15-411 Compiler Design, Lab 2 Checkpoint (Fall 2020)

Seth and co.

Checkpoint Due: 11:59 PM, September 29th, 2020

1 Introduction

For this checkpoint, you will implement a Dataflow Analysis Framework. Dataflow analysis is not
only crucial for liveness analysis in lab 2 and future labs, but also useful for numerous optimizations,
such as partial redundancy elimination, deadcode elimination, and copy propagation.

For this checkpoint, we provide you with input files containing gen and kill sets at every program
point. We also provide you with reference output files containing the correct in and out sets at
each program point after dataflow analysis. Your task is to extend your compiler to take in in-
put files containing gen and kill sets, and generate output files that match the reference output
files we provide you. We will test 4 types of dataflow analysis for this checkpoint: forward-must,
forward-may, backward-must, and backward-may. Recall that May analysis uses union as the meet
operator, and involves asking about whether there exists a path along which some fact is true, while
Must analysis uses intersection as the meet operator, and asks whether some fact is true along all
paths. The type of analysis to perform will be passed by the —-r2 compiler option.

2 Input and Output Format

We specify the format of the input and output files below. We will use the abstraction dataflow
facts to denote the unit of computation within gen and kills sets. In practice, dataflow facts might
be temps for liveness analysis, or expressions for available expressions. Dataflow facts will be
represented as strings of non-negative integers.

Input format: FEach input file has the JSON format of the form:

[

{
"Gen": [||11||’||12u]’
"Kill"l [ll13"]’
"Successors": [11, 15],
"Is_label": false,
"Line": 10

1,

]

The input is a JSON array of JSON objects. Each JSON object contains information necessary
for dataflow analysis at a single program point. Below is breakdown of what each field in a JSON
object means: Here is a breakdown of what each field means:.

e Gen: Array of strings. Denotes the facts in the gen set at this program point.
e Kill: Array of strings. Denotes the facts in the kill set at this program point.

e Successors: Array of integers. Denotes the line numbers of the successors of this program
point. For example, a normal instruction has a single successor which is the next line, a
jump instruction has a single successor which might not be the next line, a conditional jump
instruction has two successors, while a return instruction does not have any successors. For
this checkpoint, all program points have at most 2 successors.

e Is_label: A boolean. Denotes whether the current instruction is a label. Labels are the
targets for jump and conditional jump instructions and the beginning of basic blocks. This
field is not necessary for correct dataflow analysis, but might help when building a control
flow graph. You can assume that if a program point is a label, its gen and kill sets are
empty.

e Line: An integer. Denotes the line number of this program point. You can actually infer
this field from the index of this program point within the Points array, but we include this
field to aid you with debugging.

Output format: The reference output files we provide you has the JSON format of the form:

[
{
“In": ["11", ||12u, ||14||]’
"Out": [u13n’ ||14||]’
"Line": 10
3,
]

The output is a JSON array of JSON objects. Below is breakdown of what each field in a JSON
object means:

e In: Array of strings. Denotes the facts in the In set at this program point after performing
dataflow analysis.

e Out: Array of strings. Denotes the facts in the Out set at this program point after performing
dataflow analysis.

e Line: An integer. Denotes the line number of this program point. Note that this field is
optional and not checked by the verifier. However, having this field will probably aid your
debugging.

The output file must contain the exact same program points as the input file in the same order.
Since the result of dataflow analysis is deterministic, we provide you the reference output files,
which will be compared against the output files emitted by your compiler. The verifier checks that
at each program point, the In and Out sets of your output file and the reference output file contain
the same facts (though the ordering of the facts within In and Out sets can be different).

Running the verifier: Your compiler is expected to recognize an option —--r2 which, when
present on the command line, tells the compiler to run the L2 checkpoint. When --r2 is present,
the source file passed in will be an input file for this checkpoint. The --r2 option takes a sin-
gle argument denoting the type of dataflow analysis to be performed. The type can be one of
forward-may, forward-must, backward-may, backward-must.

