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OpenMP

A higher level interface for threads

programming  http://www.openmp.org
Parallelization via source code annotations

All major compilers support it, including gnu
Gcce 4.8 supports OpenMP version 3.1

hitps://gcc.gnu.org/wiki/openmp
Compare with explicit threads programing

#pragma omp parallel private(i)

shared(n)

{ I0 = $TID*n/$nthreads;

#pragma omp for 11 =10 + n/$nthreads;

for(i=0; i < n; i++) for (i=i0; i< i1; i++)
work(i); work(i);

} 8

Credit: Scott Baden, CSE@QUCSD


http://www.openmp.org/

OpenMP’s Fork-Join Model

A program begins life as a single thread

Enter a parallel region, spawning a team of threads

The lexically enclosed program statements execute
In parallel by all team members

When we reach the end of the scope...
» The team of threads synchronize at a barrier
and are disbanded; they enter a wait state
* Only the initial thread continues

Thread teams can be created and disbanded many
times during program execution, but this can be
costly

A clever compiler can avoid many threadcreations
and joins

Credit: Scott Baden, CSE@UCSD




Fork join model with loops

Seung-Jai Min
Serial l
* cout << “Serial\n”;
N =1000;
e #pragma omp parallel{ Parallel
e ##pragma omp for
. for (i=0; i<N; i++) A[i] = B[i] + ]
C[i]; Serial

e #pragma omp single
e M =A[N/2]; Parallel
e #fpragma omp for for (j=0;
j<M; j+4)

* plj] = ali] - r[il; Serial |
*}

“Cini ”, redit: Scott Baden
e Cout << FlnISh\n : Credit: Scott Baden, CSE@UCSD 10



Loop parallelization

 The translator automatically generates appropriate
local loop bounds

« Also inserts any needed barriers

* Wk use private/shared clauses to distinguish thread
orivate from global data

e Handles irregular problems
e Decomposition, Can be static or dynamic

#pragma omp parallel for shared(Keys) private(i) reduction(&:done)
for i =OE;itoN-2 by?2

if (Keys[i] > Keys[i+1]) swap Keysli] <> Keys[i+1]; done *= false;}
end do

return done;



Another way of annotating loops

e These are equivalent

#pragma omp parallel

{

#pragma omp for
for (inti=1:i< N-1: i++) afi] = (bli+1] - b[i-1])/2h

afi] = (b[i+1] - b[i-1])/2h

#pragma omp parallel for
for (inti=1; i< N-1;i++)

Credit: Scott Baden, CSE@UCSD
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Variable scoping

« Any variables declared outside a parallel region are

shared by all threads
Variables declared inside the region are private

Shared & private declarations override defaults, also
usefule as documentation

Int main (int argc, char *argv|[]) {
double a[N], b[N], c[N];
inti;
#pragma omp parallel for shared(a,b,c,N) private(i)
for (i=0; 1 < N; i++)

a[i] = b[i] = (double) i;

#pragma omp parallel for shared(a,b,c,N) private(i)
for (i=0; i<N; i++)
cli] = ali] + sqrt(b[i]);



Dealing with loop carried

dependences _
e OpenMP will dutifully parallelize a loop when you
tell it to, even if doing so “breaks” the correctness

of the code
Int* fib = new Int[N];
fib[0] = fib[1] = 1;
#pragma omp parallel for num_threads(2)
for (I=2; I<N; i++)
fib[i] = fib[i-1]+ fib[i-2];
e Sometimes we can restructure an algorithm, e.g.
odd-even sorting.

e OpenMP may warn you when it Is doing something
unsafe, but not always



Why dependencies prevent

parallelization,
o Consider the following loops

#pragma omp parallel

{

#pragma omp for nowait
for (inti=1;i< N-1; i++)
ali] = (bli+1] - bli-1])/2h
#pragma omp for
for (int i=N-2;i>0;i--)
b[i] = (a[i+1] - a[i-1])/2h
}

* Why aren’t the results incorrect?

Credit: Scott Baden, CSE@UCSD
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Why dependencies prevent

parallelization.
« Consider the following loops

#pragma omp parallel
{#pragma omp for nowait

for (inti=1;i< N-1;i++)
alil] = (b[i+1] - b[i-1])/2h
#pragma omp for
for (int N-2;i>0; i--)
bli] = (@[i+1] - a[i-1])/2h

}

 Results will be incorrect because the array a[ ], In
loop #2, depends on the outcome of loop #1

(a true dependence)

w We don’t know when the threads finish
w OpenMP doesn’t define the order that the loop iterations
wil be incorrect

