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Credit: Scott Baden, CSE@UCSD

OpenMP
• A higher level interface for threads

programming http://www.openmp.org
• Parallelization via source code annotations
• All major compilers support it, including gnu
• Gcc 4.8 supports OpenMP version 3.1

https://gcc.gnu.org/wiki/openmp
• Compare with explicit threads programing

i0 = $TID*n/$nthreads;  
i1 = i0 + n/$nthreads;  
for (i=i0; i< i1; i++)

work(i);

#pragma omp parallel private(i)
shared(n)

{
#pragma omp for
for(i=0; i < n; i++)

work(i);
} 8

http://www.openmp.org/


• A program begins life as a single thread
• Enter a parallel region, spawning a team of threads
• The lexically enclosed program statements execute  

in parallel by all team members
• When we reach the end of the scope…

• The team of threads synchronize at a barrier  
and are disbanded; they enter a wait state

• Only the initial thread continues
• Thread teams can be created and disbanded many  

times during program execution, but this can be  
costly

• A clever compiler can avoid many threadcreations  
and joins

OpenMP’s Fork-Join Model

Credit: Scott Baden, CSE@UCSD 9



Fork join model with loops

• cout << “Serial\n”;
• N = 1000;
• #pragma omp parallel{
• #pragma omp for
• for (i=0; i<N; i++)  A[i] = B[i] +

C[i];
• #pragma omp single
• M = A[N/2];

• #pragma omp for  for (j=0; 
j<M; j++)

• p[j] = q[j] – r[j];
• }

• Cout << “Finish\n”; Credit: Scott Baden, CSE@UCSD 10
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Loop parallelization

Credit: Scott Baden, CSE@UCSD 11

• The translator automatically generates appropriate  
local loop bounds

• Also inserts any needed barriers
• We use private/shared clauses to distinguish thread  

private from global data
• Handles irregular problems
• Decomposition, Can be static or dynamic

#pragma omp parallel for shared(Keys) private(i) reduction(&:done)  
for i = OE; i to N-2 by 2

if (Keys[i] > Keys[i+1]) swap Keys[i] ↔ Keys[i+1]; done *= false; }  
end do
return done;



Another way of annotating loops

Credit: Scott Baden, CSE@UCSD 12

• These are equivalent

#pragma omp parallel
{
#pragma omp for

for (int i=1; i< N-1; i++)
a[i] = (b[i+1] – b[i-1])/2h

}

#pragma omp parallel for  
for (int i=1; i< N-1; i++)

a[i] = (b[i+1] – b[i-1])/2h



Variable scoping

Credit: Scott Baden, CSE@UCSD
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• Any variables declared outside a parallel region are  
shared by all threads

• Variables declared inside the region are private
• Shared & private declarations override defaults, also  

usefule as documentation

int main (int argc, char *argv[]) {
double a[N], b[N], c[N];  
int i;
#pragma omp parallel for shared(a,b,c,N) private(i)

for (i=0; i < N; i++)
a[i] = b[i] = (double) i;

#pragma omp parallel for shared(a,b,c,N) private(i)  
for (i=0; i<N; i++)

c[i] = a[i] + sqrt(b[i]);



Dealing with loop carried
dependences

Credit: Scott Baden, CSE@UCSD 15

• OpenMP will dutifully parallelize a loop when you  
tell it to, even if doing so “breaks” the correctness  
of the code

int* fib = new int[N];  
fib[0] = fib[1] = 1;

#pragma omp parallel for num_threads(2)  
for (i=2; i<N; i++)

fib[i] = fib[i-1]+ fib[i-2];
• Sometimes we can restructure an algorithm, e.g. 

odd-even sorting. 
• OpenMP may warn you when it is doing something  

unsafe, but not always



Why dependencies prevent
parallelization

Credit: Scott Baden, CSE@UCSD 16

• Consider the following loops
#pragma omp parallel
{
#pragma omp for nowait
for (int i=1; i< N-1; i++)  

a[i] = (b[i+1] – b[i-1])/2h
#pragma omp for
for (int i=N-2; i>0; i--)

b[i] = (a[i+1] – a[i-1])/2h
}

• Why aren’t the results incorrect?



