Assignment 3: Static and Dynamic Semantics

15-411/611: Course Staff
Due Tuesday, October 20, 2020 (11:59PM)

Reminder: Assignments are individual assignments, not done in pairs. The work must
be all your own. Hand in your solutions on Gradescope. Please read the late policy for
written assignments on the course web page.

Problem 1: Static Semantics (20 points)
In class, we've seen the way that typing judgments are structured. Take, for example, the
typing judgment for if statements:
I'Fe:bool T'F sywalid T F sy valid
I+ if(e, s1,82) valid

Essentially, the judgment says: for a statement if (e, s1, s2), if e is of type bool in context T,
and s1, s are valid in T', then the whole if statement is valid in context I'.

We also have the following rule for the ternary (7) operator:

I'Fejg:bool T'kFey:7 I'besg:T

PkH(eg7eg:e3):T

(a) if statements and the ? operator both branch based on a boolean value. Explain why
the rule for the if statement judges the statement to be valid, while the rule for the ?
operator judges the expression to have the type 7.

(b) Suppose we want to add support for integer comparisons to our language syntax.
One way to do this is to introduce a new type cmp, which can take on the values
It, eq, and gt. We can also introduce the expression CMP(ej, e2). The CMP operator will
take in two integers and evaluate to It, eq, or gt depending on how the arguments
compare to each other.

Finally, we will introduce the statement casecmp(e, s1, s2, s3). The execution of casecmp(e, 51, s2, $3)
evaluates e, and then executes s1, s9, or s3 if e evaluates to It, eq, and gt respectively.
The following rules begin to describe the statics of our new constructs:

T'Flt:cmp I'Heq:cmp I'gt:cmp

ASSIGNMENT 3 TUESDAY, OCTOBER 20, 2020 (11:59PM)

Static and Dynamic Semantics A3.2

Write down the typing judgments for CMP and casecmp.

Problem 2: Generalized Ifs (20 points)

In this problem, assume we’re using a subset of the restricted abstract syntax used in lec-
ture, and the corresponding statics and dynamics. For your convenience, these are repro-
duced below.

Language
Operators @ == +|<
Expressions e = n|xz|e @ ey |ei&les
Statements s = assign(z,e) | if(e, s1,82) | while(e, s)
| return(e) | nop | seq(s1, s2) | decl(x, 7, s)
Statics
Nz)=r1
'Fx:7 I'kn:int I' - true : bool I' I false : bool
I'kFer:int T'keg:int I'Fep:int T'keg:int I'kep:bool T'F ey:bool
I'Fep+es:int 'k e <eg:bool I' - e1&&es : bool
Fz)=7 Tre:7 I'Fe:bool T'Fsy:[r] T'Fsy:|7]
I' F assign(z, e) : [7] I'Fif(e, s1,52) @ [7]
I'ke:bool Tk s:|r] Fke:r
I' F while(e, s) : [7] I' F return(e) : [7]

- FkEsy:[r] TEsy:l[r]
'k nop: [7] I I seq(s1,s2) : [7]

T,z b s [7]
I+ decl(z, 7, s) : [7]

ASSIGNMENT 3 TUESDAY, OCTOBER 20, 2020 (11:59PM)

Static and Dynamic Semantics A3.3

Dynamics
nkte @ea> K — nhke>(_®er, K)
nkc>(—dey K) — nhkexd> (a1, K)
nkca> (g ®_, K) — nke> K (c=c1 @)
n Fei&&es > K — n Fe > (_&&eg,K)
n b false > (_&&es, K) — nkfalse> K
n k- true > (_&&es, K) — nke>K
nkFx> K — nknlz)> K
n b assign(z,e) » K — nt e (assign(z,—), K)
n k¢ (assign(z,_), K) — nlx ¢k nopr» K
n F decl(z, 7,s) » K — nlx — nothing] - s » K
nkif(e, s1,s2) » K — nker> (if(L, s1,82), K)
nk true> (if(_, s1,52), K) — nksip» K
n k- false > (if(_, s1,82), K) — nksap K
n F while(e, s) » K — n kif(e, seq(s,while(e, s)), nop) » K
n b return(e) » K — nt e (return(_), K)
n kv (return(o), K) — value(v)

Thinking about C, Jan realizes how convenient it would be to have conditionals operate on
any type by implicitly casting them to booleans. For example, we would expect the code
fragment

if (7) { do_something fun(); }
else { do_something not_fun(); }

to call do_something_fun() in C, as 7 is non-zero. However, in CO we only have a judge-
ment for when the expression being compared upon is a boolean. To solve this problem,
Jan adds a new typing rule

Fke:int T'ksyp:[r] TFsg:lr]
'k if(e,s1,s2):[7]

However, when he runs a small program using the semantics, the program gets stuck.

if (7) {
return 1;
} else {
return O;
}

1. What could be wrong?

ASSIGNMENT 3 TUESDAY, OCTOBER 20, 2020 (11:59PM)

Static and Dynamic Semantics A34

2. Provide a trace in the format from lecture exposing the problem.

3. Help Jan out and provide a fix for this issue that will allow if statements to function
as he desires. Ensure that your fix does not break any other features of this language.

Problem 3: Enums (20 Points)

Many programming languages contain enumerations or sets of named constants. These
enum constructs appear in languages such as C, C++, and Java, among others.

In C, enumeration types u can be declared as

enum u;
or defined as
enum u {vy,...,vn};
where v1, ..., v, are distinct identifiers, and « is an identifier. Enum values are introduced

by named constants v;, which are now valid expressions. Enum values can be used in
switch statements, which take the form

switch(e){v) > s1 |...| vp — sp}

Informally, a switch statement inspects the enum value that e evaluates to and branches
accordingly. In the above example, if e steps to the constant v;, then the statement s; will
be executed. If e steps to vy, then s, will be executed. The pattern continues.

Below are a couple of rules that begin to describe the static semantics of enumerations.

? ?
: (51) — (52)
;I F switch(e){vy — s1|...| vn +— s} 7 Y Tkov:?

The rules use an enumeration signature ¥ that contains all defined enumerations. You
can assume that every enumeration u and every element v appears at most once in the
signature.

Yu=-|enumu {vi,...,v,}, %

(a) Complete the type rules for enumerations to maintain the type safety of C0. Hint:
one thing that the premises for the rule S1 should check is that the named constants
v1, ..., U, are distinct and exhaustive.

(b) Extend the dynamic semantics for expressions and statements to describe the evalu-
ation of named constants and the execution of switch statements.

ASSIGNMENT 3 TUESDAY, OCTOBER 20, 2020 (11:59PM)

