
15-418/618, Spring 2019
Assignment 2

A Simple CUDA Renderer

Assigned: Wed., Jan. 30
Due: Fri., Feb. 15, 11:59 pm
Last day to handin: Mon., Feb. 18

Random 10K Random 100K Pattern Snow

Overview

In this assignment you will write a parallel renderer in CUDA that draws colored circles. While this renderer
is very simple, parallelizing the renderer will require you to design and implement data structures that can
be efficiently constructed and manipulated in parallel. This is a challenging assignment so you are advised
to start early. Don’t be lulled into thinking that the first two parts are indicative of the time you will require
to complete the third part. Seriously, you are advised to start early. Good luck!

Before you begin, please take the time to review the course policy on academic integrity at:

http://www.cs.cmu.edu/˜418/academicintegrity.html

Environment Setup

You should use the GHC machines containing NVIDIA GeForce GTX 1080 GPUs. These have host names
ghcX.ghc.andrew.cmu.edu, for X between 26 and 46. The Wikipedia entry for GeForce 10 GPUs
provides useful information about this model of GPU. They support CUDA compute capability 6.1.
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Using the GHC machines:

1. If you are using the ssh command to reach the machine, include the option “-Y” in your command
line to enable the use of X windows.

2. The NVIDIA CUDA C/C++ Compiler (NVCC) is located at /usr/local/depot/cuda-8.0/bin/,
which you need to add to your PATH. To do this, add the line below to the file below, according
to which shell you use. (You can determine which shell you are using with the command “echo
$SHELL.”)

Shell File Add
bash ˜/.bashrc export PATH=/usr/local/depot/cuda-8.0/bin:${PATH}
csh ˜/.cshrc setenv PATH /usr/local/depot/cuda-8.0/bin:${PATH}

3. The CUDA shared library is located at /usr/local/depot/cuda-8.0/lib64/. It must be
loaded at runtime. Add the line below to your RC file (˜/.bashrc or ˜/.cshrc) according to
which shell you use.

export LD_LIBRARY_PATH=/usr/local/depot/cuda-8.0/lib64/:${LD_LIBRARY_PATH}
setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:/usr/local/depot/cuda-8.0/lib64/

4. Make sure you source (or reload) your RC file. If using bash, run “source ˜/.bashrc.” If using
csh, run “source ˜/.cshrc.”

5. Download the Assignment 2 starter code from the course Github using:

git clone https://github.com/cmu15418/asst2-s19.git

Resources

For any C++ questions (like what does the virtual keyword mean), the C++ Super-FAQ is a great resource
that explains things in a way that’s detailed yet easy to understand (unlike a lot of C++ resources), and was
co-written by Bjarne Stroustrup, the creator of C++!

The CUDA C programmer’s guide is available in PDF or HTML. It is an excellent reference for learning
how to program in CUDA.

You can also find a large number of examples in the CUDA SDK /usr/local/depot/cuda-8.0/samples.
In addition, there are a wealth of CUDA tutorials and SDK examples on the web (just Google!) and on the
NVIDIA developer site.

1 CUDA Warm-Up 1: SAXPY (5 pts)

To gain a bit of practice writing CUDA programs your warm-up task is to implement the SAXPY function.
This is a function commonly found in matrix math libraries. For input arrays x and y, output array dest,
and value a (all single-precision floating-point values), the function computes dest[i] = a*x[i] +
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y[i] for all array elements i. (The name “SAXPY” stands for “single-precision a times x plus y.”) Starter
code for this part of the assignment is located in the saxpy directory.

Finish off the implementation of SAXPY in the function saxpyCuda() in saxpy.cu. You will need to
allocate device global memory arrays and insert calls to move data between the host and device memories.
These issues are covered in Section 3.2.2 of the Programmer’s Guide.

As part of your implementation, add timers around the CUDA kernel invocation in saxpyCuda(). After
your additions, your program should time two executions:

• The provided starter code contains timers that measure the entire process of copying data to the GPU,
running the kernel, and copying data back to the CPU.

• Your timers should measure only the time taken to run the kernel. (They should not include the time
of CPU to GPU data transfer or transfer of results back to the CPU.)

