
1

An Introduction to MPI
Parallel Programming with the 

Message Passing Interface

Largely based upon the work of

William Gropp

Ewing Lusk

Argonne National Laboratory



15-418/618: Week 7 Recitation

• MPI Tutorial

• Code Walk-Through 

– matrix.h

– mvmul.cpp

• Directories of interest:

– /afs/cs.cmu.edu/academic/class/15418-

s18/public/recw7/recw7-code

– /afs/cs.cmu.edu/academic/class/15418-

s18/public/recw7/recw7-code/mvmul-extra

2



3

Outline

• Background

– The message-passing model

– Origins of MPI and current status

– Sources of further MPI information

• Basics of MPI message passing

– Hello, World!

– Fundamental concepts

– Simple examples in Fortran and C

• Extended point-to-point operations

– non-blocking communication

– modes



4

Outline (continued)

• Advanced MPI topics

– Collective operations

– More on MPI datatypes

– Application topologies

– The profiling interface

• Toward a portable MPI environment



5

Companion Material

• Online examples available at

http://www.mcs.anl.gov/mpi/tutorials/perf

• ftp://ftp.mcs.anl.gov/mpi/mpiexmpl.tar.gz

contains source code and run scripts that 

allows you to evaluate your own MPI 

implementation

http://www.mcs.anl.gov/mpi/tutorials/perf
ftp://ftp.mcs.anl.gov/mpi/mpiexmpl.tar.gz


6

The Message-Passing Model

• A process is (traditionally) a program counter 

and address space.

• Processes may have multiple threads

(program counters and associated stacks) 

sharing a single address space.  MPI is for 

communication among processes, which 

have separate address spaces.

• Interprocess communication consists of 

– Synchronization

– Movement of data from one process’s address 

space to another’s.



7

Types of Parallel Computing 

Models

• Data Parallel - the same instructions are carried out 

simultaneously on multiple data items (SIMD)

• Task Parallel - different instructions on different data 

(MIMD)

• SPMD (single program, multiple data) not 

synchronized at individual operation level

• SPMD is equivalent to MIMD since each MIMD 

program can be made SPMD (similarly for SIMD, but 

not in practical sense.)

Message passing (and MPI) is for MIMD/SPMD 

parallelism.  HPF is an example of an SIMD interface.



8

Cooperative Operations for 

Communication
• The message-passing approach makes the exchange 

of data cooperative.

• Data is explicitly sent by one process and received by 

another.

• An advantage is that any change in the receiving 

process’s memory is made with the receiver’s explicit 

participation.

• Communication and synchronization are combined.

Process 0 Process 1

Send(data)

Receive(data)



9

One-Sided Operations for 

Communication

• One-sided operations between processes include 

remote memory reads and writes

• Only one process needs to explicitly participate.

• An advantage is that communication and 

synchronization are decoupled

• One-sided operations are part of MPI-2.

Process 0 Process 1

Put(data)

(memory)

(memory)

Get(data)



10

What is MPI?

• A message-passing library specification
– extended message-passing model

– not a language or compiler specification

– not a specific implementation or product

• For parallel computers, clusters, and 
heterogeneous networks

• Full-featured

• Designed to provide access to advanced 
parallel hardware for
– end users

– library writers

– tool developers



11

MPI Sources

• The Standard itself:

– at http://www.mpi-forum.org

– All MPI official releases, in both postscript and HTML

• Books:

– Using MPI:  Portable Parallel Programming with the Message-
Passing Interface, by Gropp, Lusk, and Skjellum, MIT Press, 1994.

– MPI:  The Complete Reference, by Snir, Otto, Huss-Lederman, 
Walker, and Dongarra, MIT Press, 1996.

– Designing and Building Parallel Programs, by Ian Foster, Addison-
Wesley, 1995.

– Parallel Programming with MPI, by Peter Pacheco, Morgan-
Kaufmann, 1997.

– MPI: The Complete Reference Vol 1 and 2,MIT Press, 1998(Fall).

• Other information on Web:

– at http://www.mcs.anl.gov/mpi

– pointers to lots of stuff, including other talks and tutorials, a FAQ, 
other MPI pages

http://www.mpi-forum.org/
http://www.mcs.anl.gov/mpi


12

Why Use MPI?

• MPI provides a powerful, efficient, and 

portable way to express parallel programs

• MPI was explicitly designed to enable 

libraries… 

• … which may eliminate the need for many 

users to learn (much of) MPI



13

A Minimal MPI Program (C)

#include "mpi.h"

#include <stdio.h>

int main( int argc, char *argv[] )

{

MPI_Init( &argc, &argv );

printf( "Hello, world!\n" );

MPI_Finalize();

return 0;

}



14

Notes on C and C++

• In C:

– mpi.h must be #included

– MPI functions return error codes or MPI_SUCCESS

• In C++

– Bindings are part of MPI-2.

– Exceptions are thrown (MPI-2) vs error codes.



15

Error Handling

• By default, an error causes all processes to 

abort. 

• The user can cause routines to return (with 

an error code) instead.

– In C++, exceptions are thrown (MPI-2)

• A user can also write and install custom error 

handlers.