Why dependencies prevent
parallelization

Credit: Scott Baden, CSE@UCSD 17

• Consider the following loops
#pragma omp parallel
{#pragma omp for nowait
for (int i=1; i< N-1; i++)  

a[i] = (b[i+1] – b[i-1])/2h
#pragma omp for
for (int N-2; i>0; i--)

b[i] = (a[i+1] – a[i-1])/2h
}

• Results will be incorrect because the array a[ ], in
loop #2, depends on the outcome of loop #1  
(a true dependence)
We don’t know when the threads finish
OpenMP doesn’t define the order that the loop iterations  

wil be incorrect



Barrier Synchronization in OpenMP

Credit: Scott Baden, CSE@UCSD 18

• To deal with true- and anti-dependences, OpenMP  
inserts a barrier (by default) between loops:
for (int i=0; i< N-1; i++)  

a[i] = (b[i+1] – b[i-1])/2h
BARRIER

for (int i=N-1; i>=0; i--)  
b[i] = (a[i+1] –a[i-1])/2h

• No thread may pass the barrier until all have arrived  
hence loop 2 may not write into b until loop 1 has  
finished reading the old values

• Do we need the barrier in this case?Yes
for (int i=0; i< N-1; i++)

a[i] = (b[i+1] – b[i-1])/2h  
BARRIER?

for (int i=N-1; i>=0; i--)
c[i] = a[i]/2;



C[i] = A[i] +B[i];
E[i] = C[i+1];

}
19

Which loops can OpenMP parallellize, assuming 
there  is a barrier before the start of the
loop?

Credit: Scott Baden, CSE@UCSD

A[i] = A[i-1] +A[i];

4. for i = 0 to N-2{  
A[i] = B[i];

A[i] = A[i] +B[i-1];

2. for i = 0 to N-2  
A[i+1] = A[i] +1;

A. 1 & 2
1 & 3
C. 3 & 4
D. 2 & 4
E. All the loops

1. for i = 1 to N-1

All arrays have at least N  
elements

3. for i = 0 to N-1 step 2



A[i] = A[i-1] +A[i];

4. for i = 0 to N-2{  
A[i] = B[i];

A[i] = A[i] +B[i-1];

2. for i = 0 to N-2  
A[i+1] = A[i] +1;

Which loops can OpenMP parallellize, assuming 
there  is a barrier before the start of the
loop?

A. 1 & 2

Credit: Scott Baden, CSE@UCSD

1 & 3
C. 3 & 4
D. 2 & 4
E. All the loops

1. for i = 1 to N-1

All arrays have at least N  
elements

3. for i = 0 to N-1 step 2

C[i] = A[i] +B[i];
E[i] = C[i+1];

}
19



1. for i = 1 to N-1
A[i] = A[i] +B[i-1];

2. for i = 0 to N-2  
A[i+1] = A[i] +1;

How would you parallelize loop 2 by hand?

Credit: Scott Baden, CSE@UCSD 20



for i = 0 to N-2  
A[i+1] = A[i] +1;

How would you parallelize loop 2 by hand?

Credit: Scott Baden, CSE@UCSD 21

for i = 0 to N-2  
A[i+1] =A[0] + i;
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To ensure correctness, where must we
remove  the nowait clause?

Credit: Scott Baden, CSE@UCSD

A. Between loops 1 and 2
B. Between loops 2 and 3
C. Between both loops
D. None

#pragma omp parallel for shared(a,b,c) private(i)
for (i=0; i<N; i++)  

c[i] = (double) i
#pragma omp parallel for shared(c) private(i) nowait  

for (i=1; i<N; i+=2)
c[i] = c[i] + c[i-1]

#pragma omp parallel for shared(c) private(i) nowait
for (i=2; i<N; i+=2)

c[i] = c[i] + c[i-1]



To ensure correctness, where must we
remove  the nowait clause?

