
Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2018

Lecture 22:

Parallel Deep Neural
Networks

 CMU 15-418/618, Spring 2018

Training/evaluating deep neural networks
Technique leading to many high-profile AI advances in recent years

Speech recognition/natural
language processing

Image interpretation
and understanding

 CMU 15-418/618, Spring 2018

What is a deep neural network?

x0 x1 x2 x3

x0 x1 x2 x3

x0 x1 x2 x3

x0 x1 x2 x3

w0 w1 w2 w3

w0 w1 w2 w3

w0 w1 w2 w3

w0 w1 w2 w3

A basic unit:
Unit with n inputs described by n+1 parameters
(weights + bias)

f

X

i

xiwi + b

!

b

Input: Unit (“neuron”)

output

f(x) = max(0, x)

Example f : rectified linear unit (ReLU)

Biological inspiration:

Machine learning interpretation:

Basic computational interpretation:
It’s just a circuit!

unit output corresponds loosely to activation
of neuron

binary classifier: interpret output as the
probability of one class

f(x) =
1

1 + e

�x

 CMU 15-418/618, Spring 2018

Two Distinct Issues with Deep Networks
▪ Evaluation

- often takes milliseconds

▪ Training
- often takes hours, days, weeks

 CMU 15-418/618, Spring 2018

What is a deep neural network? topology

Input: Output:

This network has: 4 inputs, 1 output, 7 hidden units
“Deep” = at least one hidden layer
Hidden layer 1: 3 units x (4 weights + 1 bias) = 15 parameters
Hidden layer 2: 4 units x (3 weights + 1 bias) = 16 parameters

Hidden layers:

Note fully-connected topology in this example

 CMU 15-418/618, Spring 2018

What is a deep neural network? topology

Fully connected layer

Sparsely (locally)
connected

Inputs

Inputs

OutputsOutput

 CMU 15-418/618, Spring 2018

int WIDTH = 1024;

int HEIGHT = 1024;

float input[(WIDTH+2) * (HEIGHT+2)];

float output[WIDTH * HEIGHT];

float weights[] = {1.0/9, 1.0/9, 1.0/9,

 1.0/9, 1.0/9, 1.0/9,

 1.0/9, 1.0/9, 1.0/9};

for (int j=0; j<HEIGHT; j++) {

 for (int i=0; i<WIDTH; i++) {

 float tmp = 0.f;

 for (int jj=0; jj<3; jj++)

 for (int ii=0; ii<3; ii++)

 tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];

 output[j*WIDTH + i] = tmp;

 }

}

Recall image convolution (3x3 conv)

Convolutional layer: locally connected AND all units in layer share
the same parameters (same weights + same bias):
(note: network diagram only shows links due to one iteration of ii loop)

Inputs

.
 . . .
 .

Inputs

Conv
Layer

 CMU 15-418/618, Spring 2018

int WIDTH = 1024;

int HEIGHT = 1024;

int STRIDE = 2;

float input[(WIDTH+2) * (HEIGHT+2)];

float output[(WIDTH/STRIDE) * (HEIGHT/STRIDE)];

float weights[] = {1.0/9, 1.0/9, 1.0/9,

 1.0/9, 1.0/9, 1.0/9,

 1.0/9, 1.0/9, 1.0/9};

for (int j=0; j<HEIGHT; j+=STRIDE) {

 for (int i=0; i<WIDTH; i+=STRIDE) {

 float tmp = 0.f;

 for (int jj=0; jj<3; jj++)

 for (int ii=0; ii<3; ii++) {

 tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];

 output[(j/STRIDE)*WIDTH + (i/STRIDE)] = tmp;

 }

}

Strided 3x3 convolution

Inputs

Convolutional layer with stride 2

c

Inputs

 CMU 15-418/618, Spring 2018

What does convolution using these filter
weights do?

2

4
.075 .124 .075
.124 .204 .124
.075 .124 .075

3

5

Original

Blurred

“Gaussian Blur”

 CMU 15-418/618, Spring 2018

What does convolution with these filters do?

Extracts horizontal
gradients

2

4
�1 0 1
�2 0 2
�1 0 1

3

5

2

4
�1 �2 �1
0 0 0
1 2 1

3

5

Extracts vertical
gradients

 CMU 15-418/618, Spring 2018

Gradient detection filters
Horizontal gradients

Vertical gradients

Note: you can think of a filter as a
“detector” of a pattern, and the
magnitude of a pixel in the output
image as the “response” of the filter
to the region surrounding each pixel
in the input image

 CMU 15-418/618, Spring 2018

Applying many filters to an image at once

Input: image (single channel):
W x H

3x3 spatial convolutions on image
3x3 x num_filters weights

…

Output: filter responses
W x H x num_filters

…

Each filter described by
unique set of weights
(responds to different
image phenomena)

Filter responses

 CMU 15-418/618, Spring 2018

Applying many filters to an image at once
Input RGB image (W x H x 3)

96 11x11x3 filters
(operate on RGB) 96 responses (normalized)

 CMU 15-418/618, Spring 2018

Adding additional layers

Input: image
(single channel)

W x H

3x3 spatial convolutions
3x3 x num_filters weights

…

Output: filter responses
W x H x num_filters

…

Each filter described by
unique set of weights
(responds to different
image phenomena)

Filter responses

post ReLU
W x H x num_filters

…ReLU Pool
…

post pool
W/2 x H/2 x num_filters

(max response
in 2x2 region)

Note data reduction as a
result of pooling

Conv

…

 CMU 15-418/618, Spring 2018

Modern object detection networks
Sequences of cont + reLU + (optional) pool layers

AlexNet [Krizhevsky12]: 5 convolutional layers + 3 fully connected

[VGG illustration credit: Yang et al.]