• Libraries might want to handle errors 

differently from applications. 



16

Running MPI Programs

• The MPI-1 Standard does not specify how to run an 

MPI program, just as the C/C++ standard does not 

specify how to run a C/C++ program.

• In general, starting an MPI program is dependent on 

the implementation of MPI you are using, and might 

require various scripts, program arguments, and/or 

environment variables.

• mpiexec <args> is part of MPI-2, as a 

recommendation, but not a requirement

– You can use mpiexec for MPICH and mpirun for SGI’s MPI in 

this class



17

Finding Out About the 

Environment
• Two important questions that arise early in a 

parallel program are:

– How many processes are participating in this 

computation?

– Which one am I?

• MPI provides functions to answer these 

questions:

– MPI_Comm_size reports the number of processes.

– MPI_Comm_rank reports the rank, a number 

between 0 and size-1, identifying the calling process



18

Better Hello (C)

#include "mpi.h"

#include <stdio.h>

int main( int argc, char *argv[] )

{

int rank, size;

MPI_Init( &argc, &argv );

MPI_Comm_rank( MPI_COMM_WORLD, &rank );

MPI_Comm_size( MPI_COMM_WORLD, &size );

printf( "I am %d of %d\n", rank, size );

MPI_Finalize();

return 0;

}



19

MPI Basic Send/Receive

• We need to fill in the details in

• Things that need specifying:

– How will “data” be described?

– How will processes be identified?

– How will the receiver recognize/screen 

messages?

– What will it mean for these operations to 

complete?

Process 0 Process 1

Send(data)

Receive(data)



20

What is message passing?

• Data transfer plus synchronization

• Requires cooperation of sender and receiver

• Cooperation not always apparent in code

DataProcess 0

Process 1

May I Send?

Yes

Data
Data

Data
Data

Data
Data

Data
Data

Time



21

Some Basic Concepts

• Processes can be collected into groups.

• Each message is sent in a context, and must 

be received in the same context.

• A group and context together form a 

communicator.

• A process is identified by its rank in the group 

associated with a communicator.

• There is a default communicator whose group 

contains all initial processes, called 
MPI_COMM_WORLD.



22

MPI Datatypes

• The data in a message to sent or received is 

described by a triple (address, count, datatype), 

where

• An MPI datatype is recursively defined as:

– predefined, corresponding to a data type from the language 

(e.g., MPI_INT, MPI_DOUBLE_PRECISION)

– a contiguous array of MPI datatypes

– a strided block of datatypes

– an indexed array of blocks of datatypes

– an arbitrary structure of datatypes

• There are MPI functions to construct custom 

datatypes, such an array of (int, float) pairs, or a row 

of a matrix stored columnwise.



23

MPI Tags

• Messages are sent with an accompanying 

user-defined integer tag, to assist the 

receiving process in identifying the message.

• Messages can be screened at the receiving 

end by specifying a specific tag, or not 
screened by specifying MPI_ANY_TAG as the 

tag in a receive.

• Some non-MPI message-passing systems 

have called tags “message types”.  MPI calls 

them tags to avoid confusion with datatypes.



24

MPI Basic (Blocking) Send

MPI_SEND (start, count, datatype, dest, tag, comm)

• The message buffer is described by (start, count, 
datatype).

• The target process is specified by dest, which is the 

rank of the target process in the communicator specified 
by comm.

• When this function returns, the data has been delivered 

to the system and the buffer can be reused.  The 

message may not have been received by the target 

process.



25

MPI Basic (Blocking) Receive

MPI_RECV(start, count, datatype, source, tag, comm, status)

• Waits until a matching (on source and tag) message is 

received from the system, and the buffer can be used.

• source is rank in communicator specified by comm, or 

MPI_ANY_SOURCE.

• status contains further information

• Receiving fewer than count occurrences of datatype is 

OK, but receiving more is an error.



Non-Blocking Receive and Send
• int MPI_Isend( const void *buf, 

int count, 

MPI_Datatype datatype, 

int dest, int tag, 

MPI_Comm comm, 

MPI_Request *request)

• int MPI_Irecv( void *buf, 

int count, 

MPI_Datatype datatype, 

int source, 

int tag, 

MPI_Comm comm, 

MPI_Request *request)
26



Non-Blocking Send and Receive

• int MPI_Wait( MPI_Request *request, 

MPI_Status *status)

• int MPI_Test( MPI_Request *request,

int *flag, 

MPI_Status *status)

• Wait blocks for a previously non-blocking receive

• Test determines if done 

– C/C++ Convention: True/0, False/Non-Zero otherwise

27



MPI_Status

typedef struct _MPI_Status {

int count;

int cancelled;

int MPI_SOURCE;

int MPI_TAG;

int MPI_ERROR;

} MPI_Status, *PMPI_Status;

28



MPI_Probe

• int MPI_Probe(int source,

int tag, 

MPI_Comm comm, 

MPI_Status *status)

• Like a MPI_Recv, but just gets status

29



30

Retrieving Further Information

• Status is a data structure allocated in the user’s program.