Credit: Scott Baden, CSE@UCSD 23

C. Between both loops

A. Between loops 1 and 2
B. Between loops 2 and 3

D. None
#pragma omp parallel for shared(a,b,c) private(i)

for (i=0; i<N; i++)  
c[i] = (double) i

#pragma omp parallel for shared(c) private(i) nowait  
for (i=1; i<N; i+=2)

c[i] = c[i] + c[i-1]
#pragma omp parallel for shared(c) private(i) nowait

for (i=2; i<N; i+=2)
c[i] = c[i] + c[i-1]



Exercise: removing data
dependencies

Credit: Scott Baden, CSE@UCSD 24

• How can we split this loop into 2 loops so
that each loop parallelizes, and the result it
correct?
Binitially:
B on 1thread:

0 1 2 3 4 5 6 7
7 7 7 7 11 12 13 14

#pragma omp parallel for shared (N,B)
for i = 0 to N-1

B[i] += B[N-1-i];
B[0] += B[7], B[1] += B[6], B[2] += B[5]
B[3] += B[4], B[4] += B[3], B[5] += B[2]
B[6] += B[1], B[7] += B[0]



Splitting a loop

Credit: Scott Baden, CSE@UCSD 25

• For iterations i=N/2+1 to N, B[N-i]
reference newly computed data

• All others reference “old” data
• B initially:
• Correct result:

0 1 2 3 4 5 6 7
7 7 7 7 11 12 13 14

#pragma omp parallel  
for … nowait
for i = 0 to N/2-1

B[i] += B[N-1-i];
for i = N/2+1 to N-1  

B[i] += B[N-1-i];

for i = 0 to N-1  
B[i] += B[N-i];



Reductions in OpenMP
• In some applications, we reduce a collection of values  

down to a single global value
Taking the sum of a list of numbers
Decoding when Odd/Even sort has finished

• OpenMP avoids the need for an explicit serial section
int Sweep(int *Keys, int N, int OE, ){  
bool done = true;
#pragma omp parallel for reduction(&:done)

for (int i = OE; i < N-1; i+=2) {  
if (Keys[i] > Keys[i+1]){

Keys[i] ↔ Keys[i+1];
done &= false;

}
} //All threads ‘and’ their done flag into a local variable

// and store the accumulated value into the global
return done;

} Credit: Scott Baden, CSE@UCSD 26



Reductions in OpenMP

Credit: Scott Baden, CSE@UCSD 27

• In some applications, we reduce a collection of values
down to a single value
Taking the sum of a list of numbers
Decoding when Odd/Even sort has finished

• OpenMP avoids the need for an explicit serial section
int Sweep(int *Keys, int N, int OE, ){  
bool done = true;
#pragma omp parallel for reduction(&:done)

for (int i = OE; i < N-1; i+=2) {
if (Keys[i] > Keys[i+1]){

Keys[i] ↔ Keys[i+1];
done &= false;

}
} //All threads ‘and’ their done flag into the local variable
return done;

}



28

Which functions may we use in a reduction?

Credit: Scott Baden, CSE@UCSD

a0 + a1 + …. + an-1
a0 - a1 - …. - an-1

a0 ⋀ a1 ⋀ …. ⋀ an-1

A. Add
B. Subtract
C. LogicalAnd
D. A andB
E. A,B and C



Which functions may we use in a reduction?

Credit: Scott Baden, CSE@UCSD

a0 + a1 + …. + an-1
a0 - a1 - …. - an-1

a0 ⋀ a1 ⋀ …. ⋀ an-1

A. Add
B. Subtract
C. LogicalAnd
D. A andB
E. A,B and C
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Odd-Even sort in OpenMP

• int Sweep(int *Keys, int N, int OE){  
bool done=true;

• #pragma omp parallel for shared(Keys) private(i) reduction(&:done)  
for (i = OE; i < N-1; i+=2) {

• if (Keys[i] > Keys[i+1]){  
int tmp = Keys[i];

Credit: Scott Baden, CSE@UCSD 29

for s = 1 to MaxIter do
done = Sweep(Keys, N, 0);
done &= Sweep(Keys, N, 1);  
if (done) break;

end do

Keys[i] = Keys[i+1];  
Keys[i+1] = tmp;  
done *= false;

}
}
return done;

}

aiai-1 ai+1

P=1 P=2 P=4 P=8
6.09s 3.51s 2.78s 2.78s

-n 8Mi, -i 200, -f 50

g++ -fopenmp, on Bang



Why isn’ta barrierneededbetweenthe calls to sweep(
)?