VGG-16 [Simonyan15]: 13 convolutional layers
input: 224 x 224 RGB
conv/reLU: 3x3x3x64
conv/reLU: 3x3x64x64
maxpool
conv/reLU: 3x3x64x128
conv/reLU: 3x3x128x128
maxpool

conv/reLU: 3x3x128x256
conv/reLU: 3x3x256x256
conv/reLU: 3x3x256x256
maxpool
conv/reLU: 3x3x256x512
conv/reLU: 3x3x512x512
conv/reLU: 3x3x512x512
maxpool

conv/reLU: 3x3x512x512
conv/reLU: 3x3x512x512
conv/reLU: 3x3x512x512
maxpool
fully-connected 4096
fully-connected 4096
fully-connected 1000
soft-max

Our model

● Max-pooling layers follow first, second, and
fifth convolutional layers

● The number of neurons in each layer is given
by 253440, 186624, 64896, 64896, 43264,
4096, 4096, 1000

 CMU 15-418/618, Spring 2018

Why deep? Right: images that generate strongest response for filters at each layer
Left: what pixels trigger the response

[image credit: Zeiler 14]

 CMU 15-418/618, Spring 2018

Why deep?

[image credit: Zeiler 14]

 CMU 15-418/618, Spring 2018

Efficiently implementing convolution layers

 CMU 15-418/618, Spring 2018

Direct implementation of conv layer
float input[INPUT_HEIGHT][INPUT_WIDTH][INPUT_DEPTH];

float output[INPUT_HEIGHT][INPUT_WIDTH][LAYER_NUM_FILTERS];

float layer_weights[LAYER_CONVY, LAYER_CONVX, INPUT_DEPTH];

// assumes convolution stride is 1

for (int img=0; img<IMAGE_BATCH_SIZE; img++)

 for (int j=0; j<INPUT_HEIGHT; j++)

 for (int i=0; i<INPUT_WIDTH; i++)

 for (int f=0; f<LAYER_NUM_FILTERS; f++) {

 output[j][i][f] = 0.f;

 for (int kk=0; kk<INPUT_DEPTH; kk++) // sum over filter responses of input channels

 for (int jj=0; jj<LAYER_CONVY; jj++) // spatial convolution

 for (int ii=0; ii<LAYER_CONVX; ii+) // spatial convolution

 output[j][i][f] += layer_weights[f][jj][ii][kk] * input[j+jj][i+ii][kk];

 }

Seven loops with significant input data reuse: reuse of filter weights (during convolution), and
reuse of input values (across different filters)

But must roll your own highly optimized implementation of a complicated loop nest.

 CMU 15-418/618, Spring 2018

float A[M][K];

float B[K][N];

float C[M][N];

// compute C += A * B

#pragma omp parallel for

for (int j=0; j<M; j++)

 for (int i=0; i<N; i++)

 for (int k=0; k<K; k++)

 C[j][i] += A[j][k] * B[k][i];

Dense matrix multiplication
K

M

N

M K

N

= X

What is the problem with this implementation?

Low arithmetic intensity (does not exploit temporal locality in access to A and B)

C A B

 CMU 15-418/618, Spring 2018

float A[M][K];

float B[K][N];

float C[M][N];

// compute C += A * B

#pragma omp parallel for

for (int jblock=0; jblock<M; jblock+=BLOCKSIZE_J)

 for (int iblock=0; iblock<N; iblock+=BLOCKSIZE_I)

 for (int kblock=0; kblock<K; kblock+=BLOCKSIZE_K)

 for (int j=0; j<BLOCKSIZE_J; j++)

 for (int i=0; i<BLOCKSIZE_I; i++)

 for (int k=0; k<BLOCKSIZE_K; k++)

 C[jblock+j][iblock+i] += A[jblock+j][kblock+k] * B[kblock+k][iblock+i];

Blocked dense matrix multiplication
K

M

N

M K

N

= XC A B

Idea: compute partial result for block of C while required blocks of A and B remain in cache
(Assumes BLOCKSIZE chosen to allow block of A, B, and C to remain resident)

Self check: do you want as big a BLOCKSIZE as possible? Why?

 CMU 15-418/618, Spring 2018

Convolution as matrix-vector product

2

6664

w0

w1
...
w8

3

7775

X00 X01 X02 X03 ...

X10 X11 X12 X13 ...

X20 X21 X22 X23 ...

X30 X31 X32 X33 ...

...

3x3 = 9

0 0 0 0 x00 x01 0 x10 x11

WxH

...

Construct matrix from elements of input image

Note: 0-pad matrix

O(N) storage overhead for filter with N elements
Must construct input data matrix

 CMU 15-418/618, Spring 2018

3x3 convolution as matrix-vector product

2

6664

w0

w1
...
w8

3

7775

X00 X01 X02 X03 ...

X10 X11 X12 X13 ...

X20 X21 X22 X23 ...

X30 X31 X32 X33 ...

...

9

0 0 0 0 x00 x01 0 x10 x11

0 0 0 x00 x01 x02 x10 x11 x12

0 0 0 x01 x02 x03 x11 x12 x13

WxH

...

x00 x01 x02 x10 x11 x12 x20 x21 x22

Construct matrix from elements of input image

Note: 0-pad matrix

...

O(N) storage overhead for filter with N elements
Must construct input data matrix

 CMU 15-418/618, Spring 2018

Multiple convolutions as matrix-matrix mult
X00 X01 X02 X03 ...

X10 X11 X12 X13 ...

X20 X21 X22 X23 ...

X30 X31 X32 X33 ...

...

9

0 0 0 0 x00 x01 0 x10 x11

0 0 0 x00 x01 x02 x10 x11 x12

0 0 0 x01 x02 x03 x11 x12 x13

WxH
...

x00 x01 x02 x10 x11 x12 x20 x21 x22

2

6664

w00 w01 w02 · · · w0N

w10 w11 w12 · · · w0N
...

...
...

...
w80 w81 w82 · · · w8N

3

7775

num filters

...

 CMU 15-418/618, Spring 2018

Multiple convolutions on multiple input channels

X00 X01 X02 X03 ...

X10 X11 X12 X13 ...

X20 X21 X22 X23 ...