When adding your timing code, be careful: The CUDA kernel’s execution on the GPU is asynchronous
with the main application thread running on the CPU. You should place a call to cudaThreadSynchronize()
following the kernel call to wait for completion of all CUDA work on the GPU. This call returns only when
all prior CUDA work on the GPU has completed. (Without waiting for the GPU to complete, your CPU
timers will report that essentially no time elapsed!) Note that in your measurements that include the time to
transfer data back to the CPU, a call to cudaThreadSynchronize() is not necessary before the final
timer (after your call to cudaMemcpy() that returns data to the CPU) because cudaMemcpy() will not
return to the calling thread until after the copy is complete.

Question: Compare and explain the difference between the results provided by two sets of timers (the timer
you added and the timer that was already in the provided starter code). Are the bandwidth values observed
roughly consistent with the reported bandwidths available to the different components of the machine?
Hint: You should use the web to track down the memory bandwidth of an NVIDIA GTX 1080 GPU, and
the maximum transfer speed of the computer’s PCIe-x16 bus. It’s PCIe 3.0, and a 16 lane bus connecting
the CPU with the GPU.

2 CUDA Warm-Up 2: Parallel Prefix-Sum (10 pts)

Now that you’re familiar with the basic structure and layout of CUDA programs, as a second exercise you are
asked to devise a parallel implementation of the function find_peaks() which, given a list of integers A,
returns a list of all indices i for which A[i] is greater than the preceeding or following value. The indices
start at 0. Neither the first nor the last element is a peak.

For example, given the array [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7], your program should output the array [2, 5, 7, 12].

All code for this part of the assignment is in the directory scan.

Exclusive Prefix Sum

We want you to implement find_peaks() by first implementing the parallel exclusive prefix-sum op-
eration. This operation is covered in 15-210, where it is referred to by its more general form: the “scan”
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void exclusive_scan_recursive(int* start, int* end, int* output, int* scratch)
{

int N = end - start;

if (N == 0) return;
else if (N == 1)
{

output[0] = 0;
return;

}

// sum pairs in parallel.
for (int i = 0; i < N/2; i++)

output[i] = start[2*i] + start[2*i+1];

// prefix sum on the compacted array.
exclusive_scan_recursive(output, output + N/2, scratch, scratch + (N/2));

// finally, update the odd values in parallel.
for (int i = 0; i < N; i++)
{

output[i] = scratch[i/2];
if (i % 2)

output[i] += start[i-1];
}

}

Figure 1: Recursive implementation of exclusive prefix sum

operation.

Exclusive prefix sum takes an array A and produces a new array output that has, at each index i, the
sum of all elements up to but not including A[i]. For example, given the array [1, 4, 6, 8, 2], the output of
exclusive prefix sum [0, 1, 5, 11, 19].

A recursive implementation should be familiar to you from 15-210. As a review (or for those that did not
take 15-210), the code in Figure 1 is a C implementation of a work-efficient, parallel version of scan. Details
on prefix-sum (and its more general relative, scan) can be found in Chapter 6 of the 15-210 lecture notes.

While the recursive code expresses our intent well and recursion is supported on modern GPUs, its use can
lead to fairly low performance due to function call and stack frame overhead. Instead we can express the
algorithm in an iterative manner. The “C-like” code in Figure 2 is an iterative version of scan. It operates
“in place,” meaning that the input data should be copied into the array data before the function is called,
and the output will be generated in the same array. The code uses parallel_for to indicate potentially
parallel loops. To understand this code, you may find the visualization in Figure 3 for the case of N = 16
helpful.

You are welcome to use this general algorithm to implement a version of parallel prefix sum in CUDA. You
must implement the exclusive_scan() function in scan.cu. Your implementation will consist of
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void exclusive_scan_iterative(int* data, int* end)
{

int N = end - data;
// upsweep phase.
for (int twod = 1; twod < N; twod*=2)
{

int twod1 = twod*2;
parallel_for (int i = 0; i < N; i += twod1)

data[i+twod1-1] += data[i+twod-1];
}
data[N-1] = 0;

// downsweep phase.

for (int twod = N/2; twod >= 1; twod /= 2)
{

int twod1 = twod*2;
parallel_for (int i = 0; i < N; i += twod1)
{

int t = data[i+twod-1];
data[i+twod-1] = data[i+twod1-1];
// change twod1 below to twod to reverse prefix sum.
data[i+twod1-1] += t;

}
}

}

Figure 2: Iterative, in-place implementation of exclusive prefix sum
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Figure 3: Visualization of exclusive prefix sum for 16 elements

both host and device code. The implementation will require multiple kernel launches.