• In C:
int recvd_tag, recvd_from, recvd_count;

MPI_Status status;

MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, ..., &status )

recvd_tag = status.MPI_TAG;

recvd_from = status.MPI_SOURCE;

MPI_Get_count( &status, datatype, &recvd_count );



31

Why Datatypes?

• Since all data is labeled by type, an MPI 

implementation can support communication between 

processes on machines with very different memory 

representations and lengths of elementary datatypes 

(heterogeneous communication).

• Specifying application-oriented layout of data in 

memory

– reduces memory-to-memory copies in the implementation

– allows the use of special hardware (scatter/gather) when 

available



32

Tags and Contexts

• Separation of messages used to be accomplished by 

use of tags, but

– this requires libraries to be aware of tags used by other 

libraries.

– this can be defeated by use of “wild card” tags.

• Contexts are different from tags

– no wild cards allowed

– allocated dynamically by the system when a library sets up a 

communicator for its own use.

• User-defined tags still provided in MPI for user 

convenience in organizing application

• Use MPI_Comm_split to create new communicators



33

MPI is Simple

• Many parallel programs can be written using 

just these six functions, only two of which are 

non-trivial:

– MPI_INIT

– MPI_FINALIZE

– MPI_COMM_SIZE

– MPI_COMM_RANK

– MPI_SEND

– MPI_RECV

• Point-to-point (send/recv) isn’t the only way...



34

Introduction to Collective 

Operations in MPI

• Collective operations are called by all 
processes in a communicator.

• MPI_BCAST distributes data from one 
process (the root) to all others in a 
communicator.

• MPI_REDUCE combines data from all 
processes in communicator and returns it to 
one process.

• In many numerical algorithms, 
SEND/RECEIVE can be replaced by 
BCAST/REDUCE, improving both simplicity 
and efficiency.



35

Example:  PI in C -1

#include "mpi.h"

#include <math.h>

int main(int argc, char *argv[])

{

int done = 0, n, myid, numprocs, i, rc;

double PI25DT = 3.141592653589793238462643;

double mypi, pi, h, sum, x, a;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

MPI_Comm_rank(MPI_COMM_WORLD,&myid);

while (!done)  {

if (myid == 0) {

printf("Enter the number of intervals: (0 quits) ");

scanf("%d",&n);

}

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

if (n == 0) break;



36

Example:  PI in C - 2

h   = 1.0 / (double) n;

sum = 0.0;

for (i = myid + 1; i <= n; i += numprocs) {

x = h * ((double)i - 0.5);

sum += 4.0 / (1.0 + x*x);

}

mypi = h * sum;

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

MPI_COMM_WORLD);

if (myid == 0)

printf("pi is approximately %.16f, Error is %.16f\n",

pi, fabs(pi - PI25DT));

}

MPI_Finalize();

return 0;

}



37

Alternative set of 6 Functions for 
Simplified MPI

– MPI_INIT

– MPI_FINALIZE

– MPI_COMM_SIZE

– MPI_COMM_RANK

– MPI_BCAST

– MPI_REDUCE

• What else is needed (and why)?



38

• Send a large message from process 0 to process 1

– If there is insufficient storage at the destination, the send 

must wait for the user to provide the memory space (through 

a receive)

• What happens with

Sources of Deadlocks

Process 0

Send(1)

Recv(1)

Process 1

Send(0)

Recv(0)

• This is called “unsafe” because it depends on the 

availability of system buffers



39

Some Solutions to the “unsafe” 

Problem

• Order the operations more carefully:

Process 0

Send(1)

Recv(1)

Process 1

Recv(0)

Send(0)

• Use non-blocking operations:

Process 0

Isend(1)

Irecv(1)

Waitall

Process 1

Isend(0)

Irecv(0)

Waitall



40

Toward a Portable MPI 

Environment
• MPICH is a high-performance portable 

implementation of MPI (1).

• It runs on MPP's, clusters, and heterogeneous 

networks of workstations.

• In a wide variety of environments, one can do:
configure

make

mpicc -mpitrace myprog.c

mpirun -np 10 myprog

upshot myprog.log

to build, compile, run, and analyze performance.



41

Extending the Message-Passing Interface

• Dynamic Process Management
– Dynamic process startup

– Dynamic establishment of connections

• One-sided communication
– Put/get

– Other operations

• Parallel I/O

• Other MPI-2 features
– Generalized requests

– Bindings for C++/ Fortran-90; interlanguage issues



42

Some Simple Exercises

• Compile and run the hello and pi 

programs.

• Modify the pi program to use send/receive 

instead of bcast/reduce.

• Write a program that sends a message 

around a ring.  That is, process 0 reads a line 

from the terminal and sends it to process 1, 

who sends it to process 2, etc.  The last 

process sends it back to process 0, who 

prints it. 

• Time programs with MPI_WTIME.  (Find it.)



43

When to use MPI

• Portability and Performance

• Irregular Data Structures

• Building Tools for Others

– Libraries

• Need to Manage memory on a per processor 

basis



44

Summary

• The parallel computing community has 

cooperated on the development of a standard 

for message-passing libraries.

• There are many implementations, on nearly 

all platforms.

• MPI subsets are easy to learn and use.

• Lots of MPI material is available.