X30 X31 X32 X33 ...

...

9 x num input channels

0 0 0 0 x00 x01 0 x10 x11

0 0 0 x00 x01 x02 x10 x11 x12

0 0 0 x01 x02 x03 x11 x12 x13WxH

...

x00 x01 x02 x10 x11 x12 x20 x21 x22

num filters

...

channel 1

channel 0

channel 2

0 0 0 0 x00 x01 0 x10 x11

0 0 0 x00 x01 x02 x10 x11 x12

0 0 0 x01 x02 x03 x11 x12 x13

...

x00 x01 x02 x10 x11 x12 x20 x21 x22

...

0 0 0 0 x00 x01 0 x10 x11

0 0 0 x00 x01 x02 x10 x11 x12

0 0 0 x01 x02 x03 x11 x12 x13

...

x00 x01 x02 x10 x11 x12 x20 x21 x22

channel 0 values channel 1 values channel 2 values

For each filter, sum responses over input channels

Equivalent to (3 x 3 x num_channels) convolution
on (W x H x num_channels) input data

2

6666666666666666666664

w000 w001 w002 · · · w00N

w010 w011 w012 · · · w01N
...

...
...

...
w080 w081 w082 · · · w08N

w100 w101 w102 · · · w10N

w110 w111 w112 · · · w11N
...

...
...

...
w180 w181 w182 · · · w18N

w200 w201 w202 · · · w20N

w210 w211 w212 · · · w21N
...

...
...

...
w280 w281 w282 · · · w28N

3

7777777777777777777775

 CMU 15-418/618, Spring 2018

VGG memory footprint

input: 224 x 224 RGB image
conv: (3x3x3) x 64
conv: (3x3x64) x 64
maxpool
conv: (3x3x64) x 128
conv: (3x3x128) x 128
maxpool
conv: (3x3x128) x 256
conv: (3x3x256) x 256
conv: (3x3x256) x 256
maxpool
conv: (3x3x256) x 512
conv: (3x3x512) x 512
conv: (3x3x512) x 512
maxpool
conv: (3x3x512) x 512
conv: (3x3x512) x 512
conv: (3x3x512) x 512
maxpool
fully-connected 4096
fully-connected 4096
fully-connected 1000
soft-max

Calculations assume 32-bit values (image batch size = 1)
weights mem:

output size
(per image)

—
6.5 KB
144 KB
—
228 KB
576 KB
—
1.1 MB
2.3 MB
2.3 MB
—
4.5 MB
9 MB
9 MB
—
9 MB
9 MB
9 MB
—
392 MB
64 MB
15.6 MB

224x224x3
224x224x64
224x224x64
112x112x64
112x112x128
112x112x128
56x56x128
56x56x256
56x56x256
56x56x256
28x28x256
28x28x512
28x28x512
28x28x512
14x14x512
14x14x512
14x14x512
14x14x512
7x7x512
4096
4096
1000
1000

150K
12.3 MB
12.3 MB
3.1 MB
6.2 MB
6.2 MB
1.5 MB
3.1 MB
3.1 MB
3.1 MB
766 KB
1.5 MB
1.5 MB
1.5 MB
383 KB
383 KB
383 KB
383 KB
98 KB
16 KB
16 KB
4 KB
4 KB

(mem)

multiply by next layer’s
conv window size to form
input matrix to next conv
layer!!! (for VGG, this is a 9x
data amplification)

inputs/outputs get
multiplied by image
batch size

 CMU 15-418/618, Spring 2018

Reducing network footprint
▪ Large storage cost for model parameters

- AlexNet model: ~200 MB
- VGG-16 model: ~500 MB
- This doesn’t even account for intermediates during evaluation

▪ Footprint: cumbersome to store, download, etc.
- 500 MB app downloads make users unhappy!

▪ Consider energy cost of 1B parameter network
- Running on input stream at 20 Hz
- 640 pJ per 32-bit DRAM access
- (20 x 1B x 640pJ) = 12.8W for DRAM access

(more than power budget of any modern smartphone)

 CMU 15-418/618, Spring 2018

Compressing a network
Step 1: prune low-weight links (iteratively retrain network, then prune)

- Over 90% of weights can be removed without significant loss of accuracy
- Store weight matrices in compressed sparse row (CSR) format

Step 2: weight sharing: make surviving connects share a small set of weights
- Cluster weights via k-means clustering (irregular (“learned”) quantization)
- Compress weights by only storing cluster index (lg(k) bits)
- Retrain network to improve quality of cluster centroids

Indicies 1 4 9 ...
Value 1.8 0.5 2.1

0 1.8 0 0 0.5 0 0 0 0 1.1 ...

Published as a conference paper at ICLR 2016

Figure 2: Representing the matrix sparsity with relative index. Padding filler zero to prevent overflow.

2.09 -0.98 1.48 0.09

0.05 -0.14 -1.08 2.12

-0.91 1.92 0 -1.03

1.87 0 1.53 1.49

-0.03 -0.01 0.03 0.02

-0.01 0.01 -0.02 0.12

-0.01 0.02 0.04 0.01

-0.07 -0.02 0.01 -0.02

0.04

0.02

0.04

-0.03

-0.03 0.12 0.02 -0.07

0.03 0.01

0.02 -0.01 0.01 0.04

 -0.01 -0.02 -0.01 0.01

cluster

 weights
(32 bit float) centroids

gradient

3 0 2 1

1 1 0 3

0 3 1 0

3 1 2 2

cluster index
 (2 bit uint)

2.00

1.50

0.00

-1.00

-0.02

-0.02

group by

fine-tuned
centroids

reduce

1.96

1.48

-0.04

-0.97

1:

lr0:

2:

3:

Figure 3: Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom).

We store the sparse structure that results from pruning using compressed sparse row (CSR) or
compressed sparse column (CSC) format, which requires 2a+n+1 numbers, where a is the number
of non-zero elements and n is the number of rows or columns.