Note: The scan implementation of Figure 2 assumes that the data array’s length (N) is a power of 2. In the
cudaScan() function in scan.cu (which calls your implementation of exclusive_scan()), we
solve this problem by rounding the array length to the next power of 2 when allocating the corresponding
buffers on the GPU. However, we only copy back N elements from the GPU buffer back to the CPU buffer.
This fact should simplify your CUDA implementation.

Implementing Find Peaks Using Prefix Sum

Once you have written exclusive_scan(), you should implement the function find_peaks() in
scan.cu. This will involve writing more device code, in addition to one or more calls to exclusive_scan().
Your code should write the list of indices for the peak values into the provided output array (in device mem-
ory), and then return the size of the output list.

When using your exclusive_scan() implementation, remember that it operates in place. Also, the
array passed to exclusive_scan() is assumed to be in device memory.

Grading: We will test your code for correctness and performance on random input arrays.

For reference, a scan score table is provided below, showing the performance of a simple CUDA imple-
mentation on a Gates machine with a GTX 1080. To check the correctness and performance score of your
scan() and find_peaks() implementations, run the commands:
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./checker.pl -m scan

./checker.pl -m find_peaks

Doing so will produce a reference table like the following:

-------------------------
Scan Score Table:
-------------------------
-------------------------------------------------------------------------
| Element Count | Target Time | Your Time | Score |
-------------------------------------------------------------------------
| 10000 | 0.238 | 0.006 (F) | 0 |
| 100000 | 0.330 | 0.037 (F) | 0 |
| 1000000 | 1.066 | 0.089 (F) | 0 |
| 2000000 | 1.633 | 0.095 (F) | 0 |
-------------------------------------------------------------------------
| | Total score: | 0/5 |
-------------------------------------------------------------------------

Your score will be based solely on the performance of your code. In order to get full credit, it must perform
within 20% of the provided target code.

Test Harness: For grading purposes, the test harness runs on a pseudo-randomly generated array that
differs each time it is run. For debugging purposes, you may prefer a more stable environment. Passing the
option “-i test1” to either checker.pl or cudaScan will use a fixed, randomly generated input.
We encourage you to come up with alternate inputs to your program to help you evaluate it.

The argument “-t” to either checker.pl or your compiled program will use the Thrust Library imple-
mentation of exclusive scan. We will award up to two points of extra credit for anyone who can create an
implementation that is competitive with Thrust.

3 A Simple Circle Renderer (85 pts)

Now for the real show!

The directory render of the assignment starter code contains an implementation of a renderer that draws
colored circles. Build the code, and run the renderer with the command line “./render rgb.” You will
see an image of three circles appear on screen (‘q’ closes the window). Now run the renderer with the
command line “./render snow.” You should see an animation of falling snow. (You must be either
directly using the console of the machine, or include the flag “-Y” when connecting to the machine via
ssh.)

The assignment starter code contains two versions of the renderer: a sequential, single-threaded C++ refer-
ence implementation, implemented in refRenderer.cpp, and an incorrect parallel CUDA implementa-
tion in cudaRenderer.cu.
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rgb pattern biglittle

rand10k rand100k snowsingle

Figure 4: Sample images generated by renderer
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Figure 5: Computing the contribution of a circle to the output image

Renderer Overview

We encourage you to familiarize yourself with the structure of the renderer code base by inspecting the ref-
erence implementation in refRenderer.cpp. The method setup() is called prior to rendering the first
frame. In your CUDA-accelerated renderer, this method will likely contain all your renderer initialization
code (allocating buffers, etc). The render() method is called for each frame and is responsible for draw-
ing all circles in the output image. The other main function of the renderer, advanceAnimation(),
is also invoked once per frame. It updates circle positions and velocities. You will not need to modify
advanceAnimation() in this assignment.

The renderer accepts an array of circles (3D position, velocity, radius, color) as input. The basic sequential
algorithm for rendering each frame is:

Clear image
For each circle:

Update position and velocity
For each circle:

Compute screen bounding box
For all pixels in bounding box:

Compute pixel center point
If center point is within the circle:

Compute color of circle at point
Blend contribution of circle into image for this pixel

Figure 5 illustrates the basic algorithm for computing circle-pixel coverage using point-in-circle tests. All
pixels within the circle’s bounding box are tested for coverage. For each pixel in the bounding box, the pixel
is considered to be covered by the circle if its center point (shown with a dot) is contained within the circle.
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Correct order: Incorrect order
Red on bottom, blue on top Blue on bottom, red on top

Figure 6: Ordering dependency of rendering

Pixel centers that are inside the circle are colored red, while those that are outside the circle are colored
black. The circle’s contribution to the image will be computed only for covered pixels.

