
Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2021

Lecture 3:

A Modern Multi-Core
Processor

(Forms of parallelism + understanding
latency and bandwidth)

CMU 15-418/618,
Spring 2021

Quick review

1. Why has single-instruction-stream performance only
improved very slowly in recent years? *

2. What prevented us from obtaining maximum speedup
from the parallel programs we performed in the first
lecture?

* Self check 1: What do I mean by “single-instruction stream”?
Self check 2: When we talked about the optimization of superscalar execution, were we talking about

optimizing the

performance of executing a single-instruction stream?

CMU 15-418/618,
Spring 2021

Today

▪ Today we will talk computer architecture

▪ Four key concepts about how modern computers
work
- Two concern parallel execution

- Two concern challenges of accessing memory

▪ Understanding these architecture basics will help
you
- Understand and optimize the performance of your parallel

programs

- Gain intuition about what workloads might benefit from fast
parallel machines

CMU 15-418/618,
Spring 2021

Part 1: Parallel Execution

CMU 15-418/618,
Spring 2021

Example program

void sinx(int N, int terms, float* x, float* result)

{

for (int i=0; i<N; i++)

{

float value = x[i];

float numer = x[i] * x[i] * x[i];

int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{

value += sign * numer / denom;

numer *= x[i] * x[i];

denom *= (2*j+2) * (2*j+3);

sign *= -1;

}

result[i] = value;

}

}

Compute sin(x) using Taylor expansion: sin(x) = x - x3/3! + x5/5! - x7/7! +
...

for each element of an array of N floating-point numbers

CMU 15-418/618,
Spring 2021

Compile program

void sinx(int N, int terms, float* x, float* result)

{

for (int i=0; i<N; i++)

{

float value = x[i];

float numer = x[i] * x[i] * x[i];

int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{

value += sign * numer / denom;

numer *= x[i] * x[i];

denom *= (2*j+2) * (2*j+3);

sign *= -1;

}

result[i] = value;

}

}

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

x[i]

result[i]

CMU 15-418/618,
Spring 2021

Execute program (on an idealized
machine)

x[i]

Fetch/
Decode

Execution
Context

ALU
(Execute)

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

result[i]

CMU 15-418/618,
Spring 2021

Execute program

x[i]

Fetch/
Decode

Execution
Context

ALU
(Execute)

PC

My very simple processor: executes one instruction per clock

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

result[i]

CMU 15-418/618,
Spring 2021

Execute program

x[i]

Fetch/
Decode

Execution
Context

ALU
(Execute)

PC

My very simple processor: executes one instruction per clock

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

result[i]

CMU 15-418/618,
Spring 2021

Execute program

x[i]

Fetch/
Decode

Execution
Context

ALU
(Execute)

PC

My very simple processor: executes one instruction per clock

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

result[i]

CMU 15-418/618,
Spring 2021

Superscalar (in-order) processor

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

x[i]

Fetch/
Decode

1

Execution
Context

Exec
1

Recall from last class: instruction level parallelism (ILP)
Decode and execute two instructions per clock (if possible)

Fetch/
Decode

2

Exec
2

Note: No ILP exists in this region of the program

result[i]

CMU 15-418/618,
Spring 2021

Aside: Pentium 4

Image credit: http://ixbtlabs.com/articles/pentium4/index.html

CMU 15-418/618,
Spring 2021

Processor: pre multi-core era

Fetch/
Decode

Execution
Context

OoO
Execution Unit

Data cache
(a big one)

Out-of-order control logic

Fancy branch predictor

Memory pre-fetcher

Majority of chip transistors used to perform operations that help a single
instruction stream run fast

More transistors = larger cache, smarter out-of-order logic, smarter branch
predictor, etc.

(Also: more transistors → smaller transistors → higher clock frequencies)

CMU 15-418/618,
Spring 2021

Processor: multi-core era

Fetch/
Decode

Execution
Context

ALU
(Execute)

Idea #1:

Use increasing transistor count to add more
cores to the processor

Rather than use transistors to increase
sophistication of processor logic that
accelerates a single instruction stream
(e.g., out-of-order and speculative
operations)

CMU 15-418/618,
Spring 2021

Two cores: compute two elements in
parallel

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

Simpler cores: each core is slower at running a single instruction stream than our
original “fancy” core (e.g., 25% slower)

But there are now two cores: 2 × 0.75 = 1.5 (potential for speedup!)

result[j]

x[j]

result[i]

x[i]

CMU 15-418/618,
Spring 2021

But our program expresses no parallelism!

void sinx(int N, int terms, float* x, float* result)

{

for (int i=0; i<N; i++)

{

float value = x[i];

float numer = x[i] * x[i] * x[i];

int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{

value += sign * numer / denom;

numer *= x[i] * x[i];

denom *= (2*j+2) * (2*j+3);

sign *= -1;

}

result[i] = value;

}

}

This program, compiled with gcc
will run as one thread on one of
the processor cores.