To compress further, we store the index difference instead of the absolute position, and encode this
difference in 8 bits for conv layer and 5 bits for fc layer. When we need an index difference larger
than the bound, we the zero padding solution shown in Figure 2: in case when the difference exceeds
8, the largest 3-bit (as an example) unsigned number, we add a filler zero.

3 TRAINED QUANTIZATION AND WEIGHT SHARING

Network quantization and weight sharing further compresses the pruned network by reducing the
number of bits required to represent each weight. We limit the number of effective weights we need to
store by having multiple connections share the same weight, and then fine-tune those shared weights.

Weight sharing is illustrated in Figure 3. Suppose we have a layer that has 4 input neurons and 4
output neurons, the weight is a 4⇥ 4 matrix. On the top left is the 4⇥ 4 weight matrix, and on the
bottom left is the 4⇥ 4 gradient matrix. The weights are quantized to 4 bins (denoted with 4 colors),
all the weights in the same bin share the same value, thus for each weight, we then need to store only
a small index into a table of shared weights. During update, all the gradients are grouped by the color
and summed together, multiplied by the learning rate and subtracted from the shared centroids from
last iteration. For pruned AlexNet, we are able to quantize to 8-bits (256 shared weights) for each
CONV layers, and 5-bits (32 shared weights) for each FC layer without any loss of accuracy.

To calculate the compression rate, given k clusters, we only need log2(k) bits to encode the index. In
general, for a network with n connections and each connection is represented with b bits, constraining
the connections to have only k shared weights will result in a compression rate of:

r =
nb

nlog2(k) + kb
(1)

For example, Figure 3 shows the weights of a single layer neural network with four input units and
four output units. There are 4⇥4 = 16 weights originally but there are only 4 shared weights: similar
weights are grouped together to share the same value. Originally we need to store 16 weights each

3

Step 3: Huffman encode quantized weights
and CSR indices

[Han ICLR16]

 CMU 15-418/618, Spring 2018

VGG-16 compression

Published as a conference paper at ICLR 2016

Table 4: Compression statistics for AlexNet. P: pruning, Q: quantization, H:Huffman coding.

Layer #Weights Weights%
(P)

Weight
bits
(P+Q)

Weight
bits
(P+Q+H)

Index
bits
(P+Q)

Index
bits
(P+Q+H)

Compress
rate
(P+Q)

Compress
rate
(P+Q+H)

conv1 35K 84% 8 6.3 4 1.2 32.6% 20.53%
conv2 307K 38% 8 5.5 4 2.3 14.5% 9.43%
conv3 885K 35% 8 5.1 4 2.6 13.1% 8.44%
conv4 663K 37% 8 5.2 4 2.5 14.1% 9.11%
conv5 442K 37% 8 5.6 4 2.5 14.0% 9.43%
fc6 38M 9% 5 3.9 4 3.2 3.0% 2.39%
fc7 17M 9% 5 3.6 4 3.7 3.0% 2.46%
fc8 4M 25% 5 4 4 3.2 7.3% 5.85%
Total 61M 11%(9⇥) 5.4 4 4 3.2 3.7% (27⇥) 2.88% (35⇥)

Table 5: Compression statistics for VGG-16. P: pruning, Q:quantization, H:Huffman coding.

Layer #Weights Weights%
(P)

Weigh
bits
(P+Q)

Weight
bits
(P+Q+H)

Index
bits
(P+Q)

Index
bits
(P+Q+H)

Compress
rate
(P+Q)

Compress
rate
(P+Q+H)

conv1 1 2K 58% 8 6.8 5 1.7 40.0% 29.97%
conv1 2 37K 22% 8 6.5 5 2.6 9.8% 6.99%
conv2 1 74K 34% 8 5.6 5 2.4 14.3% 8.91%
conv2 2 148K 36% 8 5.9 5 2.3 14.7% 9.31%
conv3 1 295K 53% 8 4.8 5 1.8 21.7% 11.15%
conv3 2 590K 24% 8 4.6 5 2.9 9.7% 5.67%
conv3 3 590K 42% 8 4.6 5 2.2 17.0% 8.96%
conv4 1 1M 32% 8 4.6 5 2.6 13.1% 7.29%
conv4 2 2M 27% 8 4.2 5 2.9 10.9% 5.93%
conv4 3 2M 34% 8 4.4 5 2.5 14.0% 7.47%
conv5 1 2M 35% 8 4.7 5 2.5 14.3% 8.00%
conv5 2 2M 29% 8 4.6 5 2.7 11.7% 6.52%
conv5 3 2M 36% 8 4.6 5 2.3 14.8% 7.79%
fc6 103M 4% 5 3.6 5 3.5 1.6% 1.10%
fc7 17M 4% 5 4 5 4.3 1.5% 1.25%
fc8 4M 23% 5 4 5 3.4 7.1% 5.24%
Total 138M 7.5%(13⇥) 6.4 4.1 5 3.1 3.2% (31⇥) 2.05% (49⇥)

is critical for real time image processing, where there is little reuse of these layers across images
(unlike batch processing). This is also critical for fast object detection algorithms where one CONV
pass is used by many FC passes. The reduced layers will fit in an on-chip SRAM and have modest
bandwidth requirements. Without the reduction, the bandwidth requirements are prohibitive.

6 DISCUSSIONS

6.1 PRUNING AND QUANTIZATION WORKING TOGETHER

Figure 6 shows the accuracy at different compression rates for pruning and quantization together
or individually. When working individually, as shown in the purple and yellow lines, accuracy of
pruned network begins to drop significantly when compressed below 8% of its original size; accuracy
of quantized network also begins to drop significantly when compressed below 8% of its original
size. But when combined, as shown in the red line, the network can be compressed to 3% of original
size with no loss of accuracy. On the far right side compared the result of SVD, which is inexpensive
but has a poor compression rate.

