Full Name: Harry Q. Bovik

Andrew Id: bovik

15-418/618 Exercise 1 SOLUTION

Problem 1: Problem Scaling

1. Fill in the table below showing how the amounts of computation and communication would scale *per processor* and *per iteration*.

	Computation	Communication	
(a): $N' = 2N, P' = P$	8×	4×	
(b): $N' = N, P' = 8P$	1/8×	1/4×	

2. Based on these specific cases, give formulas for how the computation, communication, and arithmetic intensity would scale (per processor and per iteration) as functions of N and P.

Computation	Communication	Arithmetic Intensity
N^3/P	$N^2/P^{2/3}$	$N/P^{1/3}$

3. Fill in the following table with formulas indicating the problem size N', the per-processor memory requirement M', the ideal total time T', and the change in arithmetic intensity.

Scaling Type	N'	M'	T'	Arith. Intensity
Problem	N	M/8	T/8	1/2 imes
Memory	2N	M	2T	1×
Time	$2^{3/4}N \approx 1.68N$	$2^{-3/4}M \approx 0.59M$	T	$2^{-1/4} \times \approx 0.84 \times$

Problem 2: Interconnection Networks

1. Give a formula for n(k, l).

We can write a recurrence as follows:

$$n(k,1) = 2k$$

$$n(k,l) = k \cdot n(k,l-1)$$

The solution to this recurrence is $n(k, l) = 2k^l$.

- 2. What is n(18, 3)?
 - $2 \cdot 18^3 = 11,664.$
- 3. Give a formula for the number of switches required to construct network N(k,l).

Let s(k, l) be the number of switches in network N(k, l). We can write the following recurrence:

$$s(k,1) = 1$$

 $s(k,l) = k \cdot s(k,l-1) + n(k,l-1)$

The solution for this recurrence is: $s(k,l)=(2l-1)k^{l-1}$

- 4. How many switches are in network N(18,3)?
 - $5 \cdot 18^2 = 1,620$