Locality - 2

15-411/15-611 Compiler Design
Seth Copen Goldstein

November 7, 2019

Our Goal: Increase locality

[Is there locality to eproit?J Use Reuse Analysis to

determine amount of
possible reuse.

Can we transform loop to

turn reuse into locality? Use dependence

information to determine
pace of possible

] transformations.

Perform unimodular
transformations.

Possibly introduce Tiling turn n-deep into 2n-deep

[Transform Loop using SRP

Our Goal: Increase locality

{Is there locality to exploit?] Use Reuse Analysis to
determine amount of

transformations.

[Possibly introduce Tiling] turn n-deep into 2n-deep

Iteration Space

Every iteration generates a point in an n-
dimensional space, where n is the depth of
the loop nest.

for (i=0; i<n; i++) { [4]

}

® L ® 03
for (i=0; i<n; i++) [2}
for (j=0; j<4; j++) {
e . . 9. '

Iteration Vectors

e Given a nest of n loops, the iteration vector i of a
particular iteration of the innermost loop is a vector of
integers that contains the iteration numbers for each of
the loops in order of nesting level.

e Thus, the iteration vector is: {i, i, ..., i,
where i, 1 <k < n represents the iteration number for
the loop at nesting level k

15-411/611

Ordering of Iteration Vectors

e An ordering for iteration vectors
e Use an intuitive, lexicographic order

e |teration i precedes iteration j,
denoted i < j, iff:

1.1
2.1

1:n-1]

1:k-1

<]

=)

i[1:n-1], or

j[1:k-1] and i, <],

J

In
. J

Uniformly Generated references

e fand g are indexing functions: Z" > Z¢
— n is depth of loop nest
— d is dimensions of array, A

e Two references A[f(i)] and A[g(i)] are
uniformly generated if

f(i) = Hi + c; AND g(i)=Hi+c,

e His alinear transform

¢ Cs and Cg are constant vectors

Uniformly generated sets

for/;:=0to 5
for/,:=0to 6
AllL+1]1=1/3*(A[L]+A[l,+1]+A[l,+2])

All,+1] [01]] I | +[1]
IZ
. J
rIl\

All] [01]| 1 | +[o0]

2

All, +2] [01][?] +[2]

Predicting Cache Behavior through
“Locality Analysis”

¢ Definitions:

— Reuse:
accessing a location that has been accessed in the past

— Locality:
accessing a location that is now found in the cache
e Key Insights
— Locality only occurs when there is reuse!

— BUT, reuse does not necessarily result in locality.
— Why not?

15-411/611

Steps in Locality Analysis

. Find data reuse

— if caches were infinitely large, we would be
finished

. Determine “localized iteration space”

— set of inner loops where the data accessed by an
iteration is expected to fit within the cache

. Find data locality:

— reuse D localized iteration space o locality

Self-Temporal

e For areference, A[Hi+c], there is self-temporal
reuse between m and n when Hm+c=Hn+c, i.e,,
H(r)=0, where r=m-n.

e The direction of reuse isr.

* The self-temporal reuse vector space is: Ri; = Ker H
e Amount of reuse is sdim(Rst)

e There is locality if Re; < localized vector space.

e Rer ML =locality

1
gdim(RgNL)

o # of mem refs =

15-411/611

Examples of reuse

for I, :=0 to 5
for I, :=0 to 6
A[I,+1]=1/3* (A[I,]+A[I,+1] +A[I,+ 2])

Uniformly Generated Set:
(A[I,], A[I,+1] ,A[I,+2]} H = [o]
1

Type reuse space reuse factor
Self-Temporal: Ker(H) =span{(1,0)} s

Self-Spatial

e Occurs when we access in order

e Spatial reuse occurs when only last index varies

e So, all but last row of H must be identical
e H :=H with last row set to O

e self-spatial reuse vector space = R
Res = ker H
* Notice, ker H < ker H,

e If, R,.NL =R ML, then no additional benefit to
self-spatial reuse

Examples of reuse
for I, :=0 to 5
for I, :=0 to 6
A[I,+1]1=1/3* (A[I,]+A[I,+1] +A[I,+2])

Uniformly Generated Set:
(A[I,], A[I,+1] ,A[I,+2]} H = [o] H = [0]

1 0
Type reuse space reuse factor
Self-Temporal: Ker(H) = span{(1,0)} S

Self-Spatial: Ker(H,) = span{(1,0),(0,1)} L

15-411/611

Group Reuse

e Occurs between different references in a
loop nest when they access

— the same element in the reuse vector Space

— the same cache line in the reuse vector space

17

Examples of reuse
for I, :=0 to 5
for I, :=0 to 6
A[I,+1]1=1/3* (A[I,]+A[I,+1] +A[I,+2])

Uniformly Generated Set:
(A[I,], A[I,+1] ,A[I,+2]} H = [o]

1
Type reuse space reuse factor
Self-Temporal: Ker(H) = span{(1,0)} S
Self-Spatial: Ker(H,) = span{(1,0),(0,1)} L

Group-Temporal: span{(1,0),(0,1)} 3

Our Goal: Increase locality

[Is there locality to eproit?J Use Reuse Analysis to

determine amount of
possible reuse.

