction per clock
// declare independent loop iterations from an instruction stream on each core.
forall (int i from 0 to N-1)
{

float value = x[i];

float numer = x[i] * x[i] * x[i];

ALU ALU
int denom = 6; // 3! (Execute) (Execute)

int sign = -1;

for (int j=1; j<=terms; j++)

{

value += sign * numer / denom

numer *= x[i] * x[i];
denom *= (2*j+2) * (2*j+3);

sign *= -1; ALU ALY
(Execute) (Execute)

result[i] = value;

CMU 15-418/618,
Spring 2021

Review: four, 8-wide SIMD cores

Observation: program must execute many iterations of the same loop body.

Optimization: share instruction stream across execution of multiple iterations
(single instruction multiple data = SIMD)

void sinx(int N, int terms, float* x, float* result)

{

My SIMD quad-core processor:

executes one 8-wide SIMD instruction per

// declare independent loop iterations clock from an instruction stream on each core.

forall (int i from 0 to N-1)
{

float value = x[i];

float numer = x[i] * x[i] * x[i];
int denom = 6; // 3!

{

value += sign * numer / denom

numer *= x[i] * x[i];

denom *= (2*j+2) * (2*j+3);

sign *= -1;

result[i] = value;

T 5 5
for (int j=1; j<=terms; j++)

CMU 15-418/618,
Spring 2021

Review: four SIMD, multi-threaded cores

Observation: memory operations have very long latency

Solution: hide latency of loading data for one iteration by
executing arithmetic instructions from other iterations

void sinx(int N, int terms, float* x, float* result)

{

// declare independent loop iterations
forall (int i from 0 to N-1)

{
float value @

float numer = x[1] * x[i] * x[i];
int denom = 6; // 3!

int sign = -1;

Memory
load

for (int j=1; j<=terms; j++)

{
value += sign * numer / denom
numer *= x[i] * x[i];
denom *= (2*j+2) * (2*j+3);

sign *= -1;

Memory
store

My multi-threaded, SIMD quad-core processor:
executes one SIMD instruction per clock from one
instruction stream on each core. But can switch to

processing the other instruction stream when faced
with a stall.

I |- B |-

==

==

B |- | -

sl e

CMU 15-418/618,
Spring 2021

Summary: four superscalar, SIMD, multi-threaded cores

My multi-threaded, superscalar, SIMD quad-core processor:

Executes up to two instructions per clock from one instruction stream on each core (in this
example: one SIMD instruction + one scalar instruction).

Processor can switch to execute the other instruction stream when faced with stall.

SIMD Exec 2 SIMD Exec 2

Exec1 Exec1

== ==
feAffe=A feAffe=A

SIMD Exec 2 SIMD Exec 2

Exec1 Exec1

== ==

CMU 15-418/618,
Spring 2021

Connecting it all together

Our simple quad-core processor:

Four cores, two-way multi-threading per core (max eight threads active on chip at once), up to
two instructions per clock per core (one of those instructions is 8-wide SIMD)

Fetch/ Fetch/ Fetch/ Fetch/ Fetch/ Fetch/ Fetch/ Fetch/
Decode | | Decode Decode | | Decode Decode | | Decode Decode | | Decode
SIMD Exec 2 SIMD Exec 2 SIMD Exec 2 SIMD Exec 2
Exec1l Exec1l Exec1 Exec1
Execution Execution Execution Execution Execution Execution Execution Execution
Context Context Context Context Context Context Context Context
L1 Cache L1 Cache L1 Cache L1 Cache
L2 Cache L2 Cache L2 Cache L2 Cache
: interconnect
Memory :
L3 Cache Controller

Memory Bus
(to DRAM)

CMU 15-418/618,
Spring 2021

Thought experiment

You write a C application that spawns two pthreads

The application runs on the processor shown below

- Two cores, two-execution contexts per core, up to instructions per
clock, one instruction is an 8-wide SIMD instruction.

Question: “who” is responsible for mapping your pthreads
to the processor’s thread execution contexts?

Answer: the operating system

Question: If you were the OS, how would to assign the two

threads to the four available executlon contexts?

Another question: How would
you assign threads to execution
contexts if your C program
spawned five pthreads?

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec1

Exec1

Execution
Context

Execution
Context

Execution
Context

Execution
Context

CMU 15- 418/618
Spring 2021

