
Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2018

Lecture 17:

Fine-grained synchronization &
lock-free programming

CMU 15-418/618,
Spring 2018

Today’s Topics
▪ Fine-grained Synchronization
▪ Fine-grained Locking
▪ Lock-free Programming

CMU 15-418/618,
Spring 2018

Locking Problem
▪ Locks can be big and expensive
- How many atomic operations does one lock require?
- How much data requires one lock?

CMU 15-418/618,
Spring 2018

Recall CUDA 7 atomic operations
int atomicAdd(int* address, int val);

float atomicAdd(float* address, float val);

int atomicSub(int* address, int val);

int atomicExch(int* address, int val);

float atomicExch(float* address, float val);

int atomicMin(int* address, int val);

int atomicMax(int* address, int val);

unsigned int atomicInc(unsigned int* address, unsigned int val);

unsigned int atomicDec(unsigned int* address, unsigned int val);

int atomicCAS(int* address, int compare, int val);

int atomicAnd(int* address, int val); // bitwise

int atomicOr(int* address, int val); // bitwise

int atomicXor(int* address, int val); // bitwise

(omitting additional 64 bit and unsigned int versions)

CMU 15-418/618,
Spring 2018

Implementing atomic fetch-and-op

▪ Exercise: how can you build an atomic fetch+op out of atomicCAS()?
- try: atomic_min()

// atomicCAS:
// atomic compare and swap performs this logic atomically
int atomicCAS(int* addr, int compare, int val) {

int old = *addr;
if (old == compare)

*addr = val;
return old;

}

void atomic_min(int* addr, int x) {
int old = *addr;
int new = min(old, x);
while (atomicCAS(addr, old, new) != old) {
old = *addr;
new = min(old, x);

}
}

▪ What about these operations?
int atomic_increment(int* addr, int x); // for signed values of x
void lock(int* addr);

CMU 15-418/618,
Spring 2018

C++ 11 atomic<T>
▪ Provides atomic read, write, read-modify-write of entire objects

- Atomicity may be implemented by mutex or efficiently by processor-supported atomic instructions (if T is
a basic type)

▪ Provides memory ordering semantics for operations before and after
atomic operations
- By default: sequential consistency
- See std::memory_order or more detail

atomic<int> i;
i++; // atomically increment i

int a = i;
// do stuff
i.compare_exchange_strong(a, 10); // if i has same value as a, set i to 10
bool b = i.is_lock_free(); // true if implementation of atomicity

// is lock free

▪ Will be useful if implementing the lock-free programming ideas in C++

CMU 15-418/618,
Spring 2018

How are the operations atomic?
▪ x86 Lock prefix
- If the memory location is cached, then the cache retains

that location until the operation completes
- If not:
- With bus: the processor uses the lock signal and holds

the bus until the operation completes
- With directories: the processor (probably) NACKs any

request for the cache line until the operation completes

N.B. Operations must be made on non-overlapping addresses

CMU 15-418/618,
Spring 2018

Locking more than one location
▪ Data structures are often larger than a single memory

location
- How can an entire data structure be protected?

E.g. 15213 Proxylab cache

CMU 15-418/618,
Spring 2018

Example: a sorted linked list
What can go wrong if multiple threads
operate on the linked list simultaneously?

struct Node {
int value;
Node* next;

};

struct List {
Node* head;

};

void insert(List* list, int value) {

Node* n = new Node;
n->value = value;

// assume case of inserting before head of
// of list is handled here (to keep slide simple)

Node* prev = list->head;
Node* cur = list->head->next;

while (cur) {
if (cur->value > value)
break;

prev = cur;
cur = cur->next;

}

n->next = cur;
prev->next = n;

}

void delete(List* list, int value) {

// assume case of deleting first element is
// handled here (to keep slide simple)

Node* prev = list->head;
Node* cur = list->head->next;

while (cur) {
if (cur->value == value) {
prev->next = cur->next;
delete cur;
return;

}

prev = cur;
cur = cur->next;

}
}

CMU 15-418/618,
Spring 2018

Example: simultaneous insertion
Thread 1 attempts to insert 6
Thread 2 attempts to insert 7

3 5 10 11 18

Thread 1:

3 5 10 11 18

prev cur

6

CMU 15-418/618,
Spring 2018

Example: simultaneous insertion
Thread 1 attempts to insert 6
Thread 2 attempts to insert 7

Thread 1:

3 5 10 11 18

prev cur

6

Thread 2:

3 5 10 11 18

prev cur

7

Thread 1 and thread 2 both compute same prev and cur.
Result: one of the insertions gets lost!

