
15-411 Compiler Design, Lab 2 (Fall 2020)

Seth and co.

Test Programs Due: 11:59 pm, Thursday, October 1, 2020
Compilers Due: 11:59 pm, Thursday, October 8, 2020

1 Introduction

The goal of the lab is to implement a complete compiler for the language L2. This language extends
L1 by conditionals, loops, and some additional operators. This means you will have to change all
phases of the compiler from the first lab. One can write some interesting iterative programs over
integers in this language. Correctness is still paramount, but performance starts to become a minor
issue because the code you generate will be executed on a set of test cases with preset time limits.
These limits are set so that a correct and straightforward compiler without optimizations should
receive full credit.

2 L2 Syntax

The concrete syntax of L2 is based on ASCII character encoding of source code.

2.1 Lexical Tokens

L2 source files are tokenized into the tokens listed in Figure 1. The L2 grammar does not necessarily
accept all the tokens produced upon tokenizing source code. However, the additional tokens will
remain in the lexical specification to maintain forward compatibility with future labs and C0.

Whitespace and Token Delimiting

In L2, whitespace is either a space, horizontal tab (\t), vertical tab (\v), linefeed (\n), carriage
return (\r) or formfeed (\f) character in ASCII encoding. Whitespace is ignored, except that it
delimits tokens. Note that whitespace is not a requirement to terminate a token. For instance, ()
should be tokenized into a left parenthesis followed by a right parenthesis according to the given
lexical specification. However, white space delimiting can disambiguate two tokens when one of
them is present as a prefix in the other. For example, += is one token, while + = is two tokens.
The lexer should produce the longest valid token possible. For instance, -- should be lexed as one
token, not two.

1



ident ::= [A-Za-z_][A-Za-z0-9_]*

num ::= 〈decnum〉 | 〈hexnum〉

〈decnum〉 ::= 0 | [1-9][0-9]*

〈hexnum〉 ::= 0[xX][0-9a-fA-F]+

〈special characters〉 ::= ! ~ - + * / % << >>

< > >= <= == != & ^ | && ||

= += -= *= /= %= <<= >>= &= |= ^=

-- ++ ( ) ; : ?

〈reserved keywords〉 ::= struct typedef if else while for continue break

return assert true false NULL alloc alloc_array

int bool void char string

Tokens that are referenced as terminals in the grammar in Figure 2 are in bold. Other classifiers
not referenced within the grammar are in 〈angle brackets and in italics〉. ident, 〈decnum〉, and
〈hexnum〉 are described using regular expressions.

Figure 1: Lexical Tokens

Comments

L2 source programs may contain C-style comments of the form /* ... */ for multi-line comments
and // for single-line comments. Multi-line comments may be nested (and of course the delimiters
must be balanced).

Reserved Keywords

The reserved keywords in Figure 1 cannot appear as a valid token in any place not explicitly
mentioned in the grammar. In particular, they cannot be used as identifiers. Some of these keywords
are unused in L2. However, they are treated as keywords to maintain forward compatibility with
valid C0 programs.

2.2 Grammar

The syntax of L2 is defined by the context-free grammar in Figure 2. Ambiguities in this grammar
are resolved according to the operator precedence table in Figure 3 and the rule that an else

provides the alternative for the most recent eligible if.

3 L2 Elaboration

As the name is intended to suggest, elaboration is the process of transforming the literal parse
tree into to one that is simpler and more well behaved – the abstract syntax tree. Much of this
may be accomplished directly in the semantic actions that accompany the grammar rules, but
sometimes a separate pass or multiple passes are advisable. We describe elaboration separately
because it is logically intended as a separate pass of compilation that happens immediate after
parsing. Unfortunately, justifying the way we choose to elaborate a language may depend on

2



〈program〉 ::= int main () 〈block〉

〈block〉 ::= { 〈stmts〉 }

〈type〉 ::= int | bool

〈decl〉 ::= 〈type〉 ident | 〈type〉 ident = 〈exp〉

〈stmts〉 ::= ε | 〈stmt〉 〈stmts〉

〈stmt〉 ::= 〈simp〉 ; | 〈control〉 | 〈block〉

〈simp〉 ::= 〈lvalue〉 〈asop〉 〈exp〉 | 〈lvalue〉 〈postop〉 | 〈decl〉 | 〈exp〉

〈simpopt〉 ::= ε | 〈simp〉

〈lvalue〉 ::= ident | ( 〈lvalue〉 )

