15-418/618 Recitation: Open MP

e February 23, 2018

OpenMP

A higher level interface for threads

programming http://www.openmp.org
Parallelization via source code annotations

All major compilers support it, including gnu
Gcce 4.8 supports OpenMP version 3.1

hitps://gcc.gnu.org/wiki/openmp
Compare with explicit threads programing

#pragma omp parallel private(i)

shared(n)

{ I0 = $TID*n/$nthreads;

#pragma omp for 11 =10 + n/$nthreads;

for(i=0; i < n; i++) for (i=i0; i< i1; i++)
work(i); work(i);

} 8

Credit: Scott Baden, CSE@QUCSD

http://www.openmp.org/

OpenMP’s Fork-Join Model

A program begins life as a single thread

Enter a parallel region, spawning a team of threads

The lexically enclosed program statements execute
In parallel by all team members

When we reach the end of the scope...
» The team of threads synchronize at a barrier
and are disbanded; they enter a wait state
* Only the initial thread continues

Thread teams can be created and disbanded many
times during program execution, but this can be
costly

A clever compiler can avoid many threadcreations
and joins

Credit: Scott Baden, CSE@UCSD

Fork join model with loops

Seung-Jai Min
Serial l
* cout << “Serial\n”;
N =1000;
e #pragma omp parallel{ Parallel
e ##pragma omp for
. for (i=0; i<N; i++) A[i] = B[i] +]
C[i]; Serial

e #pragma omp single
e M =A[N/2]; Parallel
e #fpragma omp for for (j=0;
j<M; j+4)

* plj] = ali] - r[il; Serial |
*}

“Cini ”, redit: Scott Baden
e Cout << FlnISh\n : Credit: Scott Baden, CSE@UCSD 10

Loop parallelization

 The translator automatically generates appropriate
local loop bounds

« Also inserts any needed barriers

* Wk use private/shared clauses to distinguish thread
orivate from global data

e Handles irregular problems
e Decomposition, Can be static or dynamic

#pragma omp parallel for shared(Keys) private(i) reduction(&:done)
for i =OE;itoN-2 by?2

if (Keys[i] > Keys[i+1]) swap Keysli] <> Keys[i+1]; done *= false;}
end do

return done;

Another way of annotating loops

e These are equivalent

#pragma omp parallel

{

#pragma omp for
for (inti=1:i< N-1: i++) afi] = (bli+1] - b[i-1])/2h

afi] = (b[i+1] - b[i-1])/2h

#pragma omp parallel for
for (inti=1; i< N-1;i++)

Credit: Scott Baden, CSE@UCSD

12

Variable scoping

« Any variables declared outside a parallel region are

shared by all threads
Variables declared inside the region are private

Shared & private declarations override defaults, also
usefule as documentation

Int main (int argc, char *argv|[]) {
double a[N], b[N], c[N];
inti;
#pragma omp parallel for shared(a,b,c,N) private(i)
for (i=0; 1 < N; i++)

a[i] = b[i] = (double) i;

#pragma omp parallel for shared(a,b,c,N) private(i)
for (i=0; i<N; i++)
cli] = ali] + sqrt(b[i]);

Dealing with loop carried

dependences _
e OpenMP will dutifully parallelize a loop when you
tell it to, even if doing so “breaks” the correctness

of the code
Int* fib = new Int[N];
fib[0] = fib[1] = 1;
#pragma omp parallel for num_threads(2)
for (I=2; I<N; i++)
fib[i] = fib[i-1]+ fib[i-2];
e Sometimes we can restructure an algorithm, e.g.
odd-even sorting.

e OpenMP may warn you when it Is doing something
unsafe, but not always

Why dependencies prevent

parallelization,
o Consider the following loops

#pragma omp parallel

{

#pragma omp for nowait
for (inti=1;i< N-1; i++)
ali] = (bli+1] - bli-1])/2h
#pragma omp for
for (int i=N-2;i>0;i--)
b[i] = (a[i+1] - a[i-1])/2h
}

* Why aren’t the results incorrect?