Result: (assuming thread 1 updates prev->next before thread 2)

3 5 10 11 18

7

CMU 15-418/618,
Spring 2018

Solution 1: protect the list with a single lock

void insert(List* list, int value) {

Node* n = new Node;
n->value = value;

lock(list->lock);

// assume case of inserting before head of
// of list is handled here (to keep slide simple)

Node* prev = list->head;
Node* cur = list->head->next;

while (cur) {
if (cur->value > value)
break;

prev = cur;
cur = cur->next;

}
n->next = cur;
prev->next = n;
unlock(list->lock);

}

void delete(List* list, int value) {

lock(list->lock);

// assume case of deleting first element is
// handled here (to keep slide simple)

Node* prev = list->head;
Node* cur = list->head->next;

while (cur) {
if (cur->value == value) {
prev->next = cur->next;
delete cur;
unlock(list->lock);
return;

}

prev = cur;
cur = cur->next;

}
unlock(list->lock);

}

struct Node {
int value;
Node* next;

};

struct List {
Node* head;
Lock lock;

};
Per-list lock

CMU 15-418/618,
Spring 2018

Single global lock per data structure
▪ Good:
- It is relatively simple to implement correct mutual

exclusion for data structure operations (we just did it!)

▪ Bad:
- Operations on the data structure are serialized
- May limit parallel application performance

CMU 15-418/618,
Spring 2018

Challenge: who can do better?
struct Node {

int value;
Node* next;

};

struct List {
Node* head;

};

3 5 10 11 18

void insert(List* list, int value) {

Node* n = new Node;
n->value = value;

// assume case of inserting before head of
// of list is handled here (to keep slide simple)

Node* prev = list->head;
Node* cur = list->head->next;

while (cur) {
if (cur->value > value)
break;

prev = cur;
cur = cur->next;

}

prev->next = n;
n->next = cur;

}

void delete(List* list, int value) {

// assume case of deleting first element is
// handled here (to keep slide simple)

Node* prev = list->head;
Node* cur = list->head->next;

while (cur) {
if (cur->value == value) {
prev->next = cur->next;
delete cur;
return;

}

prev = cur;
cur = cur->next;

}
}

CMU 15-418/618,
Spring 2018

T0T0T0T0

Solution 2: “hand-over-hand” locking

3 5 10 11 18

Thread 0: delete(11)

T0 prev T0 cur

CMU 15-418/618,
Spring 2018

T0T1T1

3 5 10 18

T0

11

Thread 0: delete(11)
Thread 1: delete(10)

T0 prev T0 cur

Solution 2: “hand-over-hand” locking

CMU 15-418/618,
Spring 2018

T1T1

3 5 10 18

Thread 0: delete(11)
Thread 1: delete(10)

Solution 2: “hand-over-hand” locking

CMU 15-418/618,
Spring 2018

T1

3 5 18

Thread 0: delete(11)
Thread 1: delete(10)

Solution 2: “hand-over-hand” locking

CMU 15-418/618,
Spring 2018

Solution 2: fine-grained locking
struct Node {

int value;
Node* next;
Lock* lock;

};

struct List {
Node* head;
Lock* lock;

};

void insert(List* list, int value) {

Node* n = new Node;
n->value = value;

// assume case of insert before head handled
// here (to keep slide simple)

Node* prev, *cur;

lock(list->lock); // Why do we need to lock entire list?
prev = list->head;
cur = list->head->next;

lock(prev->lock);
unlock(list->lock);
if (cur) lock(cur->lock);

while (cur) { // Holding locks on prev & cur
if (cur->value > value)

break;

Node* old_prev = prev;
prev = cur;
cur = cur->next;
unlock(old_prev->lock);
if (cur) lock(cur->lock);

}

n->next = cur;
prev->next = n;

unlock(prev->lock);
if (cur) unlock(cur->lock);

}

void delete(List* list, int value) {

// assume case of delete head handled here
// (to keep slide simple)

Node* prev, *cur;

lock(list->lock);
prev = list->head;
cur = list->head->next;

lock(prev->lock);
unlock(list->lock);
if (cur) lock(cur->lock)

while (cur) {// Holding locks on prev & cur
if (cur->value == value) {
prev->next = cur->next;
unlock(prev->lock);
unlock(cur->lock);
delete cur;
return;

}

Node* old_prev = prev;
prev = cur;
cur = cur->next;
unlock(old_prev->lock);
if (cur) lock(cur->lock);

}
unlock(prev->lock);

}

CMU 15-418/618,
Spring 2018

Fine-grained locking
▪ Goal: enable parallelism in data structure operations

- Reduces contention for global data structure lock
- In previous linked-list example: a single monolithic lock is overly conservative

(operations on different parts of the linked list can proceed in parallel)

▪ Challenge: tricky to ensure correctness
- Determining when mutual exclusion is required
- Deadlock? (how do you immediately know the earlier linked-list code is deadlock free?)
- Livelock?

▪ Costs?
- Overhead of taking a lock each traversal step (extra instructions + traversal now

involves memory writes)
- Extra storage cost (a lock per node)
- What is a middle-ground solution that trades off some parallelism for reduced

overhead? (hint: similar issue to selection of task granularity)

CMU 15-418/618,
Spring 2018

Practice exercise
▪ Implement a fine-grained locking implementation of a

binary search tree supporting insert and delete
struct Tree {

Node* root;
};

struct Node {
int value;
Node* left;
Node* right;

};

void insert(Tree* tree, int value);
void delete(Tree* tree, int value);

CMU 15-418/618,
Spring 2018

Lock-free data structures

CMU 15-418/618,
Spring 2018

Blocking algorithms/data structures
▪ A blocking algorithm allows one thread to prevent other

threads from completing operations on a shared data structure
indefinitely

▪ Example:
- Thread 0 takes a lock on a node in our linked list
- Thread 0 is swapped out by the OS, or crashes, or is just really slow (takes a page fault), etc.
- Now, no other threads can complete operations on the data structure (although thread 0 is

not actively making progress modifying it)

▪ An algorithm that uses locks is blocking regardless of whether
the lock implementation uses spinning or pre-emption

CMU 15-418/618,
Spring 2018

Lock-free algorithms
▪ Non-blocking algorithms are lock-free if some thread is

guaranteed to make progress (“systemwide progress”)
- In lock-free case, it is not possible to preempt one of the threads at an

inopportune time and prevent progress by rest of system
- Note: this definition does not prevent starvation of any one thread

CMU 15-418/618,
Spring 2018

Single reader, single writer bounded queue *

▪ Only two threads (one producer, one consumer) accessing queue at the same time
▪ Threads never synchronize or wait on each other

- When queue is empty (pop fails), when it is full (push fails)
- What is special about operations on head & tail that avoids need for synchronization?

struct Queue {
int data[N];
unsigned head; // head of queue
unsigned tail; // next free element

};

void init(Queue* q) {
q->head = q->tail = 0;

}

// return false if queue is full
bool push(Queue* q, int value) {

// queue is full if tail is element before head
if (q->tail == MOD_N(q->head - 1))
return false;

q.data[q->tail] = value;
q->tail = MOD_N(q->tail + 1);
return true;

}

// returns false if queue is empty
bool pop(Queue* q, int* value) {

// if not empty
if (q->head != q->tail) {
*value = q->data[q->head];
q->head = MOD_N(q->head + 1);
return true;

}
return false;

}

* Assume a sequentially consistent memory system, and that x = f(x)

CMU 15-418/618,
Spring 2018

Single reader, single writer unbounded queue *

▪ Tail points to last element added
▪ Head points to element BEFORE head of queue
▪ Allocation and deletion performed by the same thread (producer)

- Only push modifies tail & reclaim; only pop modifies head

struct Node {
Node* next;
int value;

};

struct Queue {
Node* head;
Node* tail;
Node* reclaim;

};

void init(Queue* q) {
q->head = q->tail = q->reclaim = new Node;

}

void push(Queue* q, int value) {

Node* n = new Node;
n->next = NULL;
n->value = value;

q->tail->next = n;
q->tail = q->tail->next;

while (q->reclaim != q->head) {
Node* tmp = q->reclaim;
q->reclaim = q->reclaim->next;
delete tmp;

}
}

// returns false if queue is empty
bool pop(Queue* q, int* value) {

if (q->head != q->tail) {
*value = q->head->next->value;
q->head = q->head->next;
return true;

}
return false;

}

Source: Dr. Dobbs Journal

* Assume a sequentially consistent memory system

CMU 15-418/618,
Spring 2018

Single reader, single writer unbounded queue
head, tail, reclaim

tailhead, reclaim
3 10

push 3, push 10

pop (returns 3)
tailreclaim

(3) 10
head

pop (returns 10)
tail, headreclaim

(3) (10)

pop (returns false... queue empty)

tail, headreclaim
(3) (10)

reclaim, head
(10)

push 5 (triggers reclaim)

5
tail

CMU 15-418/618,
Spring 2018

Lock-free stack (first try)
struct Node {
Node* next;
int value;

};

struct Stack {
Node* top;

};

void init(Stack* s) {
s->top = NULL;

}

void push(Stack* s, Node* n) {
while (1) {
Node* old_top = s->top;
n->next = old_top;
if (compare_and_swap(&s->top, old_top, n) == old_top)
return;

}
}

Node* pop(Stack* s) {
while (1) {
Node* old_top = s->top;
if (old_top == NULL)
return NULL;

Node* new_top = old_top->next;
if (compare_and_swap(&s->top, old_top, new_top) == old_top)
return old_top; // Assume that consumer then recycles old_top

}
}

Main idea: as long as no other thread has modified the stack, a thread’s modification can proceed.
Note difference from fine-grained locks example earlier: before, implementation locked a part of a
data-structure for fine-grained access. Here, threads do not hold lock on data-structure at all.

* Assume a sequentially consistent memory system

CMU 15-418/618,
Spring 2018

The ABA problem
Thread 0 Thread 1

A B C

top

begin pop() (local variable: old_top = A, new_top = B)

B C

top

begin pop() (local variable old_top == A)
complete pop() (returns A)

modify node A: e.g., set value = 42
begin push(A)
complete push(A)

begin push(D)
complete push(D)

D B C

top

D B CA

top

CAS succeeds (sets top to B!)
complete pop() (returns A)

B C

toptime
Stack structure is corrupted! (lost D)

A, B, C, and D are stack node addresses.

CMU 15-418/618,
Spring 2018

Lock-free stack using counter for ABA soln
struct Node {
Node* next;
int value;

};

struct Stack {
Node* top;
int pop_count;

};

void init(Stack* s) {
s->top = NULL;

}

void push(Stack* s, Node* n) {
while (1) {
Node* old_top = s->top;
n->next = old_top;
if (compare_and_swap(&s->top, old_top, n) == old_top)
return;

}
}

Node* pop(Stack* s) {
while (1) {
int pop_count = s->pop_count;
Node* top = s->top;
if (top == NULL)
return NULL;

Node* new_top = top->next;
if (double_compare_and_swap(&s->top, top, new_top,

&s->pop_count, pop_count, pop_count+1))
return top;

}
}

▪ Maintain counter of pop operations
▪ Requires machine to support “double compare and swap” (DCAS) or doubleword CAS
▪ Could also solve ABA problem with node allocation and/or element reuse policies

test to see if either have changed (in this
example: return true if no changes)

CMU 15-418/618,
Spring 2018

Compare and swap on x86
▪ x86 supports a “wide” compare-and-swap instruction

- Not quite the “double compare-and-swap” used in the code on the previous
slide

- But could simply ensure the stack’s count and top fields are contiguous in
memory to use the 64-bit wide single compare-and-swap instruction below.

▪ cmpxchg8b
- “compare and exchange eight bytes”
- Can be used for compare-and-swap of two 32-bit values

▪ cmpxchg16b
- “compare and exchange 16 bytes”
- Can be used for compare-and-swap of two 64-bit values

CMU 15-418/618,
Spring 2018

Another Concern: Referencing Freed Memory
struct Node {
Node* next;
int value;

};

struct Stack {
Node* top;
int pop_count;

};

void init(Stack* s) {
s->top = NULL;

}

void push(Stack* s, Node* n) {
while (1) {
Node* old_top = s->top;
n->next = old_top;
if (compare_and_swap(&s->top, old_top, n) == old_top)
return;

}
}

Node* pop(Stack* s) {
while (1) {
int pop_count = s->pop_count;
Node* top = s->top;
if (top == NULL)
return NULL;

Node* new_top = top->next;
if (double_compare_and_swap(&s->top, top, new_top,

&s->pop_count, pop_count, pop_count+1))
return top;

}
}

What if top has been freed at this point
by another thread that popped it?

T1 & T2 both popping

Case 1:
1. T1 completes push and gets copy

of top
2. T2 starts pop
• But will get different value for top

Case 2:
1. T1 has not yet done CAS
2. T2 starts pop
• Both have same copy of top
• Both have same value for

pop_count
3. T1 does CAS
• Then CAS by T2 will fail
• So, doesn’t matter that T2 had

stale data

CMU 15-418/618,
Spring 2018

Another ABA Solution: Hazard Pointers

▪ Node cannot be recycled or reused if matches any hazard pointer

struct Node {

Node* next;

int value;

};

struct Stack {

Node* top;

};

Node *hazard[NUM_THREADS];

void init(Stack* s) {

s->top = NULL;

}

void push(Stack* s, Node* n) {

while (1) {

Node* old_top = s->top;

n->next = old_top;

if (compare_and_swap(&s->top, old_top, n) == old_top)

return;

}

}

Node* pop(Stack* s) {

while (1) {

hazard[t] = s->top;

Node* top = hazard[t];

if (top == NULL)

return NULL;

Node* new_top = top->next;

if (compare_and_swap(&s->top, top, new_top))

return top; // Caller must clear hazard[t] when it’s done with top

}

}

CMU 15-418/618,
Spring 2018

Lock-free linked list insertion *
struct Node {

int value;
Node* next;

};

struct List {
Node* head;

};

// insert new node after specified node
void insert_after(List* list, Node* after, int value) {

Node* n = new Node;
n->value = value;

// assume case of insert into empty list handled
// here (keep code on slide simple for class discussion)

Node* prev = list->head;

while (prev->next) {
if (prev == after) {
while (1) {
Node* old_next = prev->next;
n->next = old_next;
if (compare_and_swap(&prev->next, old_next, n) == old_next)

return;
}

}

prev = prev->next;
}

}

Compared to fine-grained
locking implementation:

No overhead of taking locks
No per-node storage overhead

* For simplicity, this slide assumes the *only* operation on the list is insert

CMU 15-418/618,
Spring 2018

Lock-free linked list deletion
Supporting lock-free deletion significantly complicates data-structure
Consider case where B is deleted simultaneously with successful insertion of E after B.
B now points to E, but B is not in the list!

For the curious:
- Harris 2001. A Pragmatic Implementation of Non-blocking Linked-Lists
- Fomitchev 2004. Lock-free linked lists and skip lists

A B C D

E

X
CAS succeeds
on A->next

CAS succeeds
on B->next

CMU 15-418/618,
Spring 2018

Lock-free vs. locks performance comparison
Queue

Lock-free algorithm run time normalized to run time of using pthread mutex locks

Source: Hunt 2011. Characterizing the Performance and Energy
Efficiency of Lock-Free Data Structures

Linked List

Dequeue

lf = “lock free”
fg = “fine grained lock”

CMU 15-418/618,
Spring 2018

In practice: why lock free data-structures?
▪ When optimizing parallel programs in this class you often assume

that only your program is using the machine
- Because you care about performance
- Typical assumption in scientific computing, graphics, data analytics, etc.

▪ In these cases, well written code with locks can be as fast (or faster)
than lock-free code

▪ But there are situations where code with locks can suffer from tricky
performance problems
- Multi-programmed situations where page faults, pre-emption, etc. can occur while thread

is in a critical section
- Creates problems like priority inversion, convoying, crashing in critical section, etc. that are

often discussed in OS classes

CMU 15-418/618,
Spring 2018

Summary
▪ Use fine-grained locking to reduce contention (maximize parallelism)

in operations on shared data structures
- But fine-granularity can increase code complexity (errors) and increase execution overhead

▪ Lock-free data structures: non-blocking solution to avoid overheads
due to locks
- But can be tricky to implement (ensuring correctness in a lock-free setting has its own

overheads)
- Still requires appropriate memory fences on modern relaxed consistency hardware

▪ Note: a lock-free design does not eliminate contention
- Compare-and-swap can fail under heavy contention, requiring spins

CMU 15-418/618,
Spring 2018

More reading
▪ Michael and Scott 1996. Simple, Fast and Practical Non-Blocking and Blocking Concurrent

Queue Algorithms
- Multiple reader/writer lock-free queue

▪ Harris 2001. A Pragmatic Implementation of Non-Blocking Linked-Lists
▪ Many good blog posts and articles on the web:

- http://www.drdobbs.com/cpp/lock-free-code-a-false-sense-of-security/210600279
- http://developers.memsql.com/blog/common-pitfalls-in-writing-lock-free-algorithms/

▪ Often students like to implement lock-free data structures for projects
- Linked list, skip-list based maps (Java’s ConcurrentSkipListMap), list-based sets, etc.
- Recommend using CMU Ph.D. student Michael Sullivan’s RMC system to implement

these projects.

http://developers.memsql.com/blog/common-pitfalls-in-writing-lock-free-algorithms/