〈elseopt〉 ::= ε | else 〈stmt〉

〈control〉 ::= if ( 〈exp〉 ) 〈stmt〉 〈elseopt〉

| while ( 〈exp〉 ) 〈stmt〉

| for ( 〈simpopt〉 ; 〈exp〉 ; 〈simpopt〉 ) 〈stmt〉

| return 〈exp〉 ;

〈exp〉 ::= ( 〈exp〉 ) | 〈intconst〉 | true | false | ident

| 〈unop〉 〈exp〉 | 〈exp〉 〈binop〉 〈exp〉 | 〈exp〉 ? 〈exp〉 : 〈exp〉

〈intconst〉 ::= num

〈asop〉 ::= = | += | -= | *= | /= | %= | &= | ^= | |= | <<= | >>=

〈binop〉 ::= + | - | * | / | % | < | <= | > | >= | == | !=

| && | || | & | ^ | | | << | >>

〈unop〉 ::= ! | ~ | -

〈postop〉 ::= ++ | --

The precedence of unary and binary operators is given in Figure 3. Non-terminals are in 〈angle
brackets〉. Terminals are in bold. The absence of tokens is denoted by ε.

Figure 2: Grammar of L2

3



Operator Associates Meaning

() n/a explicit parentheses

! ~ - ++ -- right logical not, bitwise not, unary minus, increment, decrement

* / % left integer times, divide, modulo

+ - left integer plus, minus

<< >> left (arithmetic) shift left, right

< <= > >= left integer comparison

== != left overloaded equality, disequality

& left bitwise and

^ left bitwise exclusive or

| left bitwise or

&& left logical and

|| left logical or

? : right conditional expression

= += -= *= /= %=

&= ^= |= <<= >>= right assignment operators

Figure 3: Precedence of operators, from highest to lowest

4



an intuitive understanding of the operational behavior of the concrete language. Therefore, we
recommend that you check what you see in this section against the description of the static and
dynamic semantics of L2 that appear in the next two sections.

Note that, with L2, some of these semantics may be implemented without a separate elaboration
pass by parsing directly to the elaborated code. However, we recommend performing a separate
elaboration pass, which can help with resolving ambiguity in future labs, which, like C, have
languages that cannot be parsed entirely in a context-free way.

Your implementation may of course employ a different elaboration strategy, but we will rely on
the following elaboration strategy extensively in the description of the static semantics, and your
implementation must behave in an equivalent manner. As always, document any design decisions
you make.

We propose the following tree structure as the abstract syntax for statements s:

s ::= assign(x, e) | if(e, s, s) | while(e, s) | return(e)
| nop | seq(s, s) | declare(x, τ, s)

where e stands for an expression, x for an identifier, and τ for a type. Do not be confused by the
fact that this looks like a grammar: the terms on the right hand side describe trees, not strings.
The whole program is represented here as a single statement s, because a sequence of statements
{s1 s2 . . .} is represented as a single statement seq(s1, seq(s2, . . . , )) (assuming s1 and s2 are not
declarations. In an implementation it may be more convenient to use lists explicitly.

Here are some suggested inference rules that describe how to elaborate sequences of statements
(〈stmts〉 in the grammar) into abstract syntax trees.

ε; nop

〈stmt〉; s 〈stmts〉; s′

〈stmt〉 〈stmts〉; seq(s, s′)

〈type〉; τ ident ; x 〈stmts〉; s′

〈type〉 ident; 〈stmts〉; declare(x, τ, s′)

Here, the third rule should take precedence over the second so that scopes are resolved properly.
Note that if variables are initialized when they are declared then one may be tempted to write the
following elaboration rule:

〈type〉; τ ident ; x 〈exp〉; e 〈stmts〉; s

〈type〉 ident = 〈exp〉; 〈stmts〉; declare(x, τ, seq(assign(x, e), s))

But this form of elaboration is suspect since it appears to assert that variable x should have type
τ in the expression e, while in L2 (and C0), a “recursive” declaration such as int x = x+1 is not
allowed. It is permissible for elaboration to perform simple checks during elaboration and reject
programs that should fail to compile.