The three plots in Figure 7 show how accuracy drops with fewer bits per connection for CONV layers
(left), FC layers (middle) and all layers (right). Each plot reports both top-1 and top-5 accuracy.
Dashed lines only applied quantization but without pruning; solid lines did both quantization and
pruning. There is very little difference between the two. This shows that pruning works well with
quantization.

Quantization works well on pruned network because unpruned AlexNet has 60 million weights to
quantize, while pruned AlexNet has only 6.7 million weights to quantize. Given the same amount of
centroids, the latter has less error.

7

P = connection pruning (prune low weight connections)
Q = quantize surviving weights (using shared weights)
H = Huffman encode

Substantial savings due to combination of pruning, quantization, Huffman encoding

Published as a conference paper at ICLR 2016

Table 1: The compression pipeline can save 35⇥ to 49⇥ parameter storage with no loss of accuracy.

Network Top-1 Error Top-5 Error Parameters Compress
Rate

LeNet-300-100 Ref 1.64% - 1070 KB
LeNet-300-100 Compressed 1.58% - 27 KB 40⇥
LeNet-5 Ref 0.80% - 1720 KB
LeNet-5 Compressed 0.74% - 44 KB 39⇥
AlexNet Ref 42.78% 19.73% 240 MB
AlexNet Compressed 42.78% 19.70% 6.9 MB 35⇥
VGG-16 Ref 31.50% 11.32% 552 MB
VGG-16 Compressed 31.17% 10.91% 11.3 MB 49⇥

Table 2: Compression statistics for LeNet-300-100. P: pruning, Q:quantization, H:Huffman coding.

Layer #Weights Weights%
(P)

Weight
bits
(P+Q)

Weight
bits
(P+Q+H)

Index
bits
(P+Q)

Index
bits
(P+Q+H)

Compress
rate
(P+Q)

Compress
rate
(P+Q+H)

ip1 235K 8% 6 4.4 5 3.7 3.1% 2.32%
ip2 30K 9% 6 4.4 5 4.3 3.8% 3.04%
ip3 1K 26% 6 4.3 5 3.2 15.7% 12.70%
Total 266K 8%(12⇥) 6 5.1 5 3.7 3.1% (32⇥) 2.49% (40⇥)

Table 3: Compression statistics for LeNet-5. P: pruning, Q:quantization, H:Huffman coding.

Layer #Weights Weights%
(P)

Weight
bits
(P+Q)

Weight
bits
(P+Q+H)

Index
bits
(P+Q)

Index
bits
(P+Q+H)

Compress
rate
(P+Q)

Compress
rate
(P+Q+H)

conv1 0.5K 66% 8 7.2 5 1.5 78.5% 67.45%
conv2 25K 12% 8 7.2 5 3.9 6.0% 5.28%
ip1 400K 8% 5 4.5 5 4.5 2.7% 2.45%
ip2 5K 19% 5 5.2 5 3.7 6.9% 6.13%
Total 431K 8%(12⇥) 5.3 4.1 5 4.4 3.05% (33⇥) 2.55% (39⇥)

neurons each, which achieves 1.6% error rate on Mnist. LeNet-5 is a convolutional network that
has two convolutional layers and two fully connected layers, which achieves 0.8% error rate on
Mnist. Table 2 and table 3 show the statistics of the compression pipeline. The compression rate
includes the overhead of the codebook and sparse indexes. Most of the saving comes from pruning
and quantization (compressed 32⇥), while Huffman coding gives a marginal gain (compressed 40⇥)

5.2 ALEXNET ON IMAGENET

We further examine the performance of Deep Compression on the ImageNet ILSVRC-2012 dataset,
which has 1.2M training examples and 50k validation examples. We use the AlexNet Caffe model as
the reference model, which has 61 million parameters and achieved a top-1 accuracy of 57.2% and a
top-5 accuracy of 80.3%. Table 4 shows that AlexNet can be compressed to 2.88% of its original size
without impacting accuracy. There are 256 shared weights in each CONV layer, which are encoded
with 8 bits, and 32 shared weights in each FC layer, which are encoded with only 5 bits. The relative
sparse index is encoded with 4 bits. Huffman coding compressed additional 22%, resulting in 35⇥
compression in total.

5.3 VGG-16 ON IMAGENET

With promising results on AlexNet, we also looked at a larger, more recent network, VGG-16 (Si-
monyan & Zisserman, 2014), on the same ILSVRC-2012 dataset. VGG-16 has far more convolutional
layers but still only three fully-connected layers. Following a similar methodology, we aggressively
compressed both convolutional and fully-connected layers to realize a significant reduction in the
number of effective weights, shown in Table5.

The VGG16 network as a whole has been compressed by 49⇥. Weights in the CONV layers are
represented with 8 bits, and FC layers use 5 bits, which does not impact the accuracy. The two largest
fully-connected layers can each be pruned to less than 1.6% of their original size. This reduction

6

ImageNet Image Classification Performance
Top-1 Error Top-5 Error Model size

[Han ICLR16]

 CMU 15-418/618, Spring 2018

Deep neural networks on GPUs
▪ Today, best performing DNN implementations target GPUs

- High arithmetic intensity computations (computational characteristics similar
to dense matrix-matrix multiplication)

- Benefit from flop-rich architectures

- Highly-optimized library of kernels exist for GPUs (cuDNN)

- Most CPU-based implementations use basic matrix-multiplication-based
formulation (good implementations could run faster!)