If each of the simpler processor
cores was 25% slower than the
original single complicated one,
our program now runs 25%
slower. :-(

CMU 15-418/618,
Spring 2021

Expressing parallelism using pthreads
void sinx(int N, int terms, float* x, float* result)

{

for (int i=0; i<N; i++)

{

float value = x[i];

float numer = x[i] * x[i] * x[i];

int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{

value += sign * numer / denom

numer *= x[i] * x[i];

denom *= (2*j+2) * (2*j+3);

sign *= -1;

}

result[i] = value;

}

}

typedef struct {

int N;

int terms;

float* x;

float* result;

} my_args;

void parallel_sinx(int N, int terms, float* x, float* result)

{

pthread_t thread_id;

my_args args;

args.N = N/2;

args.terms = terms;

args.x = x;

args.result = result;

pthread_create(&thread_id, NULL, my_thread_start, &args); // launch thread

sinx(N - args.N, terms, x + args.N, result + args.N); // do work

pthread_join(thread_id, NULL);

}

void my_thread_start(void* thread_arg)

{

my_args* thread_args = (my_args*)thread_arg;

sinx(args->N, args->terms, args->x, args->result); // do work

}

Child thread does first half of range
Main thread does second half

CMU 15-418/618,
Spring 2021

Data-parallel expression

void sinx(int N, int terms, float* x, float* result)

{

// declare independent loop iterations

forall (int i from 0 to N-1)

{

float value = x[i];

float numer = x[i] * x[i] * x[i];

int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{

value += sign * numer / denom;

numer *= x[i] * x[i];

denom *= (2*j+2) * (2*j+3);

sign *= -1;

}

result[i] = value;

}

}

Loop iterations declared by the
programmer to be independent

With this information, you could
imagine how a compiler might
automatically generate parallel
threaded code

(in our fictitious data-parallel language)

CMU 15-418/618,
Spring 2021

Four cores: compute four elements in parallel

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

CMU 15-418/618,
Spring 2021

Sixteen cores: compute sixteen elements in parallel

Sixteen cores, sixteen simultaneous instruction
streams

CMU 15-418/618,
Spring 2021

Core 1

Multi-core examples

Intel “Skylake” Core i7 quad-core CPU
(2015)

NVIDIA GTX 980 GPU
16 replicated processing cores (“SM”)

(2014)

Core 4

Shared L3 cache

Core 2

Core 3

Each core is sophisticated, out-of-
order processor to maximize ILP

Each core processors vectors of
data

CMU 15-418/618,
Spring 2021

More multi-core examples

Intel Xeon Phi “Knights Landing “ 76-core CPU
(2015)

Apple A9 dual-core CPU
(2015)

A9 image credit: Chipworks (obtained via Anandtech)
http://www.anandtech.com/show/9686/the-apple-iphone-6s-and-iphone-6s-plus-review/3

Core 1

Core 2

CMU 15-418/618,
Spring 2021

Data-parallel expression

void sinx(int N, int terms, float* x, float* result)

{

// declare independent loop iterations

forall (int i from 0 to N-1)

{

float value = x[i];

float numer = x[i] * x[i] * x[i];

int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{

value += sign * numer / denom;

numer *= x[i] * x[i];

denom *= (2*j+2) * (2*j+3);

sign *= -1;

}

result[i] = value;

}

}

Another interesting property of
this code:

Parallelism is across iterations of
the loop.

All the iterations of the main loop
do the same thing: compute the
sine of a single input number

The inner loop is executed the
same number of times every time

There are no conditionals

(in our fictitious data-parallel language)

CMU 15-418/618,
Spring 2021

Add ALUs to increase compute capability

Idea #2:
Amortize cost/complexity of managing an
instruction stream across many ALUs

SIMD processing
Single instruction, multiple data

Same instruction broadcast to all ALUs
Executed in parallel on all ALUs

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

Execution Context

CMU 15-418/618,
Spring 2021

Add ALUs to increase compute capability

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

Recall original compiled program:

Instruction stream processes one array
element at a time using scalar
instructions on scalar registers (e.g., 32-
bit floats)

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

Execution Context

CMU 15-418/618,
Spring 2021

Scalar program

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

void sinx(int N, int terms, float* x, float* result)

{

for (int i=0; i<N; i++)

{

float value = x[i];

float numer = x[i] * x[i] * x[i];

int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{

value += sign * numer / denom;

numer *= x[i] * x[i];

denom *= (2*j+2) * (2*j+3);

sign *= -1;

}

result[i] = value;

}

}

Original compiled program:

Processes one array element using scalar
instructions on scalar registers (e.g., 32-
bit floats)

CMU 15-418/618,
Spring 2021

Vector program (using AVX intrinsics)
#include <immintrin.h>

void sinx(int N, int terms, float* x, float* result)

{

float three_fact = 6; // 3!

for (int i=0; i<N; i+=8)