Credit: Scott Baden, CSE@UCSD

16

Why dependencies prevent

parallelization.
« Consider the following loops

#pragma omp parallel
{#pragma omp for nowait

for (inti=1;i< N-1;i++)
alil] = (b[i+1] - b[i-1])/2h
#pragma omp for
for (int N-2;i>0; i--)
bli] = (@[i+1] - a[i-1])/2h

}

 Results will be incorrect because the array a[], In
loop #2, depends on the outcome of loop #1

(a true dependence)

w We don’t know when the threads finish
w OpenMP doesn’t define the order that the loop iterations
wil be incorrect

Credit: Scott Baden, CSE@UCSD

Barrier Synchronization in OpenMP

 Todeal with true- and anti-dependences, OpenMP

Inserts a barrier (by default) between loops:

for (inti=0; i< N-1;i++)
ali] = (b[|+1] R b[| 1D/2h
BARRIER

for (inti=N-1; i>=0; i--)
b[i] = (a[i+1] -a[i-1])/2h

« No thread may pass the barrier until all have arrived
hence loop 2 may not write into b until loop 1 has
finished reading the old values

e Do we need the barrier In thls case? Yes
for (inti=0; i< N-1;i++)

alil] = (b[i+1] - bl[i-11)/2h
BARRIER?
for (inti=N-1; i>=0; i--)
cli] = ali]/2;

Credit: Scott Baden, CSE@UCSD 18

Which loops can OpenMP parallellize, assuming
there is a barrier before the start of the

A1 &@op?
1&3
C.3&4
D.2&4 All arrays have at least N
E. All the loops elements
1. fori=1toN-1 3.for1=01to N-1step?2
A[i] = A[i] +BJ[i-1]; All] = A[I-1] +Alfi];
2. fori=0to N-2 4.for1=010N-2{
A[i+1] = A[i] +1; All] =BliJ;
Cli] = Al +B[];
E[i] = C[i+1];

¥

Credit: Scott Baden, CSE@UCSD

19

Which loops can OpenMP parallellize, assuming
there is a barrier before the start of the

loop?
HeB& 2
C.3&4
D.2&4 All arrays have at least N
E. All the loops elements
1. fori=1toN-1 3. for1=0to N-1step?2
A[i] = A[i] +BJ[i-1]; All] = A[I-1] +Alfi];
2. fori=0to N-2 4.for1=010N-2{
A[i+1] = A[i] +1; All] =B[];
Cli] =A[l] +B[;
E[1] = C[i+1];

¥

19

Credit: Scott Baden, CSE@UCSD

How would you parallelize loop 2 by hand?

2. for1=0to N-2
Ali+1] = A[i] +1;

Credit: Scott Baden, CSE@UCSD

20

How would you parallelize loop 2 by hand?

for1 =0to N-2
A[i+1] = A[i] +1;

fori=0to N-2
A[I+1] =A[0] +1;

Credit: Scott Baden, CSE@UCSD

T
b

21

To ensure correctness, where must we

OO wx

Between |00
Between 100

. Between bot
. None

remove the nowait clause?
ns 1 and 2

ns 2 and 3

N loops

#pragma omp parallel for shared(a,b,c) private(i)
for (1I=0; I<N; 1++)
c[i] = (double) i
#pragma omp parallel for shared(c) private(i) nowait
for (I=1; I<N; 1+=2)
c[i] = c[i] + c[i-1]
#pragma omp parallel for shared(c) private(i) nowait
for (1=2; I<N; 1+=2)

c[i] = c[i

]+ c[i-1]

23

Credit: Scott Baden, CSE@UCSD

To ensure correctness, where must we

0O w2»

Between 100
Between 100

. Between bot
. None

remove the nowait clause?
ns 1 and 2

ns 2 and 3

N loops

#pragma omp parallel for shared(a,b,c) private(i)
for (1=0; I<N; 1++)
c[i] = (double) i
#pragma omp parallel for shared(c) private(i) nowait
for (I=1; I<N; 1+=2)
c[i] = c[i] + c[i-1]
#pragma omp parallel for shared(c) private(i) nowait
for (1=2; I<N; 1+=2)
c[i] = c[i] + c[i-1]

Credit: Scott Baden, CSE@UCSD 23

Exercise: removing data

dependencies
e How can we split this loop into 2 loops so

that each loop parallelizes, and the result it
correct?