As can be seen from the abstract syntax, conditionals always have both a “then” branch and
an “else” branch represented by the two statements in that order. Elaborating if , else, while, and
return should be fairly straightforward, and we do not give any rules for them.

5



It is probably sensible to elaborate for loops into while loops, just to simplify the transforma-
tions, code generation, etc. in the compiler. For example, we might elaborate with the following
rule:

〈stmt1〉; init 〈exp〉; e 〈stmt2〉; step 〈stmt3〉; body

for (〈stmt1〉; 〈exp〉; 〈stmt2〉) 〈stmt3〉; seq(init,while(e, seq(body, step)))

assuming that 〈stmt1〉 and 〈stmt2〉 are not declarations. If 〈stmt1〉 is a declaration, its elaboration
should be similar to the one above but take scoping into account so that the scope of declaration
init includes e, body, and step but nothing else. 〈stmt2〉 is not allowed to be a declaration and the
compiler should issue an error message in that case.

As in L1, assignment statements of the form a <binop>= b are elaborated to be equivalent to
a = a <binop> b. In addition, a++ is equivalent to a = a + 1 and a-- is equivalent to a = a - 1.

Unlike statements, expressions are already in a compact and well behaved representation. We
suggest elaborating the logical operators a && b to a ? b : false, and a || b to a ? true : b.

4 L2 Static Semantics

4.1 Type Checking

Since our grammar and our type system have become a bit more interesting, we now give some
rules for type-checking. These rules are fairly informal. You may be interested in the material
covered in 15-312 and 15-317 if you wish to understand the techniques used to formally treat type
systems.

Type-checking Statements v. Type-checking Expressions

Our grammar allows expressions to appear with statements, but there is no way to embed state-
ments within expressions. As a consequence it is meaningful to have a judgment of the form e : τ to
convey that an expression e has the type τ , but the same is meaningless when discussing statements.
Therefore, for statements, we have the judgment s valid .

Variable Declarations and Contexts

As in L1, variables need to be declared with their types before they can be used. The declaration
of a variable in a block is visible only in the subsequent statements in the same block. Variables
declared in inner blocks are not allowed to shadow the same variable declared in an enclosing scope.
Therefore, multiple declarations of the same identifier may be present in the body of main if and
only if no two of them are visible within the same block.

The abstract syntax for declarations, declare(x, τ, s), is very convenient for capturing all these
phenomena and specifying the rules of type-checking. Here, the declaration of x of type τ is visible
only to statement s, and your elaborator should take care to elaborate statements while correctly
preserving the lexical scope of declarations. Making the scope explicit in the abstract syntax makes
it easy for you to build up a context of variables declarations available while type-checking any
particular statement or expression.

Some special rules apply for scoping of declarations in for statements as explain in Section 3.

6



We write Γ ` e : τ to express that an expression e is type-checked under the context Γ which
keeps track of all declarations of variables and their types. The following inference rules demonstrate
the function of the context.

x : τ ∈ Γ

Γ ` x : τ

x : τ ′ 6∈ Γ for any τ ′ Γ, x : τ ` s valid

Γ ` declare(x, τ, s) valid

Here, x stands for any identifier.

The types

int is no longer the only type. We have bool which is inhabited by true and false. L2 (like C0)
does not allow implicit or explicit coercion between integral and boolean values. This is a major
point of departure from C and other (in)famous languages.

Statements

We have already explained how declarations work. Here are the remaining significant rules.

Γ ` e : bool Γ ` s1 valid Γ ` s2 valid

Γ ` if(e, s1, s2) valid

Γ ` e : bool Γ ` s valid

Γ ` while(e, s) valid

Γ ` x : τ Γ ` e : τ

Γ ` assign(x, e) valid

Γ ` s1 valid Γ ` s2 valid

Γ ` seq(s1, s2) valid

Γ ` e : int

Γ ` return(e) valid

The rule for return statements is still very rudimentary because we have only one function in
the program, and it is required to return an int. The remaining statements always have a valid
type structure.

Expressions

The following are the rules to check expressions for type correctness.