{

__m256 origx = _mm256_load_ps(&x[i]);

__m256 value = origx;

__m256 numer = _mm256_mul_ps(origx, _mm256_mul_ps(origx, origx));

__m256 denom = _mm256_set1ps(three_fact);

float sign = -1;

for (int j=1; j<=terms; j++)

{

// value += sign * numer / denom

__m256 tmp = _mm256_div_ps(_mm256_mul_ps(_mm256_set1ps(sign), numer), denom);

value = _mm256_add_ps(value, tmp);

numer = _mm256_mul_ps(numer, _mm256_mul_ps(origx, origx));

denom = _mm256_mul_ps(denom, _mm256_set1ps((2*j+2) * (2*j+3)));

sign *= -1;

}

_mm256_store_ps(&result[i], value);

}

}

Intrinsics available to C
programmers

CMU 15-418/618,
Spring 2021

Vector program (using AVX intrinsics)

vloadps xmm0, addr[r1]

vmulps xmm1, xmm0, xmm0

vmulps xmm1, xmm1, xmm0

...

...

...

...

...

...

vstoreps addr[xmm2], xmm0

Compiled program:

Processes eight array elements
simultaneously using vector
instructions on 256-bit vector
registers

256 = 8 * 32

#include <immintrin.h>

void sinx(int N, int terms, float* x, float* result)

{

float three_fact = 6; // 3!

for (int i=0; i<N; i+=8)

{

__m256 origx = _mm256_load_ps(&x[i]);

__m256 value = origx;

__m256 numer = _mm256_mul_ps(origx, _mm256_mul_ps(origx, origx));

__m256 denom = _mm256_set1ps(three_fact);

float sign = -1;

for (int j=1; j<=terms; j++)

{

// value += sign * numer / denom

__m256 tmp = _mm256_div_ps(_mm256_mul_ps(_mm256_set1ps(sign), numer), denom);

value = _mm256_add_ps(value, tmp);

numer = _mm256_mul_ps(numer, _mm256_mul_ps(origx, origx));

denom = _mm256_mul_ps(denom, _mm256_set1ps((2*j+2) * (2*j+3)));

sign *= -1;

}

_mm256_store_ps(&result[i], value);

}

}

CMU 15-418/618,
Spring 2021

What about conditional execution?

ALU 1 ALU 2 . . . ALU 8. . .
Time (clocks)

2 . . . 1 . . . 8

if (x > 0) {

} else {

}

<unconditional code>

<resume unconditional code>

float tmp = exp(x,5.f);

tmp *= kMyConst1;

x = tmp + kMyConst2;

float tmp = kMyConst1;

x = 2.f * tmp;

float x = A[i];

result[i] = x;

(assume logic below is to be executed for
each element in input array ‘A’, producing
output into the array ‘result’)

CMU 15-418/618,
Spring 2021

What about conditional execution?

ALU 1 ALU 2 . . . ALU 8. . .
Time (clocks)

2 . . . 1 . . . 8

if (x > 0) {

} else {

}

<unconditional code>

<resume unconditional code>

float tmp = exp(x,5.f);

tmp *= kMyConst1;

x = tmp + kMyConst2;

float tmp = kMyConst1;

x = 2.f * tmp;

T T T F FF F F

float x = A[i];

result[i] = x;

(assume logic below is to be executed for
each element in input array ‘A’, producing
output into the array ‘result’)

CMU 15-418/618,
Spring 2021

Mask (discard) output of ALU

ALU 1 ALU 2 . . . ALU 8. . .
Time (clocks)

2 . . . 1 . . . 8

if (x > 0) {

} else {

}

<unconditional code>

<resume unconditional code>

T T T F FF F F

Not all ALUs do useful work!

Worst case: 1/8 peak performance

float tmp = exp(x,5.f);

tmp *= kMyConst1;

x = tmp + kMyConst2;

float tmp = kMyConst1;

x = 2.f * tmp;

float x = A[i];

result[i] = x;

(assume logic below is to be executed for
each element in input array ‘A’, producing
output into the array ‘result’)

CMU 15-418/618,
Spring 2021

After branch: continue at full performance

ALU 1 ALU 2 . . . ALU 8. . .
Time (clocks)

2 . . . 1 . . . 8

if (x > 0) {

} else {

}

<unconditional code>

<resume unconditional code>

T T T F FF F F
float tmp = exp(x,5.f);

tmp *= kMyConst1;

x = tmp + kMyConst2;

float tmp = kMyConst1;

x = 2.f * tmp;

float x = A[i];

result[i] = x;

(assume logic below is to be executed for
each element in input array ‘A’, producing
output into the array ‘result’)

CMU 15-418/618,
Spring 2021

Terminology

▪ Instruction stream coherence (“coherent execution”)
- Same instruction sequence applies to all elements operated upon

simultaneously

- Coherent execution is necessary for efficient use of SIMD
processing resources

- Coherent execution IS NOT necessary for efficient parallelization
across cores, since each core has the capability to fetch/decode a
different instruction stream