Credit: Scott Baden, CSE@UCSD 30

A. The calls to sweep occur outside parallel sections
B. OpenMP inserts barriers after the calls to Sweep
C. OpenMP places a barrier after the for i loop insideSweep

D. A &C
E. B & C
for s = 1 to MaxIter do

done = Sweep(Keys, N, 0);
done &= Sweep(Keys, N, 1);
if (done) break;  

end do
int Sweep(int *Keys, int N, int OE){  

bool done=true;
#pragma omp parallel for shared(Keys) private(i) reduction(&:done)  
for i = OE; i to N-2 by 2

if (Keys[i] > Keys[i+1]) {swap Keys[i] ↔ Keys[i+1]; done &= false; }
end do  
return done;



Why isn’ta barrierneededbetweenthe calls to sweep(
)?

D. A &C

A. The calls to sweep occur outside parallel sections
B. OpenMP inserts barriers after the calls to Sweep
C. OpenMP places a barrier after the for i loop insideSweep

E. B & C
for s = 1 to MaxIter do

done = Sweep(Keys, N, 0);
done &= Sweep(Keys, N, 1);
if (done) break;  

end do

30

int Sweep(int *Keys, int N, int OE){  
bool done=true;

#pragma omp parallel for shared(Keys) private(i) reduction(&:done)  
for i = OE; i to N-2 by 2

if (Keys[i] > Keys[i+1]) {swap Keys[i] ↔ Keys[i+1]; done &= false; }
end do  
return done;

Credit: Scott Baden, CSE@UCSD



Another way of annotating loops

Credit: Scott Baden, CSE@UCSD
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• These are equivalent
• Why don’t we need to declare private(i)?

#pragma omp parallel shared(a,b)
{
#pragma omp for schedule(static)

for (int i=1; i< N-1; i++)  
a[i] = (b[i+1] – b[i-1])/2h

}

#pragma omp parallel for shared(a,b) schedule(static)  
for (int i=1; i< N-1; i++)

a[i] = (b[i+1] – b[i-1])/2h



The No Wait clause

Credit: Scott Baden, CSE@UCSD
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• Removes the barrier after an omp for loop
• Why are the results incorrect?

We don’t know when the threads finish
OpenMP doesn’t define the order that the loop iterations  

wil be incorrect

#pragma omp parallel
{
#pragma omp for nowait

for (int i=1; i< N-1; i++)  
a[i] = (b[i+1] – b[i-1])/2h

#pragma omp for
for (int i=N-2; i>0; i--)

b[i] = (a[i+1] – a[i-1])/2h
}



Why isn’t a barrier needed between the calls to
sweep()?

Credit: Scott Baden, CSE@UCSD

29

A. The calls to sweep occur outside parallel sections
B.
C. OpenMP places a barrier after the for i loop inside Sweep
D. A & C

for s = 1 to MaxIter do
done = Sweep(Keys, N, 0);
done &= Sweep(Keys, N, 1);  
if (done) break;

end do
int Sweep(int *Keys, int N, int OE){  

bool done=true;
#pragma omp parallel for shared(Keys) private(i) reduction(&:done)  
for i = OE; i to N-2 by 2

if (Keys[i] > Keys[i+1]) {swap Keys[i] ↔ Keys[i+1]; done &= false; }
end do  
return done;



Parallelizing a nested loop with OpenMP

Credit: Scott Baden, CSE@UCSD

30

• Not all implementations can parallelize inner loops

• We parallelize the outer loop index
#pragma omp parallel private(i) shared(n)