w Binitially: 01 2 3 456 7
wBonlthread: 7 7 7 7 11121314
#pragma omp parallel for shared (N,B) e P 00
fori =0toN-1 ;@:

B[i] += B[N-1-i];

B[] +=B[7], B[1]+=B[6], B[2] +=B[5]
3] +=B[4], B[4]+=B[3], B[S] +=B[2]
B[6] +=B[1], B[7] +=B[O]

oy

Credit: Scott Baden, CSE@UCSD 24

Splitting a loop
e For iterations I=N/2+1 to N, B[N-I]
reference newly computed data

e All others reference “old” data
o Binitially: 01 2 3 456 7
e Correctresult: 7 7 7 7 11121314

#pragma omp parallel

for ... nowait
for1 =0toN/2-1

B[i] += B[N-1-i];
for1 = N/2+1 to N-1
B[i] += B[N-1-i];

for1 = 0to N-1
B[i] += B[N-1];

Reductions in OpenMP

 In some applications, we reduce a collection of values

down to a single global value
w Taking the sum of a list of numbers
w Decoding when Odd/Even sort has finished

* OpenMP avoids the need for an explicit serial section
int Sweep(int *Keys, int N, int OE,){
bool done = true;
#pragma omp parallel for reduction(&:done)
for (inti = OE; i < N-1;i+=2){
if (Keys[i] > Keys[i+1]){
Keys[i] — Keys[i+1];
done &= false;
}
Y //All threads ‘and’ their done flag into a local variable
// and store the accumulated value into the global
return done;

} Credit: Scott Baden, CSE@QUCSD 26

Reductions in OpenMP
 In some applications, we reduce a collection of values

down to a single value
w Taking the sum of a list of numbers
w Decoding when Odd/Even sort has finished

* OpenMP avoids the need for an explicit serial section

int Sweep(int *Keys, int N, int OE,){
bool done = true;
#pragma omp parallel for reduction(&:done)
for (inti = OE; i < N-1;i+=2){
if (Keysl[i] > Keys[i+1]){
Keysl[i] — Keys[i+1];
done &= false;
}
Y //All threads ‘and’ their done flag into the local variable

return done;

}

Which functions may we use in a reduction?

A. Ado Aot art....T ang
B. Subtract dp- Ay~ ... ~Qpi
C. LogicalAnd agN ajAh.... N a,,
D. AandB

E.ABandC

28

Which functions may we use in a reduction?

A. Adc Aot art....T ang
B. Subtract dp- Ay~ ... ~Qpi
C. LogicalAnd agN ajAh.... N a,,
D. AandB

E.ABandC

28

Credit: Scott Baden, CSE@UCSD

Odd-Even sort in OpenMP

for s = 1 to Maxlter do
done = Sweep(Keys, N, 0);

done &= Sweep(Keys, N, 1); o—e @ o—oO
if (done) break; 3 a a
o iidSeeep(int *Keys, int N, int OE){ - .

bool done=true;

e Hpragma omp parallel for shared(Keys) private(i) reduction(&:done)
for (i = OE; i < N-1; i+=2) {
o if (Keys[i] > Keys[i+1])}
int tmp = Keysli];

Keys[i] = Keys[i+1]; -n 8Mli, -i 200, -f50
Keysli+1] = tmp; | |

done = faiser - T

} 6.09s 3.51s 2.78s 2.78s

}
return done; g++ -fopenmp, on Bang

Credit: Scott Baden, CSE@UCSD 29

Why isn’t a barrier needed between the calls to sweep(
)7

A. The calls to sweep occur outside parallel sections

B. OpenMP inserts barriers after the calls to Sweep
C. OpenMP places a barrier after the for i loop inside Sweep

D. A&C
E. B&C

for s = 1 to Maxlter do
done = Sweep(Keys, N, 0);
done &= Sweep(Keys, N, 1);
if (done) break;
end do
int Sweep(int *Keys, int N, int OE){
bool done=true;
#pragma omp parallel for shared(Keys) private(i) reduction(&:done)
for i = OE;ito N-2 by 2

if (Keys[i] > Keys[i+1]) {swap Keys[i] <> Keys[i+1]; done &= false;}
end do
return done;