An important detail of the renderer is that it renders semi-transparent circles. Therefore, the color of any
one pixel is not the color of a single circle, but the result of blending the contributions of all the semi-
transparent circles overlapping the pixel (note the “blend contribution” part of the pseudocode above). The
renderer represents the color of a circle via a 4-tuple of red (R), green (G), blue (B), and opacity (alpha,
written “α”) values (RGBA). Alpha valueα = 1.0 corresponds to a fully opaque circle. Alpha valueα = 0.0
corresponds to a fully transparent circle. To draw a semi-transparent circle with color (Cr, Cg, Cb, α) on
top of a pixel with color Pr, Pg, Pb, the renderer performs the following computation:

Rr = α · Cr + (1.0− α) · Pr

Rg = α · Cg + (1.0− α) · Pg

Rb = α · Cb + (1.0− α) · Pb

Notice that composition is not commutative (object X over Y does not look the same as object Y over X),
so it’s important to render circles in a manner that follows the order they are provided by the application.
(You can assume the application provides the circles in depth order.) For example, consider the two images
shown in Figure 6, where the circles are ordered as red, green, and blue. The image on the left shows them
rendered in the correct order, while the image on the right has them reversed.

CUDA Renderer

After familiarizing yourself with the circle rendering algorithm as implemented in the reference code, now
study the CUDA implementation of the renderer provided in cudaRenderer.cu. You can run the CUDA
implementation of the renderer using the command-line option “-r cuda.”
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Figure 7: Illustration of ordering dependencies for rendering

The provided CUDA implementation parallelizes computation across all input circles, assigning one circle
to each CUDA thread. While this CUDA implementation is a complete implementation of the mathematics
of a circle renderer, it contains several major errors that you will fix in this assignment. Specifically, the
current implementation does not ensure that image update is an atomic operation, and it does not preserve
the required order of image updates, both of which are described below.

Renderer Requirements

Your parallel CUDA renderer implementation must maintain two invariants that are preserved trivially in
the sequential implementation:

1. Atomicity: All image update operations must be atomic. The critical region includes reading the four
32-bit floating-point values (the pixel’s rgba color), blending the contribution of the current circle
with the current image value, and then writing the pixel’s color back to memory.

2. Order: Your renderer must perform updates to an image pixel in circle input order. That is, if circle 1
and circle 2 both contribute to pixel P , any image updates to P due to circle 1 must be applied to the
image before updates to P due to circle 2. As discussed above, preserving the ordering requirement
allows for a correct rendering of transparent circles. A key observation is that the definition of
order only specifies the order of updates to an individual pixel. Thus, as shown in Figure 7, there
is no ordering requirement between circles that do not contribute to the same pixel. These circles can
be processed independently.

Since the provided CUDA implementation does not satisfy either of these requirements, the result of not
correctly respecting order or atomicity can be seen by running the CUDA renderer implementation on the
different scenes. You may see horizontal streaks through the resulting images, as shown in Figure 8 for the
rgb scene. These streaks will change with each frame. If not streaks, you will see cases where the program
renders the circles in the wrong order.

What You Need To Do

Your job is to write the fastest, correct CUDA renderer implementation you can. You may take any
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Figure 8: Incorrect rendering by provided CUDA implementation

approach you see fit,1 but your renderer must adhere to the atomicity and order requirements specified
above. A solution that does not meet both requirements will be given no more than 10 points on part 2 of
the assignment. We have already given you such a solution!

A good place to start would be to read through cudaRenderer.cu and convince yourself that it does
not meet the correctness requirement. (Look specifically at the CUDA kernel kernelRenderCircle,
and the inline function shadePixel.) To visually see the effect of violation of above two requirements,
compile the program with make. Then run:

./render -r cuda rand10k

Compare this image with the one generated by sequential code by running

./render rand10k

(This image is shown in the lower-left corner of Figure 4.)