#pragma omp for
for(i=0; i < n; i++)  

for(j=0; j < n; j++) {
V[i,j] = (u[i-1,j] + u[i+1,j]+ u[i,j-1]+ u[i, j+1] - h2f[i,j])/4

}

mymax = mymin + n/NT-1

• Generated code
mymin = 1 + ($TID * n/NT),
for(i=mymin; i < mymax; i++)

for(j=0; j < n; j++)
V[i,j] = (u[i-1,j] + u[i+1,j]+ u[i,j-1]+ u[i, j+1] - h2f[i,j])/4  

Barrier();



An application: Matrix Vector Multiplication

Credit: Scott Baden, CSE@UCSD 8



Application: Matrix Vector Multiplication

Credit: Scott Baden, CSE@UCSD

32

// GLOBALdouble **A, *x, *y;
#pragma omp parallel shared(A,x,N)
#pragma omp for

for (i=0; i<N; i++){  
y[i] = 0.0;
for (j=0; j<N; j++)  

y[i] += A[i][j] * x[j];
}



Support for load balancing in OpenMP

Credit: Scott Baden, CSE@UCSD
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• OpenMP supports Block Cyclic  
decompositions with chunk size

#pragma omp parallel for schedule(static, 2)  
for ( int i = 0; i < n; i++ ) {

for (int j = 0; j < n; j++ ){  
do
z = z2 + c
while (|z| < 2 )

}
}



OpenMP supports self scheduling

Credit: Scott Baden, CSE@UCSD

34

• Adjust task granularity with a chunksize

#pragma omp parallel for schedule(dynamic, 2)  
for( int i = 0; i < n; i++ ) {

for (int j = 0; j < n; j++ ){
do

z = z2 + c
while (|z| < 2 )

}
}



Iteration to thread mapping in OpenMP

Credit: Scott Baden, CSE@UCSD

35

#pragma omp parallel shared(N,iters) private(i)
#pragma omp for  
for (i = 0; i < N; i++)

iters[i] = omp_get_thread_num();
N = 9, # of openMP threads = 3 (no schedule)  
0 0 0 1 1 1 2 2 2
N = 16, # of openMP threads = 4, schedule(static,2)  
0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3
N=9: 0 0 1 1 2 2 0 0 1



Initializing Data in OpenMP

Credit: Scott Baden, CSE@UCSD
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• We allocate heap storage outside a parallel region
• But we should initialize it inside a parallel region
• Important on NUMA systems, which account for  

most servers http://goo.gl/ao02CO

double **A;
A =(double**) malloc(sizeof(double*)*N + sizeof(double)*N*N);  
assert(A);

#pragma omp parallel private(j) shared(A,N)
for(j=0;j<N;j++)

A[j] = (double *)(A+N) + j*N;

#pragma omp parallel private(i,j) shared(A,N)
for ( j=0; j<N; j++ )  

for ( i=0; i<N; i++ )
A[i][j] = 1.0 / (double) (i+j-1);

http://goo.gl/ao02CO


OpenMP is also an API

Credit: Scott Baden, CSE@UCSD
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tid = omp_get_thread_num();
nthrds = omp_get_num_threads();

#endif
int i0=(n/nthrds)*tid, i1=i0+n/nthrds;
for(i=i0; i < i1; i++)  

work(i);
}

gcc.gnu.org/onlinedocs/libgomp

• But we don’t use this lower level interface unless necessary
• Parallel for is much easier to use

#ifdef _OPENMP
#include <omp.h>
#endif
int tid=0, nthrds,1;
#pragma omp parallel
{
#ifdef _OPENMP



Summary: what does OpenMP accomplish for us?

• Higher level interface simplifies the  
programmer’s model

• Spawn and join threads, “Outlining” code  
into a thread function

• Handles synchronization and partitioning
• If it does all this, why do you think we need  

to have a lower level threading interface?

Credit: Scott Baden, CSE@UCSD
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