▪ “Divergent” execution
- A lack of instruction stream coherence

▪ Warning: don’t confuse instruction stream
coherence with “cache coherence” (a major topic
later in the course)

CMU 15-418/618,
Spring 2021

SIMD execution on modern CPUs
▪ SSE instructions: 128-bit operations: 4x32 bits or 2x64 bits (4-wide float vectors)

▪ AVX instructions: 256-bit operations: 8x32 bits or 4x64 bits (8-wide float vectors)

▪ AVX512 instructions: 512-bit ops: 16x32 bits or 8x64 bits (16-wide float vectors)

▪ Instructions are generated by the compiler

- Parallelism explicitly requested by programmer using intrinsics

- Parallelism conveyed using parallel language semantics (e.g., forall example)

- Parallelism inferred by dependency analysis of loops (hard problem, even best
compilers are not great on arbitrary C/C++ code)

▪ Terminology: “explicit SIMD”: SIMD parallelization is performed at compile time

- Can inspect program binary and see instructions (vstoreps, vmulps, etc.)

CMU 15-418/618,
Spring 2021

SIMD execution on many modern GPUs

▪ “Implicit SIMD”

- Compiler generates a scalar binary (scalar instructions)

- But N instances of the program are always run together on the
processor

execute(my_function, N) // execute my_function N times

- In other words, the interface to the hardware itself is data-parallel

- Hardware (not compiler) is responsible for simultaneously
executing the same instruction from multiple instances on
different data on SIMD ALUs

▪ SIMD width of most modern GPUs ranges from 8 to 32
- Divergence can be a big issue: poorly written code might execute

at 1/32 the peak capability of the machine!

CMU 15-418/618,
Spring 2021

SIMD + Multi-core

16 cores, 128 ALUs, 16 simultaneous instruction streams

CMU 15-418/618,
Spring 2021

Example: Intel Core i7
4+ cores

Out-of-order
Speculation
Wide superscalar
One thread per core

8 SIMD ALUs per core
AVX instructions
32-bit floats

On campus:
GHC machines:

8 cores
8 SIMD ALUs per core

Latedays cluster:
12 cores
8 SIMD ALUs per code

CMU 15-418/618, Spring 2021

Example: NVIDIA GTX RTX 2080

- 46 cores (“streaming multiprocessors”)
- 10 SIMD ALUs per core
- In-order, narrow superscalar
- Many threads per core

(in the Gates 5 lab)

- 16 TFLOPS
- Special hardware for ray tracing
- Special hardware for neural nets

CMU 15-418/618,
Spring 2021

Data-parallel expression

void sinx(int N, int terms, float* x, float* result)

{

// declare independent loop iterations

forall (int i from 0 to N-1)

{

float value = x[i];

float numer = x[i] * x[i] * x[i];

int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{

value += sign * numer / denom

numer *= x[i] * x[i];

denom *= (2*j+2) * (2*j+3);

sign *= -1;

}

result[i] = value;

}

}

Compiler understands loop
iterations are independent, and
that same loop body will be
executed on a large number of
data elements.

Goal: Abstraction facilitates
automatic generation of both
multi-core parallel code, and
vector instructions to make use
of SIMD processing capabilities
within a core.

(in our fictitious data-parallel language)

CMU 15-418/618,
Spring 2021

Summary: parallel execution
Several forms of parallel execution in modern processors
▪ Multi-core: use multiple processing cores

- Provides thread-level parallelism: simultaneously execute a completely different
instruction stream on each core

- Software decides when to create threads (e.g., via pthreads API)

▪ SIMD: use multiple ALUs controlled by same instruction stream (within a core)

- Efficient design for data-parallel workloads: control amortized over many ALUs

- Vectorization can be done by compiler (explicit SIMD) or at runtime by hardware

- [Lack of] dependencies is known prior to execution (usually declared by
programmer, but can be inferred by loop analysis by advanced compiler)

▪ Superscalar: exploit instruction-level parallelism (ILP) within an instruction stream.
Process different instructions from the same stream in parallel (within a core)

- Parallelism automatically and dynamically discovered by the hardware during
execution (not programmer visible)

CMU 15-418/618,
Spring 2021

Aside: Simultaneous Multi-Threading
(Hyperthreading)

Fetch/
Decode

Execution
Context

OoO
Execution Unit

Data cache
(a big one)

Out-of-order control logic

Fancy branch predictor

Memory pre-fetcher

Single core does the work of multiple cores

Fetch/decode independent instruction streams from different threads

Map onto shared out-of-order execution unit

Make fuller use of execution unit when ILP is low

Reduce impact of stalls / mispredictions

(Relatively) small cost to add to an out-of-order superscalar core

Execution
Context

Fetch/
Decode

CMU 15-418/618,
Spring 2021

Another View of SMT

Replicate in-order resources

Share out-of-order resources

Does not improve (or penalize) single-thread performance

May get improved multi-threaded performance

CPU

Fetch Decode

Execute

Commit

Execute Execute

Instruction Buffer

In-order In-orderOut-of-order

Fetch Decode Commit

CMU 15-418/618,
Spring 2021

Part 2: accessing memory

CMU 15-418/618,
Spring 2021

Terminology

▪ Memory latency

- The amount of time for a memory request (e.g., load,
store) from a processor to be serviced by the memory
system

- Example: 100 cycles, 100 nsec

▪ Memory bandwidth

- The rate at which the memory system can provide data to
a processor

- Example: 20 GB/s

CMU 15-418/618,
Spring 2021

Stalls

▪ A processor “stalls” when it cannot run the next
instruction in an instruction stream because of a
dependency on a previous instruction.