Credit: Scott Baden, CSE@UCSD 30

Why isn’t a barrier needed between the calls to sweep(
)7

A. The calls to sweep occur outside parallel sections

B. OpenMP inserts barriers after the calls to Sweep
C. OpenMP places a barrier after the for i loop inside Sweep

D. A&C
E. B&C

for s = 1 to Maxlter do
done = Sweep(Keys, N, 0);
done &= Sweep(Keys, N, 1);
if (done) break;

end do

int Sweep(int *Keys, int N, int OE){
bool done=true;

#pragma omp parallel for shared(Keys) private(i) reduction(&:done)
for i = OE; i to N-2 by 2
if (Keysl[i] > Keys[i+1]) {swap Keysl[i] <> Keys[i+1]; done &= false;}
end do
return done;
Credit: Scott Baden, CSE@QUCSD 30

Another way of annotating loops

e These are equivalent
* Why don’t we need to declare private(i)?

#pragma omp parallel shared(a,b)

{

#pragma omp for schedule(static)
for (inti=1; i< N-1;i++)
ali] = (bli+1] - b[i-1])/2h

#pragma omp parallel for shared(a,b) schedule(static)

for (inti=1; i< N-1;i++)
alil] = (b[i+1] - b[i-1])/2h

Credit: Scott Baden, CSE@UCSD

27

The No Wait clause

 Removes the barrier after an omp for loop

* \Why are the results incorrect?
We don’t know when the threads finish
w OpenMP doesn’t define the order that the loop iterations
wil be incorrect

£ % =
S—p)

| f’;./(?
#pragma omp parallel %’%’
{ '

#pragma omp for nowait
for (inti=1; i< N-1;i++)
alil] = (b[i+1] - b[i-1]1)/2h
#pragma omp for
for (inti=N-2; i>0; i--)
bli] = (ali+1] - ali-11)/2h

Credit: Scott Baden, CSE@UCSD

28

Why isn’t a barrier needed between the calls to
sweep()?

A. The calls to sweep occur outside parallel sections
B.

C. OpenMP places a barrier after the for i loop inside Sweep
D. A&C

for s = 1 to Maxlter do
done = Sweep(Keys, N, 0);
done &= Sweep(Keys, N, 1);
if (done) break;
end do
int Sweep(int *Keys, int N, int OE){
bool done=true;
#pragma omp parallel for shared(Keys) private(i) reduction(&:done)
for i = OE; i to N-2 by 2
if (Keys[i]l > Keys[i+1]) {swap Keys[i] <> Keys[i+1]; done &= false; }
end do
return done;

Credit: Scott Baden, CSE@UCSD

29

Parallelizing a nested loop with OpenMP

* Not all implementations can parallelize inner loops

* \We parallelize the outer loop index
#pragma omp parallel private(i) shared(n)
#pragma omp for
for(i=0; i < n; i++)
for(j=0;j < n; j++){

V[i,jl = (uli-1,j1 + uli+1,j]+ uli,j=1]+ uli, j+1] - h2f[i,i])/4
} 0
1
 Generated code 3
mymin =1 + ($TID *n/NT), mymax = mymin + n/NT-1 2

for(i=mymin; i < mymax; i++)
for(j=0;] < n; j++)
V[i,jl = (u[i-1,j1 + uli+71,jl+ uli,j-11+ uli, j+1] - h2f[i,j)/ 4
Barrier();

Credit: Scott Baden, CSE@UCSD

30

An application: Matrix Vector Multiplication

Credit: Scott Baden, CSE@QUCSD

Application: Matrix Vector Multiplication

double **A, *x, *y:;

/| GLOBAL

#pragma omp parallel shared(A,x,N)

#pragma omp for
for (i=0; i<N; i++){
y[i] = 0.0;
for j=0; j<N; j++)
ylil += A[l[] * x[j]

YO

ano ag| Bz agn—1
aln ajy i ayn—1 X0 M
X1
ai(aj Sl in—1 Yi =ajpxo +apnxy +---Qip-1Xn—1
Xp—1
Apm—1,0 | Am—1,1 | =+ | Adm—1,n—1 Vm—1