You can get a listing of the options to the render program by running

./render --help

Checker code: To detect correctness of the program, render has a convenient “--check” option. This
option runs the sequential version of the reference CPU renderer along with your CUDA renderer and then
compares the resulting images to ensure correctness. The time taken by your CUDA renderer implementa-
tion is also printed.

1 There is one optimization you may not perform: you should render each frame independently, even if one frame contains the
same circles as the previous one.
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There are a total of six circle data sets on which you will be graded for performance. However, in order to
receive full credit, your code must pass the correctness test for all of our test data sets. To check the correct-
ness and performance score of your code, run “make check” (or directly call the program checker.pl.)
If you run it on the starter code, the program will print the results for the entire test set, plus a table like the
following:

------------
Score table:
------------
-------------------------------------------------------------------------
| Scene Name | Target Time | Your Time | Score |
-------------------------------------------------------------------------
| rgb | 0.2393 | 123.3879 (F) | 0 |
| rand10k | 2.7238 | 39.4878 (F) | 0 |
| rand100k | 27.0537 | 1045.4628 (F) | 0 |
| pattern | 0.3219 | 2.2350 (F) | 0 |
| snowsingle | 13.8742 | 10.5530 (F) | 0 |
| biglittle | 21.0284 | 529.9166 (F) | 0 |
-------------------------------------------------------------------------
| | Total score: | 0/72 |
-------------------------------------------------------------------------

Note: on some runs, you may receive credit for some of these scenes, since the provided renderer’s runtime
is non-deterministic. This doesn’t change the fact that the current CUDA renderer is incorrect.

“Target time” is the performance of a good solution on your current machine (in the provided render_soln
executable.) “Your time” is the performance of your CUDA renderer. Your grade will depend on the perfor-
mance of your implementation compared to that of the provided implementation (see Grading Guidelines.)

Along with your code, we would like you to hand in a clear, high-level description of how your implementa-
tion works as well as a brief description of how you arrived at this solution. Specifically address approaches
you tried along the way, and how you went about determining how to optimize your code (For example,
what measurements did you perform to guide your optimization efforts?).

Aspects of your work that you should mention in the write-up include:

1. Include both partners’ names and Andrew Id’s at the top of your write-up.

2. Replicate the score table generated for your solution and specify which machine you ran your code
on.

3. Describe how you decomposed the problem and how you assigned work to CUDA thread blocks and
threads (and maybe even warps.)

4. Describe where synchronization occurs in your solution.

5. What, if any, steps did you take to reduce communication requirements (e.g., synchronization or main
memory bandwidth requirements)?

6. Briefly describe how you arrived at your final solution. What other approaches did you try along the
way. What was wrong with them?
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Grading Guidelines

• The write-up for the assignment is worth 13 points.

• Your implementation is worth 72 points. These are equally divided into 12 points per scene as follows:

– 2 correctness points per scene.

– 10 performance points per scene (only obtainable if the solution is correct). Your performance
will be graded with respect to the target performance of a provided renderer, Ts.

– No performance points will be given for solutions having time T > 10Ts.

– Full performance points will be given for solutions within 20% of the optimized solution (T ≤
1.2Ts.)

– For other values of T , your performance score on a scale 1 to 9 will be calculated as a linear
interpolation based on the value of Ts/T .

• Up to five points extra credit (instructor discretion) for solutions that achieve significantly greater
performance than required. Your write up must clearly explain your approach thoroughly.

• Up to five points extra credit (instructor discretion) for a high-quality parallel CPU-only renderer
implementation that achieves good utilization of all cores and SIMD vector units of the cores. Feel
free to use any tools at your disposal (e.g., SIMD intrinsics, ISPC, Pthreads.) To receive credit you
should analyze the performance of your GPU and CPU-based solutions and discuss the reasons for
differences in implementation choices made.

Assignment Tips and Hints

Below are a set of tips and hints compiled from previous years. Note that there are various ways to imple-
ment your renderer and not all hints may apply to your approach.

• To facilitate remote development and benchmarking, we have created a “--bench” option to the
render program. This mode does not open a display, and instead runs the renderer for the specified
number of frames. (You’ll see that the checking code runs with the command-line option “--bench
0:4.”)

• When in benchmark mode, the “--file Name” command-line option sets the base file name for
PPM images created at each frame. Created files have names of the form “Name_xxxx.ppm,” where
xxxx is a 4-digit frame number. No PPM files are created if the --file option is not used.