Can we transform loop to

turn reuse into locality? Use dependence

information to determine
pace of possible

] transformations.

Perform unimodular
transformations.

Possibly introduce Tiling turn n-deep into 2n-deep

[Transform Loop using SRP

15-411/611

Loop Dependence

e There exists a dependence from statements S, to
statement S, in a common nest of loops iff there
exist two iteration vectors i and j for the nest, st.

(1) (a)i<jor Loop Carried
(b) /i =jand thereis a path from Loop independent
S, to S, in the body of the loop,

(2) statement S, accesses memory location M on
iteration i and statement S, accesses location M

on iteration j, and

(3) one of these accesses is a write.

Dependence Distance

e Using iteration vectors and def of
dependence we can determine the
distance of a dependence:

* In n-deep loop nest if
— S1is source in iteration |
— S2 is sink in iteration |

e Distance of dependence is represented
with a distance vector: D

— Vector of length n, where

—d =i - iy

Distance Vector

for (i=0; i<n; i++) {
A[i] = BI[i];
B[i+1l] = A[i];

} Distance vector is the difference between
the target and source iterations.

A[0] = B[O];) A=
> i=0 Exactly the distance of the dependence, i.e.,
B[1] = A[0];_
| +d=1,

A[1] = B[1];]
B[2] = A[1];
A[2] = B[2];°
B[3] = A[2];

15-411/611 22

Example of Distance Vectors

for (i=0; i<n; i++)

for (3=0;
Ali,3]] = ;

= A[1,3];

B[i,j+1] = ;

= B[1,3];

C[l+lljl = ’

= C[1,]+1]

o

Avyields:

-

15-411/611

j<m; J++) {

A2,1= =A2,1

.
14

B yields:

C yields:

23

Direction Vectors

e |ess precise than distance vectors, but often
good enough

* In n-deep loop nest if
— S1 is source in iteration i
— S2 is sink in iteration j
e Distance vector: F - Vector of length n, where
-t =0y
* Direction vector also vector of length n, where
“<"iff,>0,orj <i,

_d =] =iff=00ri=i

“>"iff, <0, orj, >i,

Example of Direction Vectors

for (i=0; i<n; i++)

for (3=0;
A[i,31 =

= A[1,3];

B[i,j+1] = ;

= B[1,]];

C[l+lljl = ’

= C[1,]+1]

Avyields:

15-411/611

j<m; J++) {

A2,1= =A2,1

.
14

B yields:

C yields:

25

15-411/611

Another Example

Example:
DOI =1, N
DOJ =1, M
DOK=1, L
S, A(I+1, J, K-1) = A(I,
ENDDO
ENDDO
ENDDO

e S, has atrue dependence on itself.
e Distance Vector: (1,0, -1)
e Direction Vector: (<, =, >)

J, K) + 10

26

Note on vectors

e A dependence cannot exist if it has a
direction vector whose leftmost non "="
component is not "<" as this would imply
that the sink of the dependence occurs
before the source.

e Likewise, the first non-zero distance in a
distance vector must be postive.

The Key

e Any reordering transformation that
preserves every dependence in a program
preserves the meaning of the program

e A reordering transformation may change
order of execution but does not add or
remove statements.

Finding Data Dependences

The General Problem

DO i, = L, U,
DO i, = L,, U,
DO i_ = L, U,
S, A(E (iy,...,i), ..., E(iy,...,i)) = ...
S, o= A(gy (g, ., di) e, (g, .., in))
ENDDO
ENDDO
ENDDO

A dependence exists from S1 to S2 if:
— There exist a and [3 such that

o(x<B
s f(a)=g;(P)foralli, 1 <i<m

(control flow requirement)
(common access requirement)

15-411/611

Basics: Conservative Testing

e Consider only linear subscript expressions

e Finding integer solutions to system of linear
Diophantine Equations is NP-Complete

e Most common approximation is Conservative
Testing, i.e., See if you can assert

“No dependence exists between two
subscripted references of the same array”

e Never incorrect, may be less than optimal

Basics: Indices and Subscripts

Index: Index variable for some loop surrounding a
pair of references

Subscript: A PAIR of subscript positