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An Introduction to MPI
Parallel Programming with the 

Message Passing Interface

Largely based upon the work of

William Gropp

Ewing Lusk

Argonne National Laboratory



15-418/618: Week 7 Recitation

• MPI Tutorial

• Code Walk-Through 

– matrix.h

– mvmul.cpp

• Directories of interest:

– /afs/cs.cmu.edu/academic/class/15418-

s18/public/recw7/recw7-code

– /afs/cs.cmu.edu/academic/class/15418-

s18/public/recw7/recw7-code/mvmul-extra
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Outline

• Background

– The message-passing model

– Origins of MPI and current status

– Sources of further MPI information

• Basics of MPI message passing

– Hello, World!

– Fundamental concepts

– Simple examples in Fortran and C

• Extended point-to-point operations

– non-blocking communication

– modes
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Outline (continued)

• Advanced MPI topics

– Collective operations

– More on MPI datatypes

– Application topologies

– The profiling interface

• Toward a portable MPI environment
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Companion Material

• Online examples available at

http://www.mcs.anl.gov/mpi/tutorials/perf

• ftp://ftp.mcs.anl.gov/mpi/mpiexmpl.tar.gz

contains source code and run scripts that 

allows you to evaluate your own MPI 

implementation

http://www.mcs.anl.gov/mpi/tutorials/perf
ftp://ftp.mcs.anl.gov/mpi/mpiexmpl.tar.gz
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The Message-Passing Model

• A process is (traditionally) a program counter 

and address space.

• Processes may have multiple threads

(program counters and associated stacks) 

sharing a single address space.  MPI is for 

communication among processes, which 

have separate address spaces.

• Interprocess communication consists of 

– Synchronization

– Movement of data from one process’s address 

space to another’s.
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Types of Parallel Computing 

Models

• Data Parallel - the same instructions are carried out 

simultaneously on multiple data items (SIMD)

• Task Parallel - different instructions on different data 

(MIMD)

• SPMD (single program, multiple data) not 

synchronized at individual operation level

• SPMD is equivalent to MIMD since each MIMD 

program can be made SPMD (similarly for SIMD, but 

not in practical sense.)

Message passing (and MPI) is for MIMD/SPMD 

parallelism.  HPF is an example of an SIMD interface.
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Cooperative Operations for 

Communication
• The message-passing approach makes the exchange 

of data cooperative.

• Data is explicitly sent by one process and received by 

another.

• An advantage is that any change in the receiving 

process’s memory is made with the receiver’s explicit 

participation.

• Communication and synchronization are combined.

Process 0 Process 1

Send(data)

Receive(data)
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One-Sided Operations for 

Communication

• One-sided operations between processes include 

remote memory reads and writes

• Only one process needs to explicitly participate.

• An advantage is that communication and 

synchronization are decoupled

• One-sided operations are part of MPI-2.

Process 0 Process 1

Put(data)

(memory)

(memory)

Get(data)
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What is MPI?

• A message-passing library specification
– extended message-passing model

– not a language or compiler specification

– not a specific implementation or product

• For parallel computers, clusters, and 
heterogeneous networks

• Full-featured

• Designed to provide access to advanced 
parallel hardware for
– end users

– library writers

– tool developers



11

MPI Sources

• The Standard itself:

– at http://www.mpi-forum.org

– All MPI official releases, in both postscript and HTML

• Books:

– Using MPI:  Portable Parallel Programming with the Message-
Passing Interface, by Gropp, Lusk, and Skjellum, MIT Press, 1994.

– MPI:  The Complete Reference, by Snir, Otto, Huss-Lederman, 
Walker, and Dongarra, MIT Press, 1996.

– Designing and Building Parallel Programs, by Ian Foster, Addison-
Wesley, 1995.

– Parallel Programming with MPI, by Peter Pacheco, Morgan-
Kaufmann, 1997.

– MPI: The Complete Reference Vol 1 and 2,MIT Press, 1998(Fall).

• Other information on Web:

– at http://www.mcs.anl.gov/mpi

– pointers to lots of stuff, including other talks and tutorials, a FAQ, 
other MPI pages

http://www.mpi-forum.org/
http://www.mcs.anl.gov/mpi
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Why Use MPI?

• MPI provides a powerful, efficient, and 

portable way to express parallel programs

• MPI was explicitly designed to enable 

libraries… 

• … which may eliminate the need for many 

users to learn (much of) MPI
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A Minimal MPI Program (C)

#include "mpi.h"

#include <stdio.h>

int main( int argc, char *argv[] )

{

MPI_Init( &argc, &argv );

printf( "Hello, world!\n" );

MPI_Finalize();

return 0;

}
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Notes on C and C++

• In C:

– mpi.h must be #included

– MPI functions return error codes or MPI_SUCCESS

• In C++

– Bindings are part of MPI-2.

– Exceptions are thrown (MPI-2) vs error codes.
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Error Handling

• By default, an error causes all processes to 

abort. 

• The user can cause routines to return (with 

an error code) instead.

– In C++, exceptions are thrown (MPI-2)

• A user can also write and install custom error 

handlers.

• Libraries might want to handle errors 

differently from applications. 
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Running MPI Programs

• The MPI-1 Standard does not specify how to run an 

MPI program, just as the C/C++ standard does not 

specify how to run a C/C++ program.

• In general, starting an MPI program is dependent on 

the implementation of MPI you are using, and might 

require various scripts, program arguments, and/or 

environment variables.

• mpiexec <args> is part of MPI-2, as a 

recommendation, but not a requirement

– You can use mpiexec for MPICH and mpirun for SGI’s MPI in 

this class



17

Finding Out About the 

Environment
• Two important questions that arise early in a 

parallel program are:

– How many processes are participating in this 

computation?

– Which one am I?

• MPI provides functions to answer these 

questions:

– MPI_Comm_size reports the number of processes.

– MPI_Comm_rank reports the rank, a number 

between 0 and size-1, identifying the calling process
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Better Hello (C)

#include "mpi.h"

#include <stdio.h>

int main( int argc, char *argv[] )

{

int rank, size;

MPI_Init( &argc, &argv );

MPI_Comm_rank( MPI_COMM_WORLD, &rank );

MPI_Comm_size( MPI_COMM_WORLD, &size );

printf( "I am %d of %d\n", rank, size );

MPI_Finalize();

return 0;

}
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MPI Basic Send/Receive

• We need to fill in the details in

• Things that need specifying:

– How will “data” be described?

– How will processes be identified?

– How will the receiver recognize/screen 

messages?

– What will it mean for these operations to 

complete?

Process 0 Process 1

Send(data)

Receive(data)
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What is message passing?

• Data transfer plus synchronization

• Requires cooperation of sender and receiver

• Cooperation not always apparent in code

DataProcess 0

Process 1

May I Send?

Yes

Data
Data

Data
Data

Data
Data

Data
Data

Time
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Some Basic Concepts

• Processes can be collected into groups.

• Each message is sent in a context, and must 

be received in the same context.

• A group and context together form a 

communicator.

• A process is identified by its rank in the group 

associated with a communicator.

• There is a default communicator whose group 

contains all initial processes, called 
MPI_COMM_WORLD.
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MPI Datatypes

• The data in a message to sent or received is 

described by a triple (address, count, datatype), 

where

• An MPI datatype is recursively defined as:

– predefined, corresponding to a data type from the language 

(e.g., MPI_INT, MPI_DOUBLE_PRECISION)

– a contiguous array of MPI datatypes

– a strided block of datatypes

– an indexed array of blocks of datatypes

– an arbitrary structure of datatypes

• There are MPI functions to construct custom 

datatypes, such an array of (int, float) pairs, or a row 

of a matrix stored columnwise.
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MPI Tags

• Messages are sent with an accompanying 

user-defined integer tag, to assist the 

receiving process in identifying the message.

• Messages can be screened at the receiving 

end by specifying a specific tag, or not 
screened by specifying MPI_ANY_TAG as the 

tag in a receive.

• Some non-MPI message-passing systems 

have called tags “message types”.  MPI calls 

them tags to avoid confusion with datatypes.
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MPI Basic (Blocking) Send

MPI_SEND (start, count, datatype, dest, tag, comm)

• The message buffer is described by (start, count, 
datatype).

• The target process is specified by dest, which is the 

rank of the target process in the communicator specified 
by comm.

• When this function returns, the data has been delivered 

to the system and the buffer can be reused.  The 

message may not have been received by the target 

process.
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MPI Basic (Blocking) Receive

MPI_RECV(start, count, datatype, source, tag, comm, status)

• Waits until a matching (on source and tag) message is 

received from the system, and the buffer can be used.

• source is rank in communicator specified by comm, or 

MPI_ANY_SOURCE.

• status contains further information

• Receiving fewer than count occurrences of datatype is 

OK, but receiving more is an error.



Non-Blocking Receive and Send
• int MPI_Isend( const void *buf, 

int count, 

MPI_Datatype datatype, 

int dest, int tag, 

MPI_Comm comm, 

MPI_Request *request)

• int MPI_Irecv( void *buf, 

int count, 

MPI_Datatype datatype, 

int source, 

int tag, 

MPI_Comm comm, 

MPI_Request *request)
26



Non-Blocking Send and Receive

• int MPI_Wait( MPI_Request *request, 

MPI_Status *status)

• int MPI_Test( MPI_Request *request,

int *flag, 

MPI_Status *status)

• Wait blocks for a previously non-blocking receive

• Test determines if done 

– C/C++ Convention: True/0, False/Non-Zero otherwise
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MPI_Status

typedef struct _MPI_Status {

int count;

int cancelled;

int MPI_SOURCE;

int MPI_TAG;

int MPI_ERROR;

} MPI_Status, *PMPI_Status;
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MPI_Probe

• int MPI_Probe(int source,

int tag, 

MPI_Comm comm, 

MPI_Status *status)

• Like a MPI_Recv, but just gets status

29
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Retrieving Further Information

• Status is a data structure allocated in the user’s program.

• In C:
int recvd_tag, recvd_from, recvd_count;

MPI_Status status;

MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, ..., &status )

recvd_tag = status.MPI_TAG;

recvd_from = status.MPI_SOURCE;

MPI_Get_count( &status, datatype, &recvd_count );
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Why Datatypes?

• Since all data is labeled by type, an MPI 

implementation can support communication between 

processes on machines with very different memory 

representations and lengths of elementary datatypes 

(heterogeneous communication).

• Specifying application-oriented layout of data in 

memory

– reduces memory-to-memory copies in the implementation

– allows the use of special hardware (scatter/gather) when 

available
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Tags and Contexts

• Separation of messages used to be accomplished by 

use of tags, but

– this requires libraries to be aware of tags used by other 

libraries.

– this can be defeated by use of “wild card” tags.

• Contexts are different from tags

– no wild cards allowed

– allocated dynamically by the system when a library sets up a 

communicator for its own use.

• User-defined tags still provided in MPI for user 

convenience in organizing application

• Use MPI_Comm_split to create new communicators
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MPI is Simple

• Many parallel programs can be written using 

just these six functions, only two of which are 

non-trivial:

– MPI_INIT

– MPI_FINALIZE

– MPI_COMM_SIZE

– MPI_COMM_RANK

– MPI_SEND

– MPI_RECV

• Point-to-point (send/recv) isn’t the only way...
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Introduction to Collective 

Operations in MPI

• Collective operations are called by all 
processes in a communicator.

• MPI_BCAST distributes data from one 
process (the root) to all others in a 
communicator.

• MPI_REDUCE combines data from all 
processes in communicator and returns it to 
one process.

• In many numerical algorithms, 
SEND/RECEIVE can be replaced by 
BCAST/REDUCE, improving both simplicity 
and efficiency.
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Example:  PI in C -1

#include "mpi.h"

#include <math.h>

int main(int argc, char *argv[])

{

int done = 0, n, myid, numprocs, i, rc;

double PI25DT = 3.141592653589793238462643;

double mypi, pi, h, sum, x, a;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

MPI_Comm_rank(MPI_COMM_WORLD,&myid);

while (!done)  {

if (myid == 0) {

printf("Enter the number of intervals: (0 quits) ");

scanf("%d",&n);

}

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

if (n == 0) break;
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Example:  PI in C - 2

h   = 1.0 / (double) n;

sum = 0.0;

for (i = myid + 1; i <= n; i += numprocs) {

x = h * ((double)i - 0.5);

sum += 4.0 / (1.0 + x*x);

}

mypi = h * sum;

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

MPI_COMM_WORLD);

if (myid == 0)

printf("pi is approximately %.16f, Error is %.16f\n",

pi, fabs(pi - PI25DT));

}

MPI_Finalize();

return 0;

}
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Alternative set of 6 Functions for 
Simplified MPI

– MPI_INIT

– MPI_FINALIZE

– MPI_COMM_SIZE

– MPI_COMM_RANK

– MPI_BCAST

– MPI_REDUCE

• What else is needed (and why)?



38

• Send a large message from process 0 to process 1

– If there is insufficient storage at the destination, the send 

must wait for the user to provide the memory space (through 

a receive)

• What happens with

Sources of Deadlocks

Process 0

Send(1)

Recv(1)

Process 1

Send(0)

Recv(0)

• This is called “unsafe” because it depends on the 

availability of system buffers
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Some Solutions to the “unsafe” 

Problem

• Order the operations more carefully:

Process 0

Send(1)

Recv(1)

Process 1

Recv(0)

Send(0)

• Use non-blocking operations:

Process 0

Isend(1)

Irecv(1)

Waitall

Process 1

Isend(0)

Irecv(0)

Waitall
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Toward a Portable MPI 

Environment
• MPICH is a high-performance portable 

implementation of MPI (1).

• It runs on MPP's, clusters, and heterogeneous 

networks of workstations.

• In a wide variety of environments, one can do:
configure

make

mpicc -mpitrace myprog.c

mpirun -np 10 myprog

upshot myprog.log

to build, compile, run, and analyze performance.
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Extending the Message-Passing Interface

• Dynamic Process Management
– Dynamic process startup

– Dynamic establishment of connections

• One-sided communication
– Put/get

– Other operations

• Parallel I/O

• Other MPI-2 features
– Generalized requests

– Bindings for C++/ Fortran-90; interlanguage issues
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Some Simple Exercises

• Compile and run the hello and pi 

programs.

• Modify the pi program to use send/receive 

instead of bcast/reduce.

• Write a program that sends a message 

around a ring.  That is, process 0 reads a line 

from the terminal and sends it to process 1, 

who sends it to process 2, etc.  The last 

process sends it back to process 0, who 

prints it. 

• Time programs with MPI_WTIME.  (Find it.)
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When to use MPI

• Portability and Performance

• Irregular Data Structures

• Building Tools for Others

– Libraries

• Need to Manage memory on a per processor 

basis
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Summary

• The parallel computing community has 

cooperated on the development of a standard 

for message-passing libraries.

• There are many implementations, on nearly 

all platforms.

• MPI subsets are easy to learn and use.

• Lots of MPI material is available.