Credit: Scott Baden, CSE@UCSD



Barrier Synchronization in OpenMP

 Todeal with true- and anti-dependences, OpenMP

Inserts a barrier (by default) between loops:

for (inti=0; i< N-1;i++)
ali] = (b[|+1] R b[| 1D/2h
BARRIER

for (inti=N-1; i>=0; i--)
b[i] = (a[i+1] -a[i-1])/2h

« No thread may pass the barrier until all have arrived
hence loop 2 may not write into b until loop 1 has
finished reading the old values

e Do we need the barrier In thls case? Yes
for (inti=0; i< N-1;i++)

alil] = (b[i+1] - bl[i-11)/2h
BARRIER?
for (inti=N-1; i>=0; i--)
cli] = ali]/2;

Credit: Scott Baden, CSE@UCSD 18



Which loops can OpenMP parallellize, assuming
there is a barrier before the start of the

A1 &@op?
1&3
C.3&4
D.2&4 All arrays have at least N
E. All the loops elements
1. fori=1toN-1 3.for1=01to N-1step?2
A[i] = A[i] +BJ[i-1]; All] = A[I-1] +Alfi];
2. fori=0to N-2 4.for1=010N-2{
A[i+1] = A[i] +1; All] =BliJ;
Cli] = Al +B[];
E[i] = C[i+1];

¥

Credit: Scott Baden, CSE@UCSD
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Which loops can OpenMP parallellize, assuming
there is a barrier before the start of the

loop?
HeB& 2
C.3&4
D.2&4 All arrays have at least N
E. All the loops elements
1. fori=1toN-1 3. for1=0to N-1step?2
A[i] = A[i] +BJ[i-1]; All] = A[I-1] +Alfi];
2. fori=0to N-2 4.for1=010N-2{
A[i+1] = A[i] +1; All] =B[];
Cli] =A[l] +B[;
E[1] = C[i+1];

¥

19

Credit: Scott Baden, CSE@UCSD



How would you parallelize loop 2 by hand?

2. for1=0to N-2
Ali+1] = A[i] +1;

Credit: Scott Baden, CSE@UCSD
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How would you parallelize loop 2 by hand?

for1 =0to N-2
A[i+1] = A[i] +1;

fori=0to N-2
A[I+1] =A[0] +1;

Credit: Scott Baden, CSE@UCSD

T
b
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To ensure correctness, where must we

OO wx

Between |00
Between 100

. Between bot
. None

remove the nowait clause?
ns 1 and 2

ns 2 and 3

N loops

#pragma omp parallel for shared(a,b,c) private(i)
for (1I=0; I<N; 1++)
c[i] = (double) i
#pragma omp parallel for shared(c) private(i) nowait
for (I=1; I<N; 1+=2)
c[i] = c[i] + c[i-1]
#pragma omp parallel for shared(c) private(i) nowait
for (1=2; I<N; 1+=2)

c[i] = c[i

]+ c[i-1]

23
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To ensure correctness, where must we

0O w2»

Between 100
Between 100

. Between bot
. None

remove the nowait clause?
ns 1 and 2

ns 2 and 3

N loops

#pragma omp parallel for shared(a,b,c) private(i)
for (1=0; I<N; 1++)
c[i] = (double) i
#pragma omp parallel for shared(c) private(i) nowait
for (I=1; I<N; 1+=2)
c[i] = c[i] + c[i-1]
#pragma omp parallel for shared(c) private(i) nowait
for (1=2; I<N; 1+=2)
c[i] = c[i] + c[i-1]

Credit: Scott Baden, CSE@UCSD 23



Exercise: removing data

dependencies
e How can we split this loop into 2 loops so

that each loop parallelizes, and the result it
correct?

w Binitially: 01 2 3 456 7
wBonlthread: 7 7 7 7 11121314
#pragma omp parallel for shared (N,B) e P 00
fori =0toN-1 ;@:

B[i] += B[N-1-i];

B[] +=B[7], B[1]+=B[6],  B[2] +=B[5]
3] +=B[4],  B[4]+=B[3],  B[S] +=B[2]
B[6] +=B[1],  B[7] +=B[O]

oy

Credit: Scott Baden, CSE@UCSD 24



Splitting a loop
e For iterations I=N/2+1 to N, B[N-I]
reference newly computed data

e All others reference “old” data
o Binitially: 01 2 3 456 7
e Correctresult: 7 7 7 7 11121314

#pragma omp parallel

for ... nowait
for1 =0toN/2-1

B[i] += B[N-1-i];
for1 = N/2+1 to N-1
B[i] += B[N-1-i];

for1 = 0to N-1
B[i] += B[N-1];




Reductions in OpenMP

 In some applications, we reduce a collection of values

down to a single global value
w Taking the sum of a list of numbers
w Decoding when Odd/Even sort has finished