• There are two potential axes of parallelism in this assignment. One axis is parallelism across pixels
another is parallelism across circles (provided the ordering requirement is respected for overlapping
circles.)
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• The prefix-sum operation provided in exclusiveScan.cu_inl may be valuable to you on this
assignment (you are not required to use it.) It implements exclusive prefix-sum on a power-of-two-
sized array in shared memory. The provided code does not work on non-power-of-two inputs and
it also requires that the number of threads in the thread block be the size of the array.

• You are allowed to use the Thrust library in your implementation if you so choose. Thrust is not
necessary to achieve the performance of the optimized CUDA reference implementations. See the
documentation on prefix-sum operations in Thrust.

• Is there data reuse in the renderer? What can be done to exploit this reuse?

• The circle-intersects-box tests provided to you in circleBoxTest.cu_inl are your friend.

• How will you ensure atomicity of image update since there is no CUDA language primitive that
performs the logic of the image update operation atomically? Constructing a lock out of global
memory atomic operations is one solution, but keep in mind that even if your image update is atomic,
the updates must be performed in the required order. We suggest that you think about ensuring
order in your parallel solution first, and only then consider the atomicity problem (if it still
exists at all) in your solution.

• If you are having difficulty debugging your CUDA code, you can use printf directly from device
code if you use a sufficiently new GPU and CUDA library: see this brief guide on how to print from
CUDA.

• If you find yourself with free time, have fun making your own scenes!

Catching CUDA Errors

(Credit: The following was adapted from this Stack Overflow post)

By default, if you access an array out of bounds, allocate too much memory, or otherwise cause an error,
CUDA won’t normally inform you; instead it will just fail silently and return an error code. You can use the
following macro (feel free to modify it) to wrap CUDA calls:

#define DEBUG

#ifdef DEBUG
#define cudaCheckError(ans) cudaAssert((ans), __FILE__, __LINE__);
inline void cudaAssert(cudaError_t code, const char *file, int line, bool abort=true)
{

if (code != cudaSuccess)
{

fprintf(stderr, "CUDA Error: %s at %s:%d\n",
cudaGetErrorString(code), file, line);

if (abort) exit(code);
}

}
#else
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#define cudaCheckError(ans) ans
#endif

Note that you can undefine DEBUG to disable error checking once your code is correct for improved perfor-
mance.

You can then wrap CUDA API calls to process their returned errors as such:

cudaCheckError( cudaMalloc(&a, size*sizeof(int)) );

Note that you can’t wrap kernel launches directly. Instead, their errors will be caught on the next CUDA
call you wrap:

kernel<<<1,1>>>(a); // suppose kernel causes an error!
cudaCheckError( cudaDeviceSynchronize() ); // error is printed on this line

All CUDA API functions, cudaDeviceSynchronize(), cudaMemcpy(), cudaMemset(), and so
on can be wrapped.

IMPORTANT: if a CUDA function caused an error previously, but it wasn’t caught, that error will show
up in the next error check, even if the check wraps a different function. For example:

...
line 742: cudaMalloc(&a, -1); // executes, then continues
line 743: cudaCheckError(cudaMemcpy(a,b)); // Prints error for line 743
...

Therefore, while debugging, it’s recommended that you wrap all CUDA API calls (at least in code that you
wrote).

Hand-in Instructions

You will submit your code via Autolab and your report via Gradescope. For the code, you will be submitting
your entire directory tree. The relevant websites are:

https://autolab.andrew.cmu.edu/courses/15418-s19

https://www.gradescope.com/courses/35949

1. Your code

(a) If you are working with a partner, form a group on Autolab. Do this before submitting your
assignment. One submission per group is sufficient.

(b) Make sure all of your code is compilable and runnable. We should be able to simply run make,
then execute your programs in saxpy, scan, and render without manual intervention.
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(c) Remove all nonessential files, especially output images, from your directories.

(d) Run the command “make handin.tar.” This will run “make clean” and then create an
archive of your entire directory tree.

(e) Submit the file handin.tar to Autolab.

2. Please upload your report as file report.pdf to Gradescope, one submission per team, and select
the appropriate pages for each part of the assignment. After submitting, you will be able to add your
teammate using the add group members button on the top right of your submission.

Our grading scripts will rerun the checker code allowing us to verify your score matches what you submitted
in the report.pdf. We might also try to run your code on other datasets to further examine its correctness.
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