The input files for this checkpoint are generated from the L2 test files. The input file generated

from the L2 test file foo.12 will be named foo.12.in. Each input file has 4 corresponding refer-

ence output files for each of the 4 different types of dataflow analysis. All 4 reference output files

are named foo.12.out but are placed in different directories. For example, the reference output

files for 12-basic-checkpoint/fo00.12.in are 12-basic-checkpoint-forward-may/foo.12.out,
12-basic-checkpoint-forward-must/foo.12.out, 12-basic-checkpoint-backward-may/foo.12.out,
and 12-basic-checkpoint-backward-must/foo.12.out.

Given the --r2 option and source file foo.12.in, your compiler should generate a output file called
foo.12.out in the same directory as foo.12.in according to the JSON output format specified
above. The verifier will then read the output file generated by your compiler and compare with the
reference output file we provide you.

The verifier is an executable in the dist/verifier directory. To run the verifier on all input
files in a certain directory, such as dist/test/12-basic-checkpoint, you can run the command
../runverifier 12-basic-checkpoint in dist/compiler. The runverifier script will make
your compiler using the command make lab2, pass in each input file to your compiler with the
--r2 option to generate an output file, and then pass the generated output file to the verifier for
scoring. By default, runverifier runs your compiler with all 4 types of dataflow analysis on each
input file. You can pass in the flags --forward-may, —--forward-must, --backward-may , and
--backward-must so that runverifier only runs the passed in types of dataflow analysis on each
input file. The output files generated by your compiler would be placed in dist/log/12-basic-checkpoint.
For each input file, only the output file for the last run will be found in the log (so if for an input
file you passed the forward-may and forward-must directions but failed backward-may, the log
file in the log will be your output for backward-may).

We provide 2 different verifier executables, for mac and ubuntu. On a mac, you should pass the
--mac flag to the runverifier script. If no flag is passed, runverifier uses the ubuntu executable
by default. We don’t provide a verifier executable for windows, so if you are using the windows
system, your best option might be to run the verifier on the docker containers we provide you.

Alternatively, you can also test a single pair of output file and reference output file with the verifier
by running <verifier executable path> <your_output_file_path> <reference_output_file_path>.

3 Scoring

Correctness: The verifier compares the output file generated by your compiler with the corre-
sponding reference output file, and checks whether at each program point, the facts within the In
and Out fields are identical (though the ordering of facts can be different). You are also welcome
to add more fields other than In, Out, and Line to aid your debugging.

Scoring: We will run each input file on 4 types of dataflow analysis, and your compiler must
perform all 4 types of dataflow analysis correctly for an input file to receive points for the input
file. The sum of your scores on all input files is your final score.

For this checkpoint, the tests in 12-basic-checkpoint are worth 20 points in total while the tests
in 12-large-checkpoint are worth 60 points in total. You will also be deducted points for tests
on which your compiler times out.

4 Submission

Same as labl.

5 Note and Hints

e You are not required to support the —-r2 option for future labs. We don’t aim to create more
work for you.

e You might want to adapt the JSON parsing helper code from labl checkpoint to parse input
files of this checkpoint.

e We highly recommend implementing dataflow analysis using a control flow graph and basic
blocks. Using basic blocks make dataflow analysis run much faster, which might be necessary
to pass a few test cases in this checkpoint. Moreover, building a control flow graph will be
necessary for SSA and other optimizations in future labs.

e It would be helpful to have an entry and exit block when building the control flow graph. The
input files might have multiple exit points with no successors, so you would need to manually
create an exit block and connect all exit points to it. Also remember to not include this newly
created exit block in your output.

e In lab 2, to implement liveness analysis using the dataflow analysis framework you built for
this checkpoint, you will probably need to generate the gen and kill sets from abstract
assembly and feed them into the dataflow analysis framework, then read the In and/or Out
sets at each program point to generate an interference graph like you did for lab1 checkpoint.

e Another great example of using dataflow analysis is partial redundancy elimination (PRE).
One classic four-pass algorithm of performing PRE involves a backwards-must pass to find an-
ticipated expressions, a forwards-must pass to find available expressions, another forwards-must
pass to find postponable expressions, and finally a backwards-may pass to find used expres-
sions.

	Introduction
	Input and Output Format
	Scoring
	Submission
	Note and Hints

