
15-418/618 Recitation: Open MP

• February 23, 2018

Credit: Scott Baden, CSE@UCSD

OpenMP
• A higher level interface for threads

programming http://www.openmp.org
• Parallelization via source code annotations
• All major compilers support it, including gnu
• Gcc 4.8 supports OpenMP version 3.1

https://gcc.gnu.org/wiki/openmp
• Compare with explicit threads programing

i0 = $TID*n/$nthreads;
i1 = i0 + n/$nthreads;
for (i=i0; i< i1; i++)

work(i);

#pragma omp parallel private(i)
shared(n)

{
#pragma omp for
for(i=0; i < n; i++)

work(i);
} 8

http://www.openmp.org/

• A program begins life as a single thread
• Enter a parallel region, spawning a team of threads
• The lexically enclosed program statements execute

in parallel by all team members
• When we reach the end of the scope…

• The team of threads synchronize at a barrier
and are disbanded; they enter a wait state

• Only the initial thread continues
• Thread teams can be created and disbanded many

times during program execution, but this can be
costly

• A clever compiler can avoid many threadcreations
and joins

OpenMP’s Fork-Join Model

Credit: Scott Baden, CSE@UCSD 9

Fork join model with loops

• cout << “Serial\n”;
• N = 1000;
• #pragma omp parallel{
• #pragma omp for
• for (i=0; i<N; i++) A[i] = B[i] +

C[i];
• #pragma omp single
• M = A[N/2];

• #pragma omp for for (j=0;
j<M; j++)

• p[j] = q[j] – r[j];
• }

• Cout << “Finish\n”; Credit: Scott Baden, CSE@UCSD 10

Serial

Parallel

Serial

Seung-Jai Min

Serial

Parallel

Loop parallelization

Credit: Scott Baden, CSE@UCSD 11

• The translator automatically generates appropriate
local loop bounds

• Also inserts any needed barriers
• We use private/shared clauses to distinguish thread

private from global data
• Handles irregular problems
• Decomposition, Can be static or dynamic

#pragma omp parallel for shared(Keys) private(i) reduction(&:done)
for i = OE; i to N-2 by 2

if (Keys[i] > Keys[i+1]) swap Keys[i] ↔ Keys[i+1]; done *= false; }
end do
return done;

Another way of annotating loops

Credit: Scott Baden, CSE@UCSD 12

• These are equivalent

#pragma omp parallel
{
#pragma omp for

for (int i=1; i< N-1; i++)
a[i] = (b[i+1] – b[i-1])/2h

}

#pragma omp parallel for
for (int i=1; i< N-1; i++)

a[i] = (b[i+1] – b[i-1])/2h

Variable scoping

Credit: Scott Baden, CSE@UCSD

13

• Any variables declared outside a parallel region are
shared by all threads

• Variables declared inside the region are private
• Shared & private declarations override defaults, also

usefule as documentation

int main (int argc, char *argv[]) {
double a[N], b[N], c[N];
int i;
#pragma omp parallel for shared(a,b,c,N) private(i)

for (i=0; i < N; i++)
a[i] = b[i] = (double) i;

#pragma omp parallel for shared(a,b,c,N) private(i)
for (i=0; i<N; i++)

c[i] = a[i] + sqrt(b[i]);

Dealing with loop carried
dependences

Credit: Scott Baden, CSE@UCSD 15

• OpenMP will dutifully parallelize a loop when you
tell it to, even if doing so “breaks” the correctness
of the code

int* fib = new int[N];
fib[0] = fib[1] = 1;

#pragma omp parallel for num_threads(2)
for (i=2; i<N; i++)

fib[i] = fib[i-1]+ fib[i-2];
• Sometimes we can restructure an algorithm, e.g.

odd-even sorting.
• OpenMP may warn you when it is doing something

unsafe, but not always

Why dependencies prevent
parallelization

Credit: Scott Baden, CSE@UCSD 16

• Consider the following loops
#pragma omp parallel
{
#pragma omp for nowait
for (int i=1; i< N-1; i++)

a[i] = (b[i+1] – b[i-1])/2h
#pragma omp for
for (int i=N-2; i>0; i--)

b[i] = (a[i+1] – a[i-1])/2h
}

• Why aren’t the results incorrect?