* OpenMP avoids the need for an explicit serial section
int  Sweep(int *Keys, int N, int OE, ){
bool done = true;
#pragma omp parallel for reduction(&:done)
for (inti = OE; i < N-1;i+=2){
if (Keys[i] > Keys[i+1]){
Keys[i] — Keys[i+1];
done &= false;
}
Y //All threads ‘and’ their done flag into a local variable
// and store the accumulated value into the global
return done;

} Credit: Scott Baden, CSE@QUCSD 26



Reductions in OpenMP
 In some applications, we reduce a collection of values

down to a single value
w Taking the sum of a list of numbers
w Decoding when Odd/Even sort has finished

* OpenMP avoids the need for an explicit serial section

int  Sweep(int *Keys, int N, int OE, ){
bool done = true;
#pragma omp parallel for reduction(&:done)
for (inti = OE; i < N-1;i+=2){
if (Keysl[i] > Keys[i+1]){
Keysl[i] — Keys[i+1];
done &= false;
}
Y //All threads ‘and’ their done flag into the local variable

return done;

}



Which functions may we use in a reduction?

A. Ado Aot art....T ang
B. Subtract dp- Ay~ ... ~Qpi
C. LogicalAnd agN ajAh.... N a,,
D. AandB

E.ABandC

28
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Credit: Scott Baden, CSE@UCSD



Odd-Even sort in OpenMP

for s = 1 to Maxlter do
done = Sweep(Keys, N, 0);

done &= Sweep(Keys, N, 1); o—e @ o—oO
if (done) break; 3 a a
o iidSeeep(int *Keys, int N, int OE){ - .

bool done=true;

e Hpragma omp parallel for shared(Keys) private(i) reduction(&:done)
for (i = OE; i < N-1; i+=2) {
o if (Keys[i] > Keys[i+1])}
int tmp = Keysli];

Keys[i] = Keys[i+1]; -n 8Mli, -i 200, -f50
Keysli+1] = tmp; | |

done = faiser - T

} 6.09s 3.51s 2.78s 2.78s

}
return done; g++ -fopenmp, on Bang

Credit: Scott Baden, CSE@UCSD 29



Why isn’t a barrier needed between the calls to sweep(
)7

A. The calls to sweep occur outside parallel sections

B. OpenMP inserts barriers after the calls to Sweep
C. OpenMP places a barrier after the for i loop inside Sweep

D. A&C
E. B&C

for s = 1 to Maxlter do
done = Sweep(Keys, N, 0);
done &= Sweep(Keys, N, 1);
if (done) break;
end do
int Sweep(int *Keys, int N, int OE){
bool done=true;
#pragma omp parallel for shared(Keys) private(i) reduction(&:done)
for i = OE;ito N-2 by 2

if (Keys[i] > Keys[i+1]) {swap Keys[i] <> Keys[i+1]; done &= false;}
end do
return done;

Credit: Scott Baden, CSE@UCSD 30



Why isn’t a barrier needed between the calls to sweep(
)7

A. The calls to sweep occur outside parallel sections

B. OpenMP inserts barriers after the calls to Sweep
C. OpenMP places a barrier after the for i loop inside Sweep

D. A&C
E. B&C

for s = 1 to Maxlter do
done = Sweep(Keys, N, 0);
done &= Sweep(Keys, N, 1);
if (done) break;

end do

int Sweep(int *Keys, int N, int OE){
bool done=true;

#pragma omp parallel for shared(Keys) private(i) reduction(&:done)
for i = OE; i to N-2 by 2
if (Keysl[i] > Keys[i+1]) {swap Keysl[i] <> Keys[i+1]; done &= false;}
end do
return done;
Credit: Scott Baden, CSE@QUCSD 30



Another way of annotating loops

e These are equivalent
* Why don’t we need to declare private(i)?

#pragma omp parallel shared(a,b)

{

#pragma omp for schedule(static)
for (inti=1; i< N-1;i++)
ali] = (bli+1] - b[i-1])/2h

#pragma omp parallel for shared(a,b) schedule(static)

for (inti=1; i< N-1;i++)
alil] = (b[i+1] - b[i-1])/2h

Credit: Scott Baden, CSE@UCSD
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The No Wait clause

 Removes the barrier after an omp for loop

* \Why are the results incorrect?
# We don’t know when the threads finish
w OpenMP doesn’t define the order that the loop iterations
wil be incorrect

£ % =
S—p )

| f’;./(?
#pragma omp parallel %’%’
{ '

#pragma omp for nowait
for (inti=1; i< N-1;i++)
alil] = (b[i+1] - b[i-1]1)/2h
#pragma omp for
for (inti=N-2; i>0; i--)
bli] = (ali+1] - ali-11)/2h

Credit: Scott Baden, CSE@UCSD
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Why isn’t a barrier needed between the calls to
sweep()?

