Threads by Compiler

15-411/15-611 Compiler Design
Seth Copen Goldstein

December 3, 2019

The Facts of Life in 2019

I L |
10 Transistors
6 (thousands)
10° | =
5 L 1 Single-Thread
10
Performance .
10t F | (SpecINT x 107)
: Frequency (MHz)
107 | =
Typical Power
1{]2 = 1 {Wﬂ“ﬂ]
| Number of
10 r | Logical Cores
10° 7
| 1 | i
1970 1980 1990 2000 2010 2020

Year

Orriginal data up to the year 2070 collected and plotted by M. Horowitz, F. Labonte, 0. Shacham, K. Olukohen, L Hammoend, and C. Batten
Mew plot and data collected for 2000-2017 by K, Rupp

15-411/611

15745

The Parallel Call

fork X
fork Y
join

e EXxpressive

e Dynamic

e Resource utilization

P() { Too bad it’s expensivel -~

= must support suspension

© 2008 Goldstein

— —

55555

There is Hope

Power of call is often not used

Example:

— All processors are
— Synchronization d
— Lock is available

— Data request is local
Goal: zero overhead threading
More realistically: Pay for what you need.

Parallel Call Inherently Expensive

Parallel Sequential

* Parent and child run concurrently

Péork X
gg#l-}lnue P

Parallel Call Inherently Expensive

Parallel Sequential
* Parent and child run concurrently * Parent suspends
—> Storage allocated on the heap —> use stack
* Data and control transferred separately |+ Transferred together
* values passed through memory * Values in registers

* explicit synchronization always needed.] ¢ No synchronization!

P() {

Fork X

Fork Y

Join

continue P

15745 © 2008 Goldstein

Storage Model

e Cactus Stack
e |nvariants:

— Child returns = All of its children are done
— Child suspends = It currently has no work

— Parent knows address of child on stack

o[m

Sequential Call on Stacklet

Overhead?

55555

Sequential Call on Stacklet

free space
sp, top
child
fp—
parent
sequential call

a frame

stub

* Only overhead due to checking for overflow
* Requires changes to the prolog
(or, maybe not?)

15745

Stubs

Stub routines handle the special cases

stub routine

top ptr

parent ptr

return address

e Stacklet underflow
e Parallel return
* Remote return

Thus, no change in
function epilog.

© 2008 Goldstein

12

Compiler Focus

return @ call site
restore regs?

call @ call site
load registers

Y - use return value
caller save? O ?

y
transfer contrV
(prologue Qndlrect jump)
adjust stack pointer y N
callee save? epilogue
leaf optimizations? | | reset stack pointer

\.

restore regs?
load return value J

15745

Behavior of parallel call on 1 proc

P()

Fork X
Fork Y
Join
continue

© 2008 Goldstein

14

15745

Lazy Fork

Lazy Fork starts off just like any sequential call.

© 2008 Goldstein

15

Parallel Allocation

:;r"f.-’/" FPTIIIETTE

Funused space

YL LL L LR L LLELA
chiid
frame

R T
running

N
If child suspends, parent’s § S S
future children must be run & &
on another stacklet. Parent = o
1
i.e., child steals parent’s thread v Y
N -

15745 © 2008 Goldstein

After the Lazy Fork

e What if parallelism is required?

e How is child converted into a thread?
e How is remaining work represented?

e How is it located?

e How is it distributed?

55555

55555

Representing Potential Parallel Work

e Parallel wor

k can be encoded in

return address

= Explicit Work Queue not needed
 However, Future Work # Parallel Work

P() (

Fork X;
Fork Y;
Join;

b~>» Y is the parallel work

55555

Using the Return Address

At this point in the execution, Y is ready to execute.

P() {
Fork X (args);
Fork Y(args); Parent Fork
Join; I
. !
) X

Future Work = Parallel Work

* return address serves 3 purposes:
* saves results sequential return
* restores parent state parallelism requires
* continues execution at Fork Y

© 2008 Goldstein

Using the Return Address

At this point in the execution, there is no parallel work.

P() {
Fork X (args);

Fork Y(args); Parent Fork Fork
Join; —— —

Future Work # Parallel Work

* return address serves 3 purposes:
* saves results
* restores parent state
* continues execution at Join

55555 © 2008 Goldstein

Thread Seeds

e Use return address to encode
— Normal return
— Suspension
— Work stealing routine

e At time of call, parent plants a seed. Seed is
dormant until:
— Child returns —> seed inlined into parent
— Child suspends —> seed is activated

— Remote core grabs work
= seed is stolen

15745

Code Gen Strategy

Original Sequential Suspend Steal
Fork X call X

Fork Y | > Call mRFork Y
Join J: »

: I ot

Create Three code streams:

+ Eliminates unnecessary synchronization
+ Eliminates unnecessary bookkeeping

+ Optimizes for common case

- Increases code size

© 2008 Goldstein

23

Using the Return Address

e Must encode state of parent:

— Never had parallel work.