Why dependencies prevent
parallelization

Credit: Scott Baden, CSE@UCSD 17

• Consider the following loops
#pragma omp parallel
{#pragma omp for nowait
for (int i=1; i< N-1; i++)

a[i] = (b[i+1] – b[i-1])/2h
#pragma omp for
for (int N-2; i>0; i--)

b[i] = (a[i+1] – a[i-1])/2h
}

• Results will be incorrect because the array a[], in
loop #2, depends on the outcome of loop #1
(a true dependence)
We don’t know when the threads finish
OpenMP doesn’t define the order that the loop iterations

wil be incorrect

Barrier Synchronization in OpenMP

Credit: Scott Baden, CSE@UCSD 18

• To deal with true- and anti-dependences, OpenMP
inserts a barrier (by default) between loops:
for (int i=0; i< N-1; i++)

a[i] = (b[i+1] – b[i-1])/2h
BARRIER

for (int i=N-1; i>=0; i--)
b[i] = (a[i+1] –a[i-1])/2h

• No thread may pass the barrier until all have arrived
hence loop 2 may not write into b until loop 1 has
finished reading the old values

• Do we need the barrier in this case?Yes
for (int i=0; i< N-1; i++)

a[i] = (b[i+1] – b[i-1])/2h
BARRIER?

for (int i=N-1; i>=0; i--)
c[i] = a[i]/2;

C[i] = A[i] +B[i];
E[i] = C[i+1];

}
19

Which loops can OpenMP parallellize, assuming
there is a barrier before the start of the
loop?

Credit: Scott Baden, CSE@UCSD

A[i] = A[i-1] +A[i];

4. for i = 0 to N-2{
A[i] = B[i];

A[i] = A[i] +B[i-1];

2. for i = 0 to N-2
A[i+1] = A[i] +1;

A. 1 & 2
1 & 3
C. 3 & 4
D. 2 & 4
E. All the loops

1. for i = 1 to N-1

All arrays have at least N
elements

3. for i = 0 to N-1 step 2

A[i] = A[i-1] +A[i];

4. for i = 0 to N-2{
A[i] = B[i];

A[i] = A[i] +B[i-1];

2. for i = 0 to N-2
A[i+1] = A[i] +1;

Which loops can OpenMP parallellize, assuming
there is a barrier before the start of the
loop?

A. 1 & 2

Credit: Scott Baden, CSE@UCSD

1 & 3
C. 3 & 4
D. 2 & 4
E. All the loops

1. for i = 1 to N-1

All arrays have at least N
elements

3. for i = 0 to N-1 step 2

C[i] = A[i] +B[i];
E[i] = C[i+1];

}
19

1. for i = 1 to N-1
A[i] = A[i] +B[i-1];

2. for i = 0 to N-2
A[i+1] = A[i] +1;

How would you parallelize loop 2 by hand?

Credit: Scott Baden, CSE@UCSD 20

for i = 0 to N-2
A[i+1] = A[i] +1;

How would you parallelize loop 2 by hand?

Credit: Scott Baden, CSE@UCSD 21

for i = 0 to N-2
A[i+1] =A[0] + i;

23

To ensure correctness, where must we
remove the nowait clause?

Credit: Scott Baden, CSE@UCSD

A. Between loops 1 and 2
B. Between loops 2 and 3
C. Between both loops
D. None

#pragma omp parallel for shared(a,b,c) private(i)
for (i=0; i<N; i++)

c[i] = (double) i
#pragma omp parallel for shared(c) private(i) nowait

for (i=1; i<N; i+=2)
c[i] = c[i] + c[i-1]

#pragma omp parallel for shared(c) private(i) nowait
for (i=2; i<N; i+=2)

c[i] = c[i] + c[i-1]

To ensure correctness, where must we
remove the nowait clause?

Credit: Scott Baden, CSE@UCSD 23

C. Between both loops

A. Between loops 1 and 2
B. Between loops 2 and 3

D. None
#pragma omp parallel for shared(a,b,c) private(i)

for (i=0; i<N; i++)
c[i] = (double) i

#pragma omp parallel for shared(c) private(i) nowait
for (i=1; i<N; i+=2)

c[i] = c[i] + c[i-1]
#pragma omp parallel for shared(c) private(i) nowait

for (i=2; i<N; i+=2)
c[i] = c[i] + c[i-1]

Exercise: removing data
dependencies

Credit: Scott Baden, CSE@UCSD 24

• How can we split this loop into 2 loops so
that each loop parallelizes, and the result it
correct?
Binitially:
B on 1thread:

0 1 2 3 4 5 6 7
7 7 7 7 11 12 13 14

#pragma omp parallel for shared (N,B)
for i = 0 to N-1

B[i] += B[N-1-i];
B[0] += B[7], B[1] += B[6], B[2] += B[5]
B[3] += B[4], B[4] += B[3], B[5] += B[2]
B[6] += B[1], B[7] += B[0]

Splitting a loop

Credit: Scott Baden, CSE@UCSD 25

• For iterations i=N/2+1 to N, B[N-i]
reference newly computed data

• All others reference “old” data
• B initially:
• Correct result:

0 1 2 3 4 5 6 7
7 7 7 7 11 12 13 14

#pragma omp parallel
for … nowait
for i = 0 to N/2-1

B[i] += B[N-1-i];
for i = N/2+1 to N-1

B[i] += B[N-1-i];

for i = 0 to N-1
B[i] += B[N-i];

Reductions in OpenMP
• In some applications, we reduce a collection of values

down to a single global value
Taking the sum of a list of numbers
Decoding when Odd/Even sort has finished

• OpenMP avoids the need for an explicit serial section
int Sweep(int *Keys, int N, int OE,){
bool done = true;
#pragma omp parallel for reduction(&:done)

for (int i = OE; i < N-1; i+=2) {
if (Keys[i] > Keys[i+1]){

Keys[i] ↔ Keys[i+1];
done &= false;

}
} //All threads ‘and’ their done flag into a local variable

// and store the accumulated value into the global
return done;

} Credit: Scott Baden, CSE@UCSD 26

Reductions in OpenMP

Credit: Scott Baden, CSE@UCSD 27

• In some applications, we reduce a collection of values
down to a single value
Taking the sum of a list of numbers
Decoding when Odd/Even sort has finished

• OpenMP avoids the need for an explicit serial section
int Sweep(int *Keys, int N, int OE,){
bool done = true;
#pragma omp parallel for reduction(&:done)

for (int i = OE; i < N-1; i+=2) {
if (Keys[i] > Keys[i+1]){

Keys[i] ↔ Keys[i+1];
done &= false;

}
} //All threads ‘and’ their done flag into the local variable
return done;

}

28

Which functions may we use in a reduction?

Credit: Scott Baden, CSE@UCSD

a0 + a1 + …. + an-1
a0 - a1 - …. - an-1

a0 ⋀ a1 ⋀ …. ⋀ an-1

A. Add
B. Subtract
C. LogicalAnd
D. A andB
E. A,B and C

Which functions may we use in a reduction?

Credit: Scott Baden, CSE@UCSD

a0 + a1 + …. + an-1
a0 - a1 - …. - an-1

a0 ⋀ a1 ⋀ …. ⋀ an-1

A. Add
B. Subtract
C. LogicalAnd
D. A andB
E. A,B and C

28

Odd-Even sort in OpenMP

• int Sweep(int *Keys, int N, int OE){
bool done=true;

• #pragma omp parallel for shared(Keys) private(i) reduction(&:done)
for (i = OE; i < N-1; i+=2) {

• if (Keys[i] > Keys[i+1]){
int tmp = Keys[i];

Credit: Scott Baden, CSE@UCSD 29

for s = 1 to MaxIter do
done = Sweep(Keys, N, 0);
done &= Sweep(Keys, N, 1);
if (done) break;

end do

Keys[i] = Keys[i+1];
Keys[i+1] = tmp;
done *= false;

}
}
return done;

}

aiai-1 ai+1

P=1 P=2 P=4 P=8
6.09s 3.51s 2.78s 2.78s

-n 8Mi, -i 200, -f 50

g++ -fopenmp, on Bang

Why isn’ta barrierneededbetweenthe calls to sweep(
)?