A. The calls to sweep occur outside parallel sections
B.

C. OpenMP places a barrier after the for i loop inside Sweep
D. A&C

for s = 1 to Maxlter do
done = Sweep(Keys, N, 0);
done &= Sweep(Keys, N, 1);
if (done) break;
end do
int Sweep(int *Keys, int N, int OE){
bool done=true;
#pragma omp parallel for shared(Keys) private(i) reduction(&:done)
for i = OE; i to N-2 by 2
if (Keys[i]l > Keys[i+1]) {swap Keys[i] <> Keys[i+1]; done &= false; }
end do
return done;

Credit: Scott Baden, CSE@UCSD
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Parallelizing a nested loop with OpenMP

* Not all implementations can parallelize inner loops

* \We parallelize the outer loop index
#pragma omp parallel private(i) shared(n)
#pragma omp for
for(i=0; i < n; i++)
for(j=0;j < n; j++){

V[i,jl = (uli-1,j1 + uli+1,j]+ uli,j=1]+ uli, j+1] - h2f[i,i])/4
} 0
1
 Generated code 3
mymin =1 + ($TID *n/NT), mymax = mymin + n/NT-1 2

for(i=mymin; i < mymax; i++)
for(j=0; ] < n; j++)
V[i,jl = (u[i-1,j1 + uli+71,jl+ uli,j-11+ uli, j+1] - h2f[i,j)/ 4
Barrier();

Credit: Scott Baden, CSE@UCSD
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An application: Matrix Vector Multiplication

Credit: Scott Baden, CSE@QUCSD



Application: Matrix Vector Multiplication

double **A, *x, *y:;

/| GLOBAL

#pragma omp parallel shared(A,x,N)

#pragma omp for
for (i=0; i<N; i++){
y[i] = 0.0;
for j=0; j<N; j++)
ylil += A[l[] * x[j]

YO

ano ag| Bz agn—1
aln ajy i ayn—1 X0 M
X1
ai( aj Sl in—1 Yi =ajpxo +apnxy +---Qip-1Xn—1
Xp—1
Apm—1,0 | Am—1,1 | =+ | Adm—1,n—1 Vm—1

Credit: Scott Baden, CSE@UCSD
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Support for load balancing in OpenMP

e OpenMP supports Block Cyclic
decompositions with chunk size

#pragma omp parallel for schedule(static, 2)
for(inti=0;i<n;i++){
for(intj=0;j<n;j++){

do I—
Z=17°+C

while (|z| <2)

Credit: Scott Baden, CSE@UCSD
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OpenMP supports self scheduling
o Adjust task granularity with a chunksize

#pragma omp parallel for schedule(dynamic, 2)
for(inti=0;i<n;i++){
for (intj=0;j<n; j++){
do

Z7=1722+¢C

while (|z] < 2)

Credit: Scott Baden, CSE@UCSD



lteration to thread mapping in OpenMP

#pragma omp parallel shared(N,iters) private(i)
#pragma omp for
for (1=0;1<N;i++)

iters[i] = omp_get_thread num();
N =9, # of openMP threads = 3 (no schedule)
000111222

N = 16, # of openMP threads = 4, schedule(static,2)
0011223300112233

N=9:001122001

Credit: Scott Baden, CSE@UCSD
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Initializing Data in OpenMP

« \We allocate heap storage outside a parallel region

« But we should initialize it inside a parallel region

e Important on NUMA systems, which account for
MOost Servers http://goo.gl/a002CO

double **A:
A =(double**) malloc(sizeof(double*)*N + sizeof(double)*N*N);
assert(A);

#pragma omp parallel private(j) shared(A,N)
for(j=0;j<N;j++)
A[j] = (double *)(A+N) + j*N;

#pragma omp parallel private(i,j) shared(A,N)
for (j=0; j<N; j++)
for (i=0; i<N; i++)
Alil[j]l = 1.0 / (double) (i+j-1);

Credit: Scott Baden, CSE@UCSD
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http://goo.gl/ao02CO

OpenMP is also an API

o But we don’t use this lower level interface unless necessary
« Parallel for is much easier to use

#ifdef _OPENMP
#include <omp.h>
#endif

int tid=0, nthrds,1;
#pragma omp parallel

{
#ifdef _OPENMP
tid = omp_get_thread_num(); gcc.gnu.org/onlinedocs/libgomp

nthrds = omp_get_num_threads();
#endif
int i0=(n/nthrds)*tid, i1=i0+n/nthrds;
for(i=i0; i < il; i++)
work(i);

Credit: Scott Baden, CSE@UCSD
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Summary: what does OpenMP accomplish for us?

* Higher level interface simplifies the
programmer’s model

e Spawn and join threads, “Outlining” code
Into a thread function

* Handles synchronization and partitioning

o |If it does all this, why do you think we need
to have a lower level threading interface?

:_'j_' Y — (j)
3
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