
Full Name: Harry Q. Bovik
Andrew Id: bovik

15-418/618
Exercise 3 SOLUTION

Problem 1: Understanding OpenMP

1A: Performance of OMP Critical

Using the omp critical pragma ensured that the sum is computed correctly, but the performance is very
poor—ranging from 0.036 GFLOPS for one thread down to 0.006 for 16 threads. To what do you attribute
this poor performance? Why does it get worse with more threads?

The overhead of using locks is very high—much higher than performing a single addition, even when
there is no contention for the locks. This cost increases with more threads, negating any speedup due to
multithreading.

1B: Thread-specific accumulation

Both versions the row- and column-wise accumulation functions achieve speedup with more threads, but
their sequential performance (around 0.40 GFLOPS) is worse than that of the baseline. To what do you
attribute this performance?

Array accum is stored in memory, and hence every update requires a memory write. By contrast, the
sequential code sums the value in a register.

1



1C: Row- vs. column-wise accumulation

The column-wise accumulation code has slightly better speedup than the row-wise accumulation code. To
what do you attribute this difference?

This demonstrates the problem of false sharing. A row of accum will have contiguous memory locations,
and so all of the accumulators will be packed into one or two cache blocks. This will lead to contention
among the threads for this block or blocks.

1D: Top performers

The implementation making explicit use of threads and the one making use of OpenMP reduction have
nearly identical performance. To what do you attribute this similarity?

The explicit threaded implementation captures how OMP implements the reduction operation.

2



1E: Top performers vs. others

Why do the two top performers outperform the versions using row-wise and column-wise accumulators?

The top performers avoid any contention and do their accumulations in registers, avoiding the pitfalls of the
other implementations

1F. Bonus Question: Why the upward bends?

The curves indicate that the performance scales better for 8–16 threads than it did for 1–8. To what do you
attribute this phenomenon?

It’s hard to say exactly. Hyperthreading should work well here—it will hide the cost of cache misses and
the sequential dependency of the sum operations. That would explain a linear performance increase. Most
likely, the superlinear speedup is due to clock frequency scaling. Perhaps the processor recognizes that it is
being fully utilized and therefore increases the clock speed.

3



Problem 2: Heterogeneous Systems

2A: Homogeneous Model Speedup

Explain how the equation for the homogeneous model speedup follows the form of the general Amdahl’s
Law equation. What resources are used and what is the duration of Tseq? What resources are used and what
is the duration of Tpar?

The sequential part of the computation involves computing fraction 1− f of the total using a processor with
performance perf (r). The parallel part of the computation involves computing fraction f of the total using
bn/rc processors, each with performance perf (r).

2B: Heterogeneous Model Speedup

Explain how the equation for the heterogeneous model speedup follows the form of the general Amdahl’s
Law equation. What resources are used and what is the duration of Tseq? What resources are used and what
is the duration of Tpar?

The sequential part of the computation involves computing fraction 1 − f of the total using a processor
with performance perf (r). The parallel part of the computation involves computing fraction f , but using
both the large processor and the smaller ones. To maximize performance, we split the load, mapping part
onto the larger processor, and the remainder on the others, fully using the combined computing power
perf (r) + bn− rc.

4



2C: Optimizing Parameter r for the Homogeneous Model

Fill in the table below giving the values of r∗ and n/r∗ for the Homogeneous model, and the resulting
speedups.

α f r∗ n/r∗ Sho

0.4 0.80 42.667 6 13.46

0.4 0.95 8.828 29 28.88

0.4 0.99 1.718 149 74.60

0.8 0.80 256.000 1 84.45

0.8 0.95 51.200 5 97.10

0.8 0.99 10.240 25 129.65

2D: Understanding 2C

Explain the trends you see in your answer to 2C: Why do changes to α and/or f cause the changes to r∗ and
Sho that you have computed?

For α = 0.4, the processing power does not scale very well. Even using r = 256 would only yield a
processor with performance 9.2. For low values of f , we want to have a large processor for the sequential
part, but there is limited value in increasing its size too much. For very high values of f , we can shrink the
size of the processor for the sequential portion and make better use of the other processors.

For α = 0.8, the processor power scales much better, giving performance of 84.4 for r = 256. This pushes
us to use a smaller number of bigger processors. For low values of f , we do best with a single processor.
Even with high values of f , we can benefit from the power of the larger processors. Even with high values
of α and f , however, we only get around 1/2 of the benefit of increasing the resources from 1 to 256.

5



2E: Optimizing Parameter r for the Heterogeneous Model

Fill in the table below giving the values of r∗ for the Heterogeneous model, and the resulting speedups.

α f r∗ She

0.4 0.80 156 29.44

0.4 0.95 96 72.62

0.4 0.99 44 147.65

0.8 0.80 145 116.38

0.8 0.95 81 165.56

0.8 0.99 39 211.28

2F: Understanding 2E (and 2C)

Explain the trends you see in your answer to 2E: why do changes to α and/or f cause the changes to r∗

and She that you have computed? How do these trends compare to those computed for the Homogeneous
model?

As before, for α = 0.4, the processing power does not scale very well. Nonetheless, for low values of f ,
we want to dedicate 61% of the total resources to the large processor. Even for f = 0.99, the optimum
dedicates 17% of the resources to the large processor.

For α = 0.8, the improved processor power enables us to get the necessary sequential performance using a
smaller fraction of the total resources. Furthermore, this processor can provide more power to the parallel
portion of the code, leading to substantially better speedup.

Comparing the Homogeneouse to the Heterogeneous models, we can see a clear advantage for heterogeneity.
The overall speedups are 1.6×–2.2× better. We can use a much bigger large processor, since only one is
needed. For high values of α and f , we see the performance reaching over 80% of the ideal limit of 256.

6