Facebook’s Big Sur

 CMU 15-418/618, Spring 2018

Emerging architectures for deep learning?
▪ NVIDIA Pascal (upcoming GPU)
- Adds double-throughput 16-bit floating point ops

- Feature that is already common on mobile GPUs

▪ Google TensorFlow Processing Unit
- Hardware accelerator for array computations

- Used in Google data centers

▪ Intel Xeon Phi (Knights Landing)
- FLOP-rich 72-core x86 processor

▪ FPGAs, ASICs?
- Microsoft including within data centers
- Not new: FPGA solutions have been explored for years

 CMU 15-418/618, Spring 2018

Programming frameworks for deep learning
▪ Heavyweight processing (low-level kernels) carried out by

target-optimized libraries (NVIDIA cuDNN, Intel MKL)

▪ Popular frameworks use these kernel libraries
- Caffe, Torch, Theano, TensorFlow, MxNet

▪ DNN application development = constructing novel network
topologies
- Programming by constructing networks

- Significant interest in new ways to express network construction

 CMU 15-418/618, Spring 2018

Summary: efficiently evaluating convnets
▪ Computational structure

- Convlayers: high arithmetic intensity, significant portion of cost of evaluating a network

- Similar data access patterns to dense-matrix multiplication (exploiting temporal reuse is key)

- But straight reduction to matrix-matrix multiplication is often sub-optimal

- Work-efficient techniques for convolutional layers (FFT-based, Wingrad convolutions)

▪ Large numbers of parameters: significant interest in reducing size of networks for
both training and evaluation
- Pruning: remove least important network links

- Quantization: low-precision parameter representations often suffice

▪ Many ongoing studies of specialized hardware architectures for efficient evaluation
- Future CPUs/GPUs, ASICs, FPGS, …

- Specialization will be important to achieving “always on” applications

 CMU 15-418/618, Spring 2018

Two Distinct Issues with Deep Networks
▪ Evaluation

- often takes milliseconds

▪ Training
- often takes hours, days, weeks

 CMU 15-418/618, Spring 2018

“Training a network”
▪ Training a network is the process of learning the value of

network parameters so that output of the network provides
the desired result for a task
- [Krizhevsky12] task = object classification

- input 224 x 224 x 3 RGB image

- output probability of 1000 ImageNet object classes: “dog”, “cat”, etc…

- ~ 60M weights

 CMU 15-418/618, Spring 2018

Professor classification network

Our model

● Max-pooling layers follow first, second, and
fifth convolutional layers

● The number of neurons in each layer is given
by 253440, 186624, 64896, 64896, 43264,
4096, 4096, 1000

4

Input:
image of a professor

Output:
probability of label

convlayer convlayer

convlayer convlayer convlayer

Easy:
Mean:
Boring:
Nerdy:

??
??
??
??

Classifies professors as easy, mean, boring, or nerdy based on their appearance.

Recall from last time:
10’s-100’s of millions of parameters

 CMU 15-418/618, Spring 2018

Professor classification network

Our model

● Max-pooling layers follow first, second, and
fifth convolutional layers

● The number of neurons in each layer is given
by 253440, 186624, 64896, 64896, 43264,
4096, 4096, 1000

4

convlayer convlayer

convlayer convlayer convlayer

Easy:
Mean:
Boring:
Nerdy:

0.04
0.18
0.27
0.51

 CMU 15-418/618, Spring 2018

Where did the parameters come from?

 CMU 15-418/618, Spring 2018

Training data (ground truth answers)

[label omitted] [label omitted] [label omitted] [label omitted] [label omitted] [label omitted]

[label omitted] [label omitted] [label omitted] [label omitted] [label omitted]

[label omitted] [label omitted] [label omitted] [label omitted] [label omitted]

[label omitted]

[label omitted] [label omitted]

[label omitted] [label omitted]

 CMU 15-418/618, Spring 2018

Professor classification network

Our model

● Max-pooling layers follow first, second, and
fifth convolutional layers

● The number of neurons in each layer is given
by 253440, 186624, 64896, 64896, 43264,
4096, 4096, 1000

4

convlayer convlayer

convlayer convlayer convlayer

Easy:
Mean:
Boring:
Nerdy:

0.26
0.08
0.14
0.52

Easy:
Mean:
Boring:
Nerdy:

0.0
0.0
0.0
1.0

New image of Bryant
(not in training set)

Ground truth
(what the answer should be)

Network output

 CMU 15-418/618, Spring 2018

Error (loss)

Easy:
Mean:
Boring:
Nerdy:

Easy:
Mean:
Boring:
Nerdy:

0.0
0.0
0.0
1.0

Ground truth:
(what the answer should be) Network output: *

0.26
0.08
0.14
0.52

* In practice a network using a softmax classifier outputs unnormalized, log probabilities (fj),
 but I’m showing a probability distribution above for clarity

Common example: softmax loss:
L = �log

e

fc
P

j e
fj

!
Output of network

for correct category

Output of network
for all categories

 CMU 15-418/618, Spring 2018

Training
Goal of training: learning good values of network parameters so that network outputs
the correct classification result for any input image

Idea: minimize loss for all the training examples (for which the correct answer is known)

Intuition: if the network gets the answer correct for a wide range of training examples,
then hopefully it has learned parameter values that yield the correct answer for future
images as well.

L =
X

i

Li (total loss for entire training set is sum of losses Li for each training example xi)

 CMU 15-418/618, Spring 2018

Intuition: gradient descent
Say you had a function f that contained a hidden parameters p1 and p2:

And for some input xi, your training data says the function should output 0.

But for the current values of p1 and p2, it currently outputs 10.

And say I also gave you expressions for the derivative of f with
respect to p1 and p2 so you could compute their value at xi.

How might you adjust the values p1 and p2 to reduce the error for this training example?

f(xi, p1, p2) = 10

p1

p2

red = high values of f
blue = low values

rf = [2,�5]
df

dp1
= 2

df

dp2
= �5

f(xi)

 CMU 15-418/618, Spring 2018

Basic gradient descent
while (loss too high):

 for each item x_i in training set:
 grad += evaluate_loss_gradient(f, loss_func, params, x_i)

 params += -grad * step_size;

Mini-batch stochastic gradient descent (mini-batch SGD): choose a random (small)
subset of the training examples to compute gradient in each iteration of the while loop

How to compute df/dp for a complex neural network with millions of parameters?