▪ Accessing memory is a major source of stalls
ld r0 mem[r2]

ld r1 mem[r3]

add r0, r0, r1

▪ Memory access times ~ 100’s of cycles

- Memory “access time” is a measure of latency

Dependency: cannot execute ‘add’ instruction until data at
mem[r2] and mem[r3] have been loaded from memory

CMU 15-418/618,
Spring 2021

25 GB/sec

L3 cache
(8 MB)

L1 cache
(32 KB)

L2 cache
(256 KB)

L1 cache
(32 KB)

L2 cache
(256 KB)

...

Memory
DDR3 DRAM

(Gigabytes)

Core 1

Core N

Review: why do modern processors have caches?

CMU 15-418/618,
Spring 2021

Caches reduce length of stalls (reduce latency)

Processors run efficiently when data is resident in caches
Caches reduce memory access latency & increase bandwidth

25 GB/sec

L3 cache
(8 MB)

L1 cache
(32 KB)

L2 cache
(256 KB)

L1 cache
(32 KB)

L2 cache
(256 KB)

...

Memory
DDR3 DRAM

(Gigabytes)

Core 1

Core N

CMU 15-418/618,
Spring 2021

Prefetching reduces stalls (hides latency)

▪ All modern CPUs have logic for prefetching data into caches
- Dynamically analyze program’s access patterns, predict what it will access soon

- Microarchitectural optimization (i.e., invisible to software)

- Software prefetching instructions also exist (not used very often)

▪ Reduces stalls since data is resident in cache when accessed

predict value of r2, initiate load

predict value of r3, initiate load

...

...

...

...

...

...

ld r0 mem[r2]

ld r1 mem[r3]

add r0, r0, r1

data arrives in cache

data arrives in cache

Note: Prefetching can also reduce
performance if the guess is wrong
(hogs bandwidth, pollutes caches)

These loads are cache hits

CMU 15-418/618, Spring 2021

Prefetching in Action

▪ Two levels of cache

▪ No prefetching

▪ Big drop-off in performance for
stride=1 as fall out of L1 cache

▪ Three levels of cache

▪ Prefetching

▪ Stride=1 performance high as
long as fit into L3 cache

BW falls off

CMU 15-418/618,
Spring 2021

Multi-threading reduces stalls

▪ Idea: interleave processing of multiple threads on
the same core to hide stalls

▪ Helps even with in-order processing of instructions

▪ Like prefetching, multi-threading is a latency
hiding, not a latency reducing technique

▪ We will consider several forms of multi-threading

CMU 15-418/618,
Spring 2021

Hiding stalls with Multi-Threading

Time

Thread 1
Elements 0 … 7

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 Core (1 thread)

Exec Ctx

CMU 15-418/618,
Spring 2021

Hiding stalls with Multi-Threading

Time

Thread 2
Elements 8 … 15

Thread 3
Elements 16 … 23

Thread 4
Elements 24 … 31

1 2 3 4

Thread 1
Elements 0 … 7

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 2

3 4

1 Core (4 hardware threads)

CMU 15-418/618,
Spring 2021

Hiding stalls with Multi-Threading

Time

1 2 3 4

Stall

Runnable

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 2

3 4

1 Core (4 hardware threads)

Thread 2
Elements 8 … 15

Thread 3
Elements 16 … 23

Thread 4
Elements 24 … 31

Thread 1
Elements 0 … 7

CMU 15-418/618,
Spring 2021

Hiding stalls with Multi-Threading

Time

1 2 3 4

Stall

Runnable

Stall

Runnable

Done!

Stall

Runnable

Stall

Runnable

Done!

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 2

3 4

1 Core (4 hardware threads)

Thread 2
Elements 8 … 15

Thread 3
Elements 16 … 23

Thread 4
Elements 24 … 31

Thread 1
Elements 0 … 7

CMU 15-418/618,
Spring 2021

Throughput computing trade-off

Time

Stall

Runnable

Done!

Key idea of throughput-oriented systems:
It is OK to increase time to complete work in any one
any one thread, in order to increase overall system
throughput when running multiple threads.

During this time, this thread is runnable, but it is not
being executed by the processor. (The core is running
some other thread.)