Credit: Scott Baden, CSE@UCSD

32

Support for load balancing in OpenMP

e OpenMP supports Block Cyclic
decompositions with chunk size

#pragma omp parallel for schedule(static, 2)
for(inti=0;i<n;i++){
for(intj=0;j<n;j++){

do I—
Z=17°+C

while (|z| <2)

Credit: Scott Baden, CSE@UCSD

33

OpenMP supports self scheduling
o Adjust task granularity with a chunksize

#pragma omp parallel for schedule(dynamic, 2)
for(inti=0;i<n;i++){
for (intj=0;j<n; j++){
do

Z7=1722+¢C

while (|z] < 2)

Credit: Scott Baden, CSE@UCSD

lteration to thread mapping in OpenMP

#pragma omp parallel shared(N,iters) private(i)
#pragma omp for
for (1=0;1<N;i++)

iters[i] = omp_get_thread num();
N =9, # of openMP threads = 3 (no schedule)
000111222

N = 16, # of openMP threads = 4, schedule(static,2)
0011223300112233

N=9:001122001

Credit: Scott Baden, CSE@UCSD

35

Initializing Data in OpenMP

« \We allocate heap storage outside a parallel region

« But we should initialize it inside a parallel region

e Important on NUMA systems, which account for
MOost Servers http://goo.gl/a002CO

double **A:
A =(double**) malloc(sizeof(double*)*N + sizeof(double)*N*N);
assert(A);

#pragma omp parallel private(j) shared(A,N)
for(j=0;j<N;j++)
A[j] = (double *)(A+N) + j*N;

#pragma omp parallel private(i,j) shared(A,N)
for (j=0; j<N; j++)
for (i=0; i<N; i++)
Alil[j]l = 1.0 / (double) (i+j-1);

Credit: Scott Baden, CSE@UCSD

36

http://goo.gl/ao02CO

OpenMP is also an API

o But we don’t use this lower level interface unless necessary
« Parallel for is much easier to use

#ifdef _OPENMP
#include <omp.h>
#endif

int tid=0, nthrds,1;
#pragma omp parallel

{
#ifdef _OPENMP
tid = omp_get_thread_num(); gcc.gnu.org/onlinedocs/libgomp

nthrds = omp_get_num_threads();
#endif
int i0=(n/nthrds)*tid, i1=i0+n/nthrds;
for(i=i0; i < il; i++)
work(i);

Credit: Scott Baden, CSE@UCSD

37

Summary: what does OpenMP accomplish for us?

* Higher level interface simplifies the
programmer’s model

e Spawn and join threads, “Outlining” code
Into a thread function

* Handles synchronization and partitioning

o |If it does all this, why do you think we need
to have a lower level threading interface?

:_'j_' Y — (j)
3

	15-418/618 Recitation: Open MP
	OpenMP
	OpenMP’s Fork-Join Model
	Fork join model with loops
	Loop parallelization
	Another way of annotating loops
	Variable scoping
	Dealing with loop carried dependences
	Why dependencies prevent parallelization
	Why dependencies prevent parallelization
	Barrier Synchronization in OpenMP
	Which loops can OpenMP parallellize, assuming there is a barrier before the start of the loop?
	Which loops can OpenMP parallellize, assuming there is a barrier before the start of the loop?
A. 1 & 2
	How would you parallelize loop 2 by hand?
	How would you parallelize loop 2 by hand?
	To ensure correctness, where must we remove the nowait clause?
	To ensure correctness, where must we remove the nowait clause?
	Exercise: removing data dependencies
	Splitting a loop
	Reductions in OpenMP
	Reductions in OpenMP
	Which functions may we use in a reduction?
	Which functions may we use in a reduction?
	Odd-Even sort	in OpenMP
	Why isn’t a barrier needed between the calls to sweep()?
	Why isn’t a barrier needed between the calls to sweep()?
	Another way of annotating loops
	The No Wait clause
	Why isn’t a barrier needed between the calls to sweep()?
	Parallelizing a nested loop with OpenMP
	An application: Matrix Vector Multiplication
	Application: Matrix Vector Multiplication
	Support for load balancing in OpenMP
	OpenMP supports self scheduling
	Iteration to thread mapping in OpenMP
	Initializing Data in OpenMP
	OpenMP is also an API
	Slide Number 38