Γ ` true : bool Γ ` false : bool Γ ` intconst : int

Γ ` e1 : int Γ ` e2 : int relop ∈ {<, <=, >, >=}

Γ ` e1 relop e2 : bool

Γ ` e1 : τ Γ ` e2 : τ polyeq ∈ {==, !=}

Γ ` e1 polyeq e2 : bool

Γ ` e1 : bool Γ ` e2 : bool logop ∈ {&&, ||}

Γ ` e1 logop e2 : bool

Γ ` e : bool

Γ ` ! e : bool

Note that in a type theoretic sense, equality and disequality are overloaded operators, which
is an example of so-called ad hoc polymorphism (in contrast with parametric polymorphism). See
Section 5 to see how the implementation is affected.

7



Γ ` e1 : int Γ ` e2 : int

Γ ` e1 binop e2 : int

Γ ` e : int

Γ ` unop e : int

Here, binop and unop are all the remaining binary and unary operators in the grammar not
covered by the rules for booleans.

Γ ` e1 : bool Γ ` e2 : τ Γ ` e3 : τ

Γ ` (e1 ? e2 : e3) : τ

4.2 Control Flow

Regarding control flow, several properties must be checked.

• Each (finite) control flow path through the program starting at the beginning of each function
must terminate with an explicit return statement. This ensures that the program does not
terminate with an undefined value.

Regarding variables, we need to the following.

• On each control flow path through the program connecting the use of a variable to its dec-
laration, it must be defined by an assignment (or initialized) before it is used. This ensures
that there will be no references to uninitialized variables.

• The step statement in a for loop may not be a declaration, as already discussed before.

We define these checks more rigorously on the abstract syntax as follows.

Checking Proper Returns

We check that all finite control flow paths through the program starting at the beginning of each
function, end with an explicit return statement. We say that s returns if, every execution of s
that terminates will always end with a return statement. Overall, we want to ensure that the
whole program, represented as a single statement s, returns according to this definition. If not, the
compiler must signal an error.

declare(x, τ, s) returns if s returns
assign(x, e) does not return
if(e, s1, s2) returns if both s1 and s2 return
while(e, s) does not return
return(e) returns
nop does not return
seq(s1, s2) returns if either s1 returns (and therefore s2 is unreachable code) or s2 returns

We do not look inside loops (even though the bodies may contain return statements) because the
body might not be executed at all.

8



Checking Variable Initialization

We wish to give a well formed deterministic dynamic semantics to L2. A program should either
return a value, raise an arithmetic exception or fail to terminate. In order to do this, our static
semantics must enforce the following necessary condition: we need to check that along all control
flow paths, any variable is defined before use.

First, we specify when a statement s defines a variable x. We read this as: Whenever s finishes
normally, it will have defined x. This excludes cases where s calls return or does not terminate.

declare(x, τ, s) defines y if s defines y and y 6= x
assign(x, e) defines only x
if(e, s1, s2) defines x if both s1 and s2 define x
while(e, s) defines no x (because the body may not be executed)
return(e) defines all x within scope (because it transfers control out of the scope)
nop defines no x
seq(s1, s2) defines x if either s1 or s2 does

We also say that an expression e uses a variable x if x occurs in e. In our language, e may have
logical operators which will not necessarily evaluate all their arguments, but we still say that a
variable occurring in such an argument is used, because it might be.

We now define which variables are live in a statement s, that is, their value may be used in the
execution of s.

y is live in declare(x, τ, s) if y is live in s and y is not the same as x
y is live in assign(x, e) if y is used in e
y is live in if(e, s1, s2) if y is used in e or live in s1 or s2
y is live in while(e, s) if y is used in e or live in s
y is live in return(e) if y is used in e
y is live in nop never
y is live in seq(s1, s2) if y is live in s1

or y is live in s2 and not defined in s1

Since scopes are encoded as declare statements, these rules also tell us which variables are live at
the beginning of their scope, that is, not initialized before their first use. Static analysis should
reject a program if for any declare(x, τ, s), the variable x is live in s.

The following example demonstrates how our static analysis is sufficient to guarantee determin-
istic evaluation:

{ int x; int y; return 1; x = y + 1; }

is valid because the statement x = y + 1 can not be reached along any control flow path from
the beginning of the program. Formally, the statement return 1 is taken to define all variables,
including y, so that y is not live in the whole program even though it is live in the second statement.

The following example demonstrates how our static analysis is slightly more restricted than
necessary on some programs.