Thread 2
Elements 8 … 15

Thread 3
Elements 16 … 23

Thread 4
Elements 24 … 31

Thread 1
Elements 0 … 7

CMU 15-418/618,
Spring 2021

Hardware-supported multi-threading

▪ Core manages execution contexts for multiple threads
- Runs instructions from runnable threads (processor makes decision

about which thread to run each clock, not the operating system)

- Core still has the same number of ALU resources: multi-threading
only helps use them more efficiently in the face of high-latency
operations like memory access

▪ Interleaved multi-threading (a.k.a. temporal multi-
threading)
- As described on the previous slides: each clock, the core chooses a

thread, and runs an instruction from the thread on the ALUs

▪ Simultaneous multi-threading (SMT)
- Extension of out-of-order CPU design

- Example: Intel Hyper-threading (2 threads per core)

CMU 15-418/618,
Spring 2021

Multi-threading summary
▪ Benefit: Use core’s execution resources more

efficiently
- Hide memory latency
- Fill multiple functional units of superscalar architecture (when

one thread has insufficient ILP)

▪ Costs
- Requires additional storage for thread contexts
- Increases run time of any single thread (often not a problem, we

usually care about throughput in parallel apps)
- Requires additional independent work in a program (more

independent work than ALUs!)
- Relies heavily on memory bandwidth

- More threads → larger working set → less cache space per
thread

- May go to memory more often, but can hide the latency

CMU 15-418/618,
Spring 2021

Our fictitious multi-core chip
16 cores ×
8 SIMD ALUs per core
= 128 total ALUs

× 4 threads / core
➔ ≥ 512 independent
operations needed to
run chip at peak
efficiency

in 64 total concurrent
instruction streams

with 16 running
simultaneously

CMU 15-418/618,
Spring 2021

= SIMD function unit,
control shared across 16 units

(1 MUL-ADD per clock)

“Shared” memory
(16+48 KB)

Execution contexts
(128 KB)

Fetch/
Decode

• Instructions operate on 32 pieces
of data at a time (called
“warps”).

• Think: warp = thread issuing 32-
wide vector instructions

• Up to 48 warps are
simultaneously interleaved

• 48 x 32 = 1536 elements can be
processed concurrently by a core

Source: Fermi Compute Architecture Whitepaper
CUDA Programming Guide 3.1, Appendix G

NVIDIA GTX 480 core

GPUs: Extreme throughput-oriented
processors

CMU 15-418/618,
Spring 2021

= SIMD function unit,
control shared across 16 units

(1 MUL-ADD per clock)

“Shared” memory
(16+48 KB)

Execution contexts
(128 KB)

Fetch/
Decode

• Why is a warp 32 elements and
there are only 16 SIMD ALUs?

• It’s a bit complicated: ALUs run
at twice the clock rate of rest of
chip. So each decoded
instruction runs on 32 pieces of
data on the 16 ALUs over two
ALU clocks. (but to the
programmer, it behaves like a
32-wide SIMD operation)

Source: Fermi Compute Architecture Whitepaper
CUDA Programming Guide 3.1, Appendix G

NVIDIA GTX 480 core

NVIDIA GTX 480: more detail (just for the
curious)

CMU 15-418/618,
Spring 2021

= SIMD function unit,
control shared across 16 units

(1 MUL-ADD per clock)

“Shared” memory
(16+48 KB)

Execution contexts
(128 KB)

Fetch/
Decode

• This process occurs on another
set of 16 ALUs as well

• So there are 32 ALUs per core

• 15 cores × 32 = 480 ALUs per
chip

Source: Fermi Compute Architecture Whitepaper
CUDA Programming Guide 3.1, Appendix G

NVIDIA GTX 480 core

NVIDIA GTX 480: more detail (just for the
curious)

Fetch/
Decode

CMU 15-418/618,
Spring 2021

NVIDIA GTX 480

Recall, there are 15 cores on the
GTX 480:

That’s 48 x 32 x 15 = 23,040 pieces
of data being processed
concurrently!

CMU 15-418/618,
Spring 2021

CPU vs. GPU memory hierarchies

25 GB/sec

L3 cache
(8 MB)

L1 cache
(32 KB)

L2 cache
(256 KB)

...

Memory
DDR3 DRAM

(Gigabytes)

Core
1

Core
N

L1 cache
(32 KB)

L2 cache
(256 KB)

CPU:
Big caches, few threads, modest memory BW
Rely mainly on caches and prefetching

GPU:
Small caches, many threads, huge memory BW
Rely mainly on multi-threading

Execution
contexts
(128 KB)

GFX
texture
cache

(12 KB)

Scratchpad

L1 cache
(64 KB)

...