Credit: Scott Baden, CSE@UCSD 30

A. The calls to sweep occur outside parallel sections
B. OpenMP inserts barriers after the calls to Sweep
C. OpenMP places a barrier after the for i loop insideSweep

D. A &C
E. B & C
for s = 1 to MaxIter do

done = Sweep(Keys, N, 0);
done &= Sweep(Keys, N, 1);
if (done) break;

end do
int Sweep(int *Keys, int N, int OE){

bool done=true;
#pragma omp parallel for shared(Keys) private(i) reduction(&:done)
for i = OE; i to N-2 by 2

if (Keys[i] > Keys[i+1]) {swap Keys[i] ↔ Keys[i+1]; done &= false; }
end do
return done;

Why isn’ta barrierneededbetweenthe calls to sweep(
)?

D. A &C

A. The calls to sweep occur outside parallel sections
B. OpenMP inserts barriers after the calls to Sweep
C. OpenMP places a barrier after the for i loop insideSweep

E. B & C
for s = 1 to MaxIter do

done = Sweep(Keys, N, 0);
done &= Sweep(Keys, N, 1);
if (done) break;

end do

30

int Sweep(int *Keys, int N, int OE){
bool done=true;

#pragma omp parallel for shared(Keys) private(i) reduction(&:done)
for i = OE; i to N-2 by 2

if (Keys[i] > Keys[i+1]) {swap Keys[i] ↔ Keys[i+1]; done &= false; }
end do
return done;

Credit: Scott Baden, CSE@UCSD

Another way of annotating loops

Credit: Scott Baden, CSE@UCSD

27

• These are equivalent
• Why don’t we need to declare private(i)?

#pragma omp parallel shared(a,b)
{
#pragma omp for schedule(static)

for (int i=1; i< N-1; i++)
a[i] = (b[i+1] – b[i-1])/2h

}

#pragma omp parallel for shared(a,b) schedule(static)
for (int i=1; i< N-1; i++)

a[i] = (b[i+1] – b[i-1])/2h

The No Wait clause

Credit: Scott Baden, CSE@UCSD

28

• Removes the barrier after an omp for loop
• Why are the results incorrect?

We don’t know when the threads finish
OpenMP doesn’t define the order that the loop iterations

wil be incorrect

#pragma omp parallel
{
#pragma omp for nowait

for (int i=1; i< N-1; i++)
a[i] = (b[i+1] – b[i-1])/2h

#pragma omp for
for (int i=N-2; i>0; i--)

b[i] = (a[i+1] – a[i-1])/2h
}

Why isn’t a barrier needed between the calls to
sweep()?

Credit: Scott Baden, CSE@UCSD

29

A. The calls to sweep occur outside parallel sections
B.
C. OpenMP places a barrier after the for i loop inside Sweep
D. A & C

for s = 1 to MaxIter do
done = Sweep(Keys, N, 0);
done &= Sweep(Keys, N, 1);
if (done) break;

end do
int Sweep(int *Keys, int N, int OE){

bool done=true;
#pragma omp parallel for shared(Keys) private(i) reduction(&:done)
for i = OE; i to N-2 by 2

if (Keys[i] > Keys[i+1]) {swap Keys[i] ↔ Keys[i+1]; done &= false; }
end do
return done;

Parallelizing a nested loop with OpenMP

Credit: Scott Baden, CSE@UCSD

30

• Not all implementations can parallelize inner loops

• We parallelize the outer loop index
#pragma omp parallel private(i) shared(n)

#pragma omp for
for(i=0; i < n; i++)

for(j=0; j < n; j++) {
V[i,j] = (u[i-1,j] + u[i+1,j]+ u[i,j-1]+ u[i, j+1] - h2f[i,j])/4

}

mymax = mymin + n/NT-1

• Generated code
mymin = 1 + ($TID * n/NT),
for(i=mymin; i < mymax; i++)

for(j=0; j < n; j++)
V[i,j] = (u[i-1,j] + u[i+1,j]+ u[i,j-1]+ u[i, j+1] - h2f[i,j])/4

Barrier();

An application: Matrix Vector Multiplication

Credit: Scott Baden, CSE@UCSD 8

Application: Matrix Vector Multiplication

Credit: Scott Baden, CSE@UCSD

32

// GLOBALdouble **A, *x, *y;
#pragma omp parallel shared(A,x,N)
#pragma omp for

for (i=0; i<N; i++){
y[i] = 0.0;
for (j=0; j<N; j++)

y[i] += A[i][j] * x[j];
}

Support for load balancing in OpenMP

Credit: Scott Baden, CSE@UCSD

33

• OpenMP supports Block Cyclic
decompositions with chunk size

#pragma omp parallel for schedule(static, 2)
for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++){
do
z = z2 + c
while (|z| < 2)