{ int x; return 1; { int y; x = y + 1; } }

We can still give a well formed dynamic semantics for the program. However, static analysis will
raise an error because the following block is not well formed. And, indeed, y is live at its declaration.

{ int y; x = y + 1; }

9



5 L2 Dynamic Semantics

In most cases, statements have the familiar operational semantics from C. Conditionals, for, and
while loops execute as in C.

The ternary operator (?:), as in C, must only evaluate the condition and the branch that is
actually taken. The suggested elaboration of the logical operators to the ternary operator also
reflect their C-like short-circuit evaluation.

Integer Operations

Since expressions do not have effects (except for a possible arithmetic exception that might be
raised) the order of their evaluation is irrelevant. However, in later labs, the evaluation of expres-
sions can have distinguishable effects (such as non-termination), so it makes sense to stick to the
order of evaluation specified by C0, which is left-to-right.

The integers of this language are signed integers in two’s complement representation with a
word size of 32 bits. The semantics of the operations is given by modular arithmetic as in L1.
Recall that division by zero and division overflow must raise a runtime arithmetic exception.

As in L1, decimal constants c in a program must be in the range 0 ≤ c ≤ 231, where 231 = −231

according to arithmetic modulo 232. Hexadecimal constants must fit into 32 bits.
The left << and right >> shift operations are arithmetic shifts. Since our numbers are signed,

this means the right shift will copy the sign bit in the highest bit rather than filling with zero.
Left shifts always fill the lowest bit with zero. Also, the shift quantity k must be in the range
0 ≤ k < 32. The appropriate arithmetic shift instructions on the x86-64 architecture will instead
mask the value to 5 bits to reduce it to this range, so your compiler must arrange for an arithmetic
exception to the raised at run time if the shift quantity is not in range. In C, the behavior for shifts
out of this range is undefined and therefore consistent with both L2 and machine code.

The comparison operators <, <=, >, and >=, have their standard meaning on signed integers as in
the definition of C. Operators == and != are overloaded operators that test for the equality of either
a pair of ints or a pair of bools. Fortunately, since the two types can have the same underlying
representation, these operators only need to be implemented once each.

6 Project Requirements

For this project, you are required to hand in test cases and a complete working compiler for L2
that produces correct target programs written in Intel x86-64 assembly language.

We also require that you document your code. Documentation includes both inline documen-
tation and a README file which explains the design decisions underlying the implementation along
with the general layout of the sources. If you use publicly available libraries, you are required to
indicate their use and source in the README file. If you are unsure whether it is appropriate to use
external code, please discuss it with course staff.

When we grade your work, we will use the gcc compiler to assemble and link the code you
generate into executables using the provided runtime environment on the lab machines.

Your compiler and test programs must be formatted and handed in as specified below. For this
project, you must also write and hand in at least 20 test programs, at least two of which must fail
to compile, at least two of which must generate a runtime error, and at least two of which must
execute correctly and return a value.

10



Test Files

Test files should have extension .l2 and start with one of the following lines
//test return i program must execute correctly and return i
//test div-by-zero program must compile but raise SIGFPE

//test error program must fail to compile due to an L2 source error
followed by the program text. The only explicit exception defined in L2 is SIGFPE (8), which is
raised upon division by zero or division overflow. Your compiled code will also need to raise this
for a shift quantity that out of range. All test files should be submitted in the directory

tests

in the root directory of the repository. This directory should contain no other files.

Compiler Source Files

The files comprising the compiler itself should be collected in a subdirectory of the compiler

directory named lab2. The compiler directory contains a Makefile, which you may edit, but do
not need to edit.

Issuing the shell command

% make lab2

from within the compiler directory should generate the appropriate files so that

% bin/c0c <args>

will run your L2 compiler. If your compiler detects any (compile-time) errors in the source program,
it should exit with a non-zero return code. If compilation succeeds and target code is generated,
the compiler should then exit with a return code of 0. The command

% make clean

should remove all binaries, heaps, and other generated files.

Important: You should also update the README file and insert a description of your code and
algorithms used at the beginning of this file.