Execution
contexts
(128 KB)

GFX
texture
cache

(12 KB)

Scratchpad

L1 cache
(64 KB)

Core
1

Core
N

L2 cache
(768 KB)

177 GB/sec Memory
DDR5 DRAM

(~1 GB)

CMU 15-418/618,
Spring 2021

Thought experiment
Element-wise multiplication of two vectors A and B

Assume vectors contain millions of elements

- Load input A[i]
- Load input B[i]
- Compute A[i] × B[i]
- Store result into C[i]

=

A

B

C

×

~ 3% efficiency… but 7x faster than quad-core CPU!
(2.6 GHz Core i7 Gen 4 quad-core CPU connected to 25 GB/sec memory bus
will exhibit similar efficiency on this computation)

Three memory operations (12 bytes) for every MUL

NVIDIA GTX 480 GPU can do 480 MULs per clock (@ 1.2 GHz)

Need ~6.4 TB/sec of bandwidth to keep functional units busy (only have 177 GB/sec)

CMU 15-418/618,
Spring 2021

Bandwidth limited!
If processors request data at too high a rate, the

memory system cannot keep up.

No amount of latency hiding helps this.

Overcoming bandwidth limits are a common
challenge for application developers on throughput-

optimized systems.

CMU 15-418/618,
Spring 2021

Bandwidth is a critical resource

Performant parallel programs will:

▪ Organize computation to fetch data from memory less often
- Reuse data previously loaded by the same thread

(traditional intra-thread temporal locality optimizations)
- Share data across threads (inter-thread cooperation)

▪ Request data less often (instead, do more arithmetic: it’s
“free”)

- Useful term: “arithmetic intensity” — ratio of math
operations to data-access operations in an instruction
stream

- Main point: programs must have high arithmetic intensity
to utilize modern processors efficiently

CMU 15-418/618,
Spring 2021

Summary
▪ Three major ideas that all modern processors employ to varying

degrees
- Employ multiple, simpler processing cores

- Embrace thread-level parallelism over instruction-level parallelism

- Amortize instruction fetch & decode over many ALUs (SIMD)
- Increase compute capability with little extra cost

- Use multi-threading to make more efficient use of processing
resources

- Hide latencies, fill all available resources

▪ Due to high arithmetic capability on modern chips, many parallel
applications (on both CPUs and GPUs) are bandwidth-bound

▪ GPU architectures use these same throughput-computing ideas as
CPUs, but GPUs push these concepts to extreme scales

CMU 15-418/618,
Spring 2021

For the rest of this class, know these terms

▪ Multi-core processor

▪ SIMD execution

▪ Coherent control flow

▪ Hardware multi-threading

- Interleaved multi-threading

- Simultaneous multi-threading

▪ Memory latency

▪ Memory bandwidth

▪ Bandwidth bound application

▪ Arithmetic intensity

CMU 15-418/618,
Spring 2021

Another example:
for review and to check your understanding

(if you understand the following sequence you understand this lecture)

CMU 15-418/618,
Spring 2021

Running code on a simple processor

void sinx(int N, int terms, float* x, float* result)

{

for (int i=0; i<N; i++)

{

float value = x[i];

float numer = x[i] * x[i] * x[i];

int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{

value += sign * numer / denom;

numer *= x[i] * x[i];

denom *= (2*j+2) * (2*j+3);

sign *= -1;

}

result[i] = value;

}

}

My very simple program:
compute sin(x) using Taylor expansion

Fetch/
Decode

Execution
Context

ALU
(Execute)

My very simple processor:

completes one instruction per clock

CMU 15-418/618,
Spring 2021

Review: superscalar execution

void sinx(int N, int terms, float* x, float* result)

{

for (int i=0; i<N; i++)

{

float value = x[i];

float numer = x[i] * x[i] * x[i];

int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{

value += sign * numer / denom;

numer *= x[i] * x[i];

denom *= (2*j+2) * (2*j+3);

sign *= -1;

}

result[i] = value;

}

}

Unmodified program

Execution
Context

My single core, superscalar processor:

executes up to two instructions per clock

from a single instruction stream.

Fetch/
Decode

Exec
1

Fetch/
Decode

Exec
2

Independent operations in
instruction stream

(They are detected by the
processor at run-time and may

be executed in parallel on
execution units 1 and 2)

CMU 15-418/618,
Spring 2021

Review: multi-core execution (two cores)
Modify program to create two threads

of control (two instruction streams)

My dual-core processor:

executes one instruction per clock

from an instruction stream on each core.

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

typedef struct {

int N;

int terms;

float* x;

float* result;

} my_args;

void parallel_sinx(int N, int terms, float* x, float* result)

{

pthread_t thread_id;

my_args args;

args.N = N/2;

args.terms = terms;

args.x = x;

args.result = result;

pthread_create(&thread_id, NULL, my_thread_start, &args); // launch thread

sinx(N - args.N, terms, x + args.N, result + args.N); // do work

pthread_join(thread_id, NULL);

}

void my_thread_start(void* thread_arg)

{

my_args* thread_args = (my_args*)thread_arg;

sinx(args->N, args->terms, args->x, args->result); // do work

}

CMU 15-418/618,
Spring 2021

Review: multi-core + superscalar execution
Modify program to create two threads

of control (two instruction streams)

My superscalar dual-core processor:

executes up to two instructions per clock

from an instruction stream on each core.