 CMU 15-418/618, Spring 2018

Derivatives using the chain rule

f(x, y, z) = (x+ y)z = az

a = x+ yWhere:

df

da
= z

df

dx

=
df

da

da

dx

= z

da

dx

= 1

So, by the derivative chain rule:

x

y

z

+

*

3

4

5

7 (a)
5

(df/da)

5
(df/dx)

5
(df/dy)

7
(df/dz)

35

da

dy
= 1

1

Red = output of node
Blue = df/dnode

 CMU 15-418/618, Spring 2018

Backpropagation

x

y
+

10
10

10 dg

dx

= 1 ,
dg

dy

= 1g(x, y) = x+ y

df

dx

=
df

dg

dg

dx

x

y
max

10
0

10
15

12 g(x, y) = max(x, y)

dg

dx

=
1, if x > y
0, otherwise

x

y
10

10*15

10*12
15

12 * g(x, y) = xy

dg

dx

= y ,

dg

dy

= x

Red = output of node
Blue = df/dnode Recall:

 CMU 15-418/618, Spring 2018

Backpropagating through single unit

f(x0, x1, x2, x3) = max

0,
X

i

xiwi + b

!Recall: behavior of unit:x0

*

max

w0

x1

*w1

x2

*w2

x3

*w3

+

+

+

b

+

0

dloss

dunit

10

y

y

y

y

y

y

y

y

y

yx3

let y =
10, if upper input to max is > 0
0, otherwise

yx2

yx1

yx0

Observe: output of prior layer (xi’s) and output of
this unit must be retained in order to compute
weight gradients for this unit during backprop.

yw0

yw1

yw2

yw3

 CMU 15-418/618, Spring 2018

Backpropagation: matrix form

2

6664

w0

w1
...
w8

3

7775

9

0 0 0 0 x00 x01 0 x10 x11

0 0 0 x00 x01 x02 x10 x11 x12

0 0 0 x01 x02 x03 x11 x12 x13

WxH

...

x00 x01 x02 x10 x11 x12 x20 x21 x22

...

X

w

*
X

w
y = Xw

dL

dy
(WxH)-element vector

9-element vector

dyj
dwi

= Xji

dL

dw
= XT dL

dy

dL

dw

Therefore:

dy

dw2

dL

dwi
=

X

j

dL

dyj

dyj
dwi

=
X

j

dL

dyj
Xji

 CMU 15-418/618, Spring 2018

Backpropagation through the entire professor
classification network

Our model

● Max-pooling layers follow first, second, and
fifth convolutional layers

● The number of neurons in each layer is given
by 253440, 186624, 64896, 64896, 43264,
4096, 4096, 1000

4

loss

For each training example xi in mini-batch:
Perform forward evaluation to compute loss for xi

Note: must retain all layer outputs + output gradients (needed to compute weight gradients
during backpropagation)

Compute gradient of loss w.r.t. final layer’s outputs
Backpropagate gradient to compute gradient of loss w.r.t. all network parameters
Accumulate gradients (over all images in batch)

Update all parameter values: wi_new = wi_old - step_size * gradi

 CMU 15-418/618, Spring 2018

VGG memory footprint

input: 224 x 224 RGB image
conv: (3x3x3) x 64
conv: (3x3x64) x 64
maxpool
conv: (3x3x64) x 128
conv: (3x3x128) x 128
maxpool
conv: (3x3x128) x 256
conv: (3x3x256) x 256
conv: (3x3x256) x 256
maxpool
conv: (3x3x256) x 512
conv: (3x3x512) x 512
conv: (3x3x512) x 512
maxpool
conv: (3x3x512) x 512
conv: (3x3x512) x 512
conv: (3x3x512) x 512
maxpool
fully-connected 4096
fully-connected 4096
fully-connected 1000
soft-max

Calculations assume 32-bit values (image batch size = 1)
weights mem:

output size
(per image)

—
6.5 KB
144 KB
—
228 KB
576 KB
—
1.1 MB
2.3 MB
2.3 MB
—
4.5 MB
9 MB
9 MB
—
9 MB
9 MB
9 MB
—
392 MB
64 MB
15.6 MB

224x224x3
224x224x64
224x224x64
112x112x64
112x112x128
112x112x128
56x56x128
56x56x256
56x56x256
56x56x256
28x28x256
28x28x512
28x28x512
28x28x512
14x14x512
14x14x512
14x14x512
14x14x512
7x7x512
4096
4096
1000
1000

150K
12.3 MB
12.3 MB
3.1 MB
6.2 MB
6.2 MB
1.5 MB
3.1 MB
3.1 MB
3.1 MB
766 KB
1.5 MB
1.5 MB
1.5 MB
383 KB
383 KB
383 KB
383 KB
98 KB
16 KB
16 KB
4 KB
4 KB

(mem)

inputs/outputs get
multiplied by mini-
batch size

Unlike forward evaluation:
1. must store outputs and

gradient of outputs
2. cannot immediately free

outputs once consumed
by next level of network

Must also store per-
weight gradients

Many implementations
also store gradient
“momentum” as well
(multiply by 3)

 CMU 15-418/618, Spring 2018

SGD workload

while (loss too high):

 for each item x_i in mini-batch:
 grad += evaluate_loss_gradient(f, loss_func, params, x_i)

 params += -grad * step_size;

At first glance, this loop is sequential (each step of
“walking downhill” depends on previous)

Parallel across images

sum reduction
large computation with its own parallelism
(but working set may not fit on single machine)

trivial data-parallel over parameters

 CMU 15-418/618, Spring 2018

Deep network training workload
▪ Huge computational expense

- Must evaluate the network (forward and backward) for millions of training images
- Must iterate for many iterations of gradient descent (100’s of thousands)
- Training modern networks takes days

▪ Large memory footprint
- Must maintain network layer outputs from forward pass
- Additional memory to store gradients for each parameter
- Recall parameters for popular VGG-16 network require ~500 MB of memory (training

requires GBs of memory for academic networks)
- Scaling to larger networks requires partitioning network across nodes to keep network

+ intermediates in memory

▪ Dependencies /synchronization (not embarrassingly parallel)
- Each parameter update step depends on previous
- Many units contribute to same parameter gradients (fine-scale reduction)
- Different images in mini batch contribute to same parameter gradients

