Full Name: Harry Q. Bovik

Andrew Id: bovik

15-418/618 Exercise 1 SOLUTION

Problem 1: Problem Scaling

1. Fill in the table below showing how the amounts of computation and communication would scale per processor and per iteration.

	Computation	Communication
(a): $N^{\prime}=2 N, P^{\prime}=P$	$8 \times$	$4 \times$
(b): $N^{\prime}=N, P^{\prime}=8 P$	$1 / 8 \times$	$1 / 4 \times$

2. Based on these specific cases, give formulas for how the computation, communication, and arithmetic intensity would scale (per processor and per iteration) as functions of N and P.

Computation	Communication	Arithmetic Intensity
N^{3} / P	$N^{2} / P^{2 / 3}$	$N / P^{1 / 3}$

3. Fill in the following table with formulas indicating the problem size N^{\prime}, the per-processor memory requirement M^{\prime}, the ideal total time T^{\prime}, and the change in arithmetic intensity.

Scaling Type	N^{\prime}	M^{\prime}	T^{\prime}	Arith. Intensity
Problem	N	$M / 8$	$T / 8$	$1 / 2 \times$
Memory	$2 N$	M	$2 T$	$1 \times$
Time	$2^{3 / 4} N \approx 1.68 N$	$2^{-3 / 4} M \approx 0.59 M$	T	$2^{-1 / 4} \times \approx 0.84 \times$

Problem 2: Interconnection Networks

1. Give a formula for $n(k, l)$.

We can write a recurrence as follows:

$$
\begin{aligned}
n(k, 1) & =2 k \\
n(k, l) & =k \cdot n(k, l-1)
\end{aligned}
$$

The solution to this recurrence is $n(k, l)=2 k^{l}$.
2. What is $n(18,3)$?
$2 \cdot 18^{3}=11,664$.
3. Give a formula for the number of switches required to construct network $N(k, l)$.

Let $s(k, l)$ be the number of switches in network $N(k, l)$. We can write the following recurrence:

$$
\begin{aligned}
s(k, 1) & =1 \\
s(k, l) & =k \cdot s(k, l-1)+n(k, l-1)
\end{aligned}
$$

The solution for this recurrence is: $s(k, l)=(2 l-1) k^{l-1}$
4. How many switches are in network $N(18,3)$?
$5 \cdot 18^{2}=1,620$