___________ 20/ Parent Cal
retadr X (args) ; 1
Y (args) ; I
: I X
Parent \

Using the Return Address

e Must encode state of parent:

— Never had parallel work.

— Has potentially parallel work.
(currently has sequentially invoked child)

retadr

P() {

7/\Fork X (args) ; Parent Fork

Parent

Fork Y (args)

|

Using the Return Address

e Must encode state of parent:
— Never had parallel work.

— Has potentially parallel work.
(currently has sequentially invoked child)

— Has parallel work.
(currently has converted sequentially invoked child)

— //save result
if (--synch == 0) enq(P);

return;
X P() {
....... i Fork X (args) ; Parent Fork
Fork Y (args); !
: |
Parent 1 X

15-411/611 26

Using the Return Address

e Must encode state of parent:

g‘//save result

if (--synch
return;

== 0) enq(P);

— No more parallel work.
(all children invoked, waiting at join point)

//save result
X
....... ol eburn

Parent

15-411/611

if (--synch == 0) enq(P);

Parent Fork

)

27

Parent Controlled Return Continuations

y,j’f /?’f IS 7{}3‘
- tree space 7 ‘
PIIT. fuj; ***** I,:j fl’ee sSpace
- sp, top
g}é;ﬁ‘ il
child Y
a frame fp
stub
stub
4 g Mg 3
P Qe’ﬁ QO"
—
[
i
- 4
|suspend| =

15745

© 2008 Goldstein

The suspension code
spawns Y and then
changes ’s return
address to reflect the
new state of the parent.

29

Dealing with state

e |In sequential context wanta, b, ¢, 4, ...
mapped to registers.

P() {
c = Fork X(a);
d = Fork Y(b);
Join;

Dealing with state

e |In sequential context wanta, b, ¢, 4, ...

mapped to registers.
P() { P() {

c = Fork X(a); c = call X(a);
d = Fork Y(b); d = call Y(b);
Join; - // Join;

} :]/ converted X ret

Cc ¢« return value
sync code

// spawn Y

change X’s retadr
Fork Y (b) ;

d < return value
synch code

15-411/611 1 31

Dealing with state

e |In sequential context wanta, b, ¢, 4, ...

mapped to registers.
P() {

c = Fork X (a);

d = Fork Y(b);

Join; -

}

e However, if converted,
Fork Y needs access
to b and return from X
needs to access c.

15-411/611

P() {

c = call X(a);
d = call Y(b);
// Join;

]/ converted X ret
c < return value

sync code

// spawn Y

change X’s retadr
Fork Y (b) ;

d < return value
synch code

32

Original CFG

P() {
c = call X(a);
d = call Y(b);
// Join;

// converted X ret
Cc < return value

sync code

// spawn Y

change X’s retadr
Fork Y (b) ;

d <« return value
synch code

15-411/611

34

Modified CFG

P() {
c = call X(a);
d = call Y(b);
// Join;

// converted X ret
Cc < return value

sync code

// spawn Y

change X’s retadr
Fork Y (b) ;

d <« return value
synch code

15-411/611 35

Modified CFG

PO A In reg
c = call X(a);

d = call Y(b);
// Join; (GAWAREE T

In frame

N

PR

// converted X ret
Cc < return value

sync code

// spawn Y

change X’s retadr
Fork Y (b) ;

d <« return value
synch code

<-_————_————'

Reload
registers S el /

15-411/611 36

Implementing the Seed

e Every return address has an entry in a per
procedure table mapping the retadr to:
— conversion routine
— local fork routine
— remote fork routine
— Information about stack size, registers, etc.

e Runtime looks at top of stack
— locates most recent return address
— finds entry in table

— executes appropriate code using appropriate
frame pointer

Compiled setymp, longjmp

P() {

15-411/611

c = call X(a);
d = call Y(b);
// Join;

7/ converted X ret
Cc < return value

sync code

// spawn Y

change X’s retadr
Fork Y (b) ;

d < return value
synch code

retadr

Parent

38

Synchronization

e There is a big data race: the return address!

e Locking on every call and return violates
“pay for what you use”

e Possible Solutions:

— user-level interrupts and message passing

— fancy tricks with atomic xchg and do explicit
indirect jmp for return

Summary

e Key: Only create parallel work when necessary.

e Exposing threads to the compiler is essential for
high-performance fine-grained multi-threading.
e There are three axis to consider:
— How to store thread state
— Representation of (potentially) parallel work

— How to convert potentially parallel work to actual
parallel work

e Exploit compiler
e Exploit indirect jump

Logistics

Lab6 due next week

NO EXTENSIONS!

FCEs

More detailed feedback

A very big Thank-you!