 CMU 15-418/618, Spring 2018

Data-parallel training (across images)
 for each item x_i in mini-batch:
 grad += evaluate_loss_gradient(f, loss_func, params, x_i)
 params += -grad * step_size;

Consider parallelization of the outer for loop across machines in a cluster

image x0

parameter
gradients
due to x0

Node 0

copy of
parameter

values

image x1

parameter
gradients
due to x1

copy of
parameter

values

Node 1

 partition mini-batch across nodes
 for each item x_i in mini-batch assigned to local node:
 // just like single node training
 grad += evaluate_loss_gradient(f, loss_func, params, x_i)
 barrier();
 sum reduce gradients, communicate results to all nodes
 barrier();
 update copy of parameter values

 CMU 15-418/618, Spring 2018

Challenges of computing at cluster scale
▪ Slow communication between nodes

- Clusters do not feature high-performance interconnects typical of
supercomputers

▪ Nodes with different performance (even if machines are the same)
- Workload imbalance at barriers (sync points between nodes)

Modern solution: exploit characteristics of SGD using
asynchronous execution!

 CMU 15-418/618, Spring 2018

Exploiting SGD Characteristics
▪ Convergent computation

- Update ordering does not matter
- OK to have small errors in weight updates

▪ How used
- Within machine: Don’t synchronize weight updates across threads
- Between machines:

- OK to do some computations using stale data

- Ordering of updates not critical

- Incomplete or redundant coverage of data set acceptable

 CMU 15-418/618, Spring 2018

Parallelizing mini-batch on one machine
 for each item x_i in mini-batch:
 grad += evaluate_loss_gradient(f, loss_func, params, x_i)
 params += -grad * step_size;

Consider parallelization of the outer for loop across cores

image x0

parameter
gradients
due to x0

Core 0

image x1

parameter
gradients
due to x1

Core 1

Good: completely independent computations (until gradient reduction)
Bad: complete duplication of parameter gradient state (100’s MB per core)

final
parameter
gradients

parameter
values

 CMU 15-418/618, Spring 2018

Asynchronous update on one node
 for each item x_i in mini-batch:
 grad += evaluate_loss_gradient(f, loss_func, params, x_i)
 params += -grad * step_size;

Cores update shared set of gradients.
Skip taking locks / synchronizing across cores: perform “approximate reduction”

image x0

Core 0

image x1

Core 1

parameter
gradients

parameter
values

Project Adam [Chilimbi OSDI14]

 CMU 15-418/618, Spring 2018

Parameter server design

Parameter
Server

parameter
values

Pool of worker nodes

Parameter Server [Li OSDI14]
Google’s DistBelief [Dean NIPS12]
Microsoft’s Project Adam [Chilimbi OSDI14]

▪ Separate set of machines to
maintain DNN parameters

▪ Highly fault tolerant (so that worker
nodes need not reliable)

▪ Accept updates from workers
asynchronously

Worker
Node 0

Worker
Node 1

training data training data

training data training data

Worker
Node 2

Worker
Node 3

local
subgradients

local
subgradients

local
subgradients

local
subgradients

local copy of
parameters (v0)

local copy of
parameters (v1)

local copy of
parameters (v0)

local copy of
parameters (v2)

 CMU 15-418/618, Spring 2018

Model parallelism

Our model

● Max-pooling layers follow first, second, and
fifth convolutional layers

● The number of neurons in each layer is given
by 253440, 186624, 64896, 64896, 43264,
4096, 4096, 1000

4

Worker
Node 0

Worker
Node 1

Partition network parameters across nodes
(spatial partitioning to reduce communication)

Reduce internode communication through network design:
- Use small spatial convolutions (1x1 convolutions)
- Reduce/shrink fully-connected layers

Convolutional layers: only
need to community outputs

near spatial partition

Fully-connected layers:
all data owned by a node

must by communicated to
other nodes

 CMU 15-418/618, Spring 2018

Training data-parallel and model-parallel execution

Worker
Node 0

Parameter
Server 0

parameter
values

(chunk 0)

Worker
Node 1

training data training data

training data training data

Worker
Node 2

Worker
Node 3

local
subgradients

chunk 1

local
subgradients

chunk 0

local copy of
parameters (v1):

chunk 0

local copy of
parameters (v1):

chunk 1

Parameter
Server 1

parameter
values

(chunk 1)

Working on subgradient computation
for a single copy of the model

local copy of
parameters (v0):

chunk 0

local copy of
parameters (v0):

chunk 1
local

subgradients
chunk 1

local
subgradients

chunk 0

Working on subgradient computation
for a single copy of the model

Find-grained
communication of

layer outputs,
subgradients, etc.

Find-grained
communication of

layer outputs,
subgradients, etc.

 CMU 15-418/618, Spring 2018

Using supercomputers for training?
▪ Fast interconnects critical for model-parallel training

- Fine-grained communication of outputs and gradients

▪ Fast interconnect diminishes need for async training algorithms
- Avoid randomness in training due to computation schedule (there remains

randomness due to SGD algorithm)

OakRidge Titan Supercomputer NVIDIA DGX-1: 8 Pascal GPUs connected
via high speed NV-Link interconnect

 CMU 15-418/618, Spring 2018

Summary: training large networks in parallel

▪ Most systems rely on asynchronous update to efficiently used
clusters of commodity machines
- Modification of SGD algorithm to meet constraints of modern parallel systems
- Open question: effects on convergence are problem dependent and not

particularly well understood
- Tighter integration / faster interconnects may provide alternative to these

methods (facilitate tightly orchestrated solutions much like supercomputing
applications)

▪ Open question: how big of networks are needed?
- >90% of connections could be removed without significant impact on quality of

network
- High-performance training of deep networks is an interesting example of

constant iteration of algorithm design and parallelization strategy
(a key theme of this course! recall the original grid solver example!)

