
Assignment 4: Memory

15-411/611: Course Staff

Due Tuesday, November 10, 2020 (11:59pm)

Reminder: Assignments are individual assignments, not done in pairs. The work must be
all your own. Please hand in your solution electronically in PDF format and refer to the
late policy for written assignments on the course web pages.

Problem 1: Evaluation Order (20 points)

For each of the code snippets below, provide a trace using the dynamic semantics rules
from lecture to determine what the correct outcome is. (See the lecture notes on mutable
store and structs for the updated dynamic semantics rules, be careful about the += opera-
tion)

(a) int* p = NULL;

*p = 1/0;

(b) int* p = NULL;

*p += 1/0;

(c) int[] x = alloc_array(int, 0);

x[0] += 1/0;

(d) struct s {

int n;

};

struct s* x = NULL ;

x->n = 1/0;

Problem 2: Polymorphism (25 points)

The C0 language provides only a very weak form of polymorphism, essentially using
struct s* in a library header, where struct s has not yet been defined. C provides a
more expressive, but inherently unsafe, mechanism by allowing pointers of type void*. A
pointer of this type can reference data of any type. The programmer uses explicit casts to
convert to and from this type. Some discussion and examples can be found in the notes

ASSIGNMENT 4 TUESDAY, NOVEMBER 10, 2020 (11:59PM)

Memory A4.2

on Lecture 19 in the course on Principles of Imperative Computation. In this problem we ex-
plore a safe version of void* which implements runtime tag-checking of types—which,
incidentally, is the approach taken in C0’s successor C1.

Tagging and Untagging Data

The key to making coercions from the void* type-safe is to tag pointers of type void* with
the contained data’s type. When the runtime encounters a cast from type void* to another
pointer type, the tag is checked to ensure that the cast is safe.

In the source language, we introduce new tagging and untagging constructs:

e ::= . . . | tag(τ∗, e) | untag(τ∗, e)

with the following typing rules

Γ ` e : τ∗ τ∗ 6= void∗

Γ ` tag(τ∗, e) : void∗
Γ ` e : void∗

Γ ` untag(τ∗, e) : τ∗

Tagging will never cause an error: regardless of the type of a pointer value, we can always
weaken its type to void* and create a tag. Untagging a value (as in untag(τ∗, v)) should
raise a runtime error if v is the result of tagging a non-null pointer with a type differing
from τ∗. For example, if p : int∗ is a non-null value, then the following is an expression
that will typecheck but whose evaluation will raise a runtime error:

untag(bool∗, tag(int∗, p))

Untagging the result of tagging a null pointer should succeed regardless of the type the
null pointer is tagged with. For example, the evaluation of this expression should succeed:

untag(bool∗, tag(int∗, NULL))

A Safe Implementation

In the safe implementation, a value p of type void∗ will always be either null (0), or a
pointer to 16 bytes of memory on the heap. The first 8 bytes on the heap are the tag for the
type τ∗, and the second 8 contain a representation for p (which is an address).

Assume we have a function tprep(τ), which takes as argument a type τ and returns an
8-byte tag w uniquely representing τ 1. The default value for type void∗ is null (0).

(a) Provide the evaluation rules for tag(τ∗, e). You will define new transition rules for
the abstract machine with state H ; S ; η ` eBK as defined in the lecture on mutable
store. At least some of your transitions will involve allocation on the heap H .

You should also describe the evaluation of tag(τ∗, e) informally, which will help us
assign partial credit in case your rules are not entirely correct.

1This is problematic in the sense that C0 allows for unboundedly many unique types to be defined, but
let’s pretend that there is a limit of 264.

ASSIGNMENT 4 TUESDAY, NOVEMBER 10, 2020 (11:59PM)

http://www.cs.cmu.edu/~fp/courses/15122-f12/lectures/19-poly.pdf

Memory A4.3

(b) Provide the evaluation rules for untag(τ∗, e). This should fail if e evaluates to a non-
null value v whose tag does not match tprep(τ∗), in which case you should raise a
tag exception. You should define new transition rules for the abstract machine as in
part (a), and accompany them with an informal description.

(c) Describe code generation for the tag and untag expression forms in the style we used
for arrays in the lecture on mutable store. You may use function calls

t64 ← malloc(s64)

to obtain the address t of s bytes of uninitialized memory, and use the jump target
raise_tag to signal a tag exception.

An Unsafe Implementation

The unsafe implementation should forego tag checking. As a result, there is no runtime
computation performed for tagging or untagging. In other words, tags and untags are like
casts in C, which are relevant only for type-checking.

The semantics of equality is as follows: for p1, p2 : void∗, p1==p2 should evaluate to
true if p1 and p2 are the result of tagging the same memory location. (This comparison
should additionally evaluate to true if p1 and p2 are either NULL or the result of tagging
NULL.) Otherwise, the comparison should evaluate to false.

(d) Explain why compiling e1 == e2 for pointers e1 and e2 to a naive pointer comparison
is not always correct in safe mode. Recall that naive pointer comparisons are done by
comparing addresses.

(e) Explain how to compile e1 == e2 in both safe and unsafe modes so that program has
the same observable behavior for both modes (assuming that the program is indeed
safe and will not raise an exception). Code is not necessary if the implementation is
clear enough from your description.

Problem 3: Function Pointers (20 points)

Function pointers, or some variant of them, are a common language feature that is es-
pecially prevalent in C and C++. You might even like the slogan “Function Pointers are
Values”. You probably remember passing a function pointer as an argument to signal()

from 15-213, or using them to for client callbacks in advanced data structures in 15-122.
Suppose we wanted to give C0 programmers the ability to declare variables as function
pointers, assign functions to them, pass them as parameters to functions, call them, and
even return them. Together with the polymorphism afforded by void*, this allows us to
implement generic data structures in a (hypothetical, at this point) C1 language.

We will use a subset of the standard C syntax to declare and use function pointers. In
order to do so, we will need to add the & (address-of) operator to the language. In C1 it
will only be allowed to obtain the address of a function. In order to call a function pointer,

ASSIGNMENT 4 TUESDAY, NOVEMBER 10, 2020 (11:59PM)

Memory A4.4

it must first be dereferenced. Therefore, if f is a function pointer, f() is illegal, but (∗f)()
is allowed. For example, the following code would return 27 from main.

typedef

int i2i(int x);

typedef

int ii2i(int x, int y);

int succ(int x) {

return x+1;

}

int plus(int x, int y) {

return x+y;

}

int times(int x, int y) {

return x*y;

}

int main() {

i2i* s = ≻

ii2i* add = +

ii2i* mult = ×

int x = (*mult)(3,(*add)(succ(6),(*s)(1)));

return x;

}

When answering the questions below, please keep in mind that there may be different
design choices. Explain on your choices and make sure your approach in the answers to
the questions is consistent.

(a) Describe, on a high level, what changes you would need to make to the grammar
to handle function pointers. What nonterminals would need to be changed? What
restriction do you impose compared to C while allowing the example above?

(b) Describe any changes to the static semantics, including the type checker, that would
be needed to handle function pointers.

(d) Describe how you would modify the internal representation to allow function point-
ers. Describe which variables are used and defined by the modified IR instructions.

(e) Describe how adding function pointers would impact register allocation and instruc-
tion selection.

(f) [Extra Credit] Extend the design to allow contracts on function pointers which re-
mains compatible with C and is consistent with your approach above and the general
philosophy behind the design of C0.

ASSIGNMENT 4 TUESDAY, NOVEMBER 10, 2020 (11:59PM)