}
}

OpenMP supports self scheduling

Credit: Scott Baden, CSE@UCSD

34

• Adjust task granularity with a chunksize

#pragma omp parallel for schedule(dynamic, 2)
for(int i = 0; i < n; i++) {

for (int j = 0; j < n; j++){
do

z = z2 + c
while (|z| < 2)

}
}

Iteration to thread mapping in OpenMP

Credit: Scott Baden, CSE@UCSD

35

#pragma omp parallel shared(N,iters) private(i)
#pragma omp for
for (i = 0; i < N; i++)

iters[i] = omp_get_thread_num();
N = 9, # of openMP threads = 3 (no schedule)
0 0 0 1 1 1 2 2 2
N = 16, # of openMP threads = 4, schedule(static,2)
0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3
N=9: 0 0 1 1 2 2 0 0 1

Initializing Data in OpenMP

Credit: Scott Baden, CSE@UCSD

36

• We allocate heap storage outside a parallel region
• But we should initialize it inside a parallel region
• Important on NUMA systems, which account for

most servers http://goo.gl/ao02CO

double **A;
A =(double**) malloc(sizeof(double*)*N + sizeof(double)*N*N);
assert(A);

#pragma omp parallel private(j) shared(A,N)
for(j=0;j<N;j++)

A[j] = (double *)(A+N) + j*N;

#pragma omp parallel private(i,j) shared(A,N)
for (j=0; j<N; j++)

for (i=0; i<N; i++)
A[i][j] = 1.0 / (double) (i+j-1);

http://goo.gl/ao02CO

OpenMP is also an API

Credit: Scott Baden, CSE@UCSD

37

tid = omp_get_thread_num();
nthrds = omp_get_num_threads();

#endif
int i0=(n/nthrds)*tid, i1=i0+n/nthrds;
for(i=i0; i < i1; i++)

work(i);
}

gcc.gnu.org/onlinedocs/libgomp

• But we don’t use this lower level interface unless necessary
• Parallel for is much easier to use

#ifdef _OPENMP
#include <omp.h>
#endif
int tid=0, nthrds,1;
#pragma omp parallel
{
#ifdef _OPENMP

Summary: what does OpenMP accomplish for us?

• Higher level interface simplifies the
programmer’s model

• Spawn and join threads, “Outlining” code
into a thread function

• Handles synchronization and partitioning
• If it does all this, why do you think we need

to have a lower level threading interface?

Credit: Scott Baden, CSE@UCSD

38

	15-418/618 Recitation: Open MP
	OpenMP
	OpenMP’s Fork-Join Model
	Fork join model with loops
	Loop parallelization
	Another way of annotating loops
	Variable scoping
	Dealing with loop carried dependences
	Why dependencies prevent parallelization
	Why dependencies prevent parallelization
	Barrier Synchronization in OpenMP
	Which loops can OpenMP parallellize, assuming there is a barrier before the start of the loop?
	Which loops can OpenMP parallellize, assuming there is a barrier before the start of the loop?
A. 1 & 2
	How would you parallelize loop 2 by hand?
	How would you parallelize loop 2 by hand?
	To ensure correctness, where must we remove the nowait clause?
	To ensure correctness, where must we remove the nowait clause?
	Exercise: removing data dependencies
	Splitting a loop
	Reductions in OpenMP
	Reductions in OpenMP
	Which functions may we use in a reduction?
	Which functions may we use in a reduction?
	Odd-Even sort	in OpenMP
	Why isn’t a barrier needed between the calls to sweep()?
	Why isn’t a barrier needed between the calls to sweep()?
	Another way of annotating loops
	The No Wait clause
	Why isn’t a barrier needed between the calls to sweep()?
	Parallelizing a nested loop with OpenMP
	An application: Matrix Vector Multiplication
	Application: Matrix Vector Multiplication
	Support for load balancing in OpenMP
	OpenMP supports self scheduling
	Iteration to thread mapping in OpenMP
	Initializing Data in OpenMP
	OpenMP is also an API
	Slide Number 38