Your compiler is also expected to recognize a flag -t which, when present on the command line,
stops the compiler immediately after typechecking and before the rest of the compiler runs. The
exit code of your compiler should indicate success (0) if the code is well-formed, and failure (1)
otherwise. If your compiler indicates success when run with -t, then it should be able to compile
the file without further errors. Your compiler should also recognize the flags -ex86-64 and -O0.
but these flags can be ignored for now. These flags will be used for later assignments; they are
explained in file compiler/c0c-spec.txt. However, for those who are interested, your compiler
could be modified to recognize the -O0 and -O1 flags. These flags indicate the absence and presence
of running the register allocator respectively. Choosing to recognize these flags represent the trade
off between compile time and run time performance of the input code.

11



Runtime Environment

As in the first lab, your target code will be linked against a very simple runtime environment.
It contains a function main() which calls a function _c0_main() that your assembly code should
provide and export. If your compiler is given a well-formed input file foo.l1 or foo.l2 as a
command-line argument, it should generate a target file called foo.l1.s or foo.l2.s (respectively)
in the same directory as the source file. The file foo.l2.s will be linked with the runtime into
an executable using the command gcc -m64 foo.l2.s ../runtime/run411.c. According to the
calling conventions, the register %eax must hold the return value, and your _c0_main function must
preserve all callee-save registers so that our main function can work correctly.

What to Turn In

You may turn in code and have it autograded as many times as you like, without penalty. In fact,
we encourage you to hand in to verify that the autograder agrees with the driver results that you
use for development, and also as insurance against a last-minute rush. The submission with the
highest grade will count.

You will submit:

Before Thursday, October 1st, 11:59 pm At least 20 test cases, at least two of which generate
an error, at least two of which raise a runtime exception, and at least two of which return a
value. You will submit to the Test 2 assessment on Notolab. The directory tests should
only contain your test files. The autograder will test your test files and notify you if there is
a discrepancy between your answer and the outcome of the reference implementation. If you
feel the reference implementation is in error, please notify the instructors.

Before Thursday, October 8th, 11:59 pm The complete compiler. You will submit to the
Lab 2 assessment on Notolab. The directory compiler/lab2 should contain only the sources
for your compiler. The autograder will build your compiler, run it on all existing test files,
link the resulting assembly files against our runtime system (if compilation is successful),
execute the binaries, and finally compare the actual with the expected results.

The results of the autograding can be viewed on Notolab.

7 Notes and Hints

Elaboration

Please take the recommended elaboration strategy seriously. It significantly streamlines your com-
piler and reducing the amount of work you do in each remaining pass of a multi-pass compiler.
Isolating elaboration also makes your source code more adaptable.

Static Checking

The specification of static checking should be implemented on abstract syntax trees, translating
the rules into code. You should take some care to produce useful error messages.

It may be tempting to wait until liveness analysis on abstract assembly to see if any variables are
live at the beginning of the program and signal an error then, rather than checking this directly on

12



the abstract syntax tree. There are two reasons to avoid this: (1) it may be difficult or impossible
to generate decent error messages, and (2) the intermediate representation might undergo some
transformations (for example, optimizations, or transforming logical operators into conditionals)
which make it difficult to be sure that the check strictly conforms to the given specification.

Representing boolean values

We suggest that booleans be given an underlying 32 bit integer representation with false mapping to
0 and true mapping to 1. There might be occasion to reconsider the sizes of representations in future
assignments, but it will not affect this lab, and giving all types a uniform four-byte representation
simplifies your task for now.

Calling Conventions

Your code must strictly adhere to the x86-64 calling conventions. For this lab, this just means that
your _c0_main function must make sure to save and restore any callee-save registers it uses, and
that the result must be returned in %eax.

Shift Operators

There are some tricky details on the machine instructions implementing the shift operators. The
instructions sall k,D (shift arithmetic left long) and sarl k,D (shift arithmetic right long) take
a shift value k and a destination operand D. The shift either has to be the %cl register, which
consists of the lowest 8 bits of %rcx, or can be given as an immediate of at most 8 bits. In either
case, only the low 5 bits affect the shift of a 32 bit value; the other bits are masked out. The
assembler will fail if an immediate of more than 8 bits is provided as an argument. Since the L2
semantics requires an exception to be raised if k < 0 or k > 31, you will need to insert a check
before the shift at least in some cases.

13


	Introduction
	L2 Syntax
	Lexical Tokens
	Grammar

	L2 Elaboration
	L2 Static Semantics
	Type Checking
	Control Flow

	L2 Dynamic Semantics
	Project Requirements
	Notes and Hints