Execution
Context

typedef struct {

int N;

int terms;

float* x;

float* result;

} my_args;

void parallel_sinx(int N, int terms, float* x, float* result)

{

pthread_t thread_id;

my_args args;

args.N = N/2;

args.terms = terms;

args.x = x;

args.result = result;

pthread_create(&thread_id, NULL, my_thread_start, &args); // launch thread

sinx(N - args.N, terms, x + args.N, result + args.N); // do work

pthread_join(thread_id, NULL);

}

void my_thread_start(void* thread_arg)

{

my_args* thread_args = (my_args*)thread_arg;

sinx(args->N, args->terms, args->x, args->result); // do work

}

Fetch/
Decode

Exec
1

Fetch/
Decode

Exec
2

Execution
Context

Fetch/
Decode

Exec
1

Fetch/
Decode

Exec
2

CMU 15-418/618,
Spring 2021

Review: multi-core (four cores)
Modify program to create many threads of

control: recall our fictitious language
My quad-core processor:

executes one instruction per clock

from an instruction stream on each core.

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

void sinx(int N, int terms, float* x, float* result)

{

// declare independent loop iterations

forall (int i from 0 to N-1)

{

float value = x[i];

float numer = x[i] * x[i] * x[i];

int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{

value += sign * numer / denom

numer *= x[i] * x[i];

denom *= (2*j+2) * (2*j+3);

sign *= -1;

}

result[i] = value;

}

}

CMU 15-418/618,
Spring 2021

Review: four, 8-wide SIMD cores
Observation: program must execute many iterations of the same loop body.

Optimization: share instruction stream across execution of multiple iterations
(single instruction multiple data = SIMD)

My SIMD quad-core processor:

executes one 8-wide SIMD instruction per
clock from an instruction stream on each core.

Fetch/
Decode

Execution
Context

void sinx(int N, int terms, float* x, float* result)

{

// declare independent loop iterations

forall (int i from 0 to N-1)

{

float value = x[i];

float numer = x[i] * x[i] * x[i];

int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{

value += sign * numer / denom

numer *= x[i] * x[i];

denom *= (2*j+2) * (2*j+3);

sign *= -1;

}

result[i] = value;

}

}

Fetch/
Decode

Execution
Context

Fetch/
Decode

Execution
Context

Fetch/
Decode

Execution
Context

CMU 15-418/618,
Spring 2021

Review: four SIMD, multi-threaded cores
Observation: memory operations have very long latency

Solution: hide latency of loading data for one iteration by
executing arithmetic instructions from other iterations

void sinx(int N, int terms, float* x, float* result)

{

// declare independent loop iterations

forall (int i from 0 to N-1)

{

float value = x[i];

float numer = x[i] * x[i] * x[i];

int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{

value += sign * numer / denom

numer *= x[i] * x[i];

denom *= (2*j+2) * (2*j+3);

sign *= -1;

}

result[i] = value;

}

}

Fetch/
DecodeMemory

load

Memory
store

Execution
Context

Execution
Context

Fetch/
Decode

Execution
Context

Execution
Context

Fetch/
Decode

Execution
Context

Execution
Context

Fetch/
Decode

Execution
Context

Execution
Context

My multi-threaded, SIMD quad-core processor:
executes one SIMD instruction per clock from one
instruction stream on each core. But can switch to
processing the other instruction stream when faced

with a stall.

CMU 15-418/618,
Spring 2021

Summary: four superscalar, SIMD, multi-threaded cores

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

My multi-threaded, superscalar, SIMD quad-core processor:

Executes up to two instructions per clock from one instruction stream on each core (in this
example: one SIMD instruction + one scalar instruction).

Processor can switch to execute the other instruction stream when faced with stall.

CMU 15-418/618,
Spring 2021

Connecting it all together
Our simple quad-core processor:

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

L1 Cache

L2 Cache

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

L1 Cache

L2 Cache

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

L1 Cache

L2 Cache

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

L1 Cache

L2 Cache

L3 Cache
Memory

Controller

Memory Bus
(to DRAM)

On-chip
interconnect

Four cores, two-way multi-threading per core (max eight threads active on chip at once), up to
two instructions per clock per core (one of those instructions is 8-wide SIMD)

CMU 15-418/618,
Spring 2021

Thought experiment
▪ You write a C application that spawns two pthreads

▪ The application runs on the processor shown below

- Two cores, two-execution contexts per core, up to instructions per
clock, one instruction is an 8-wide SIMD instruction.

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

▪ Question: “who” is responsible for mapping your pthreads
to the processor’s thread execution contexts?
Answer: the operating system

▪ Question: If you were the OS, how would to assign the two
threads to the four available execution contexts?

▪ Another question: How would
you assign threads to execution
contexts if your C program
spawned five pthreads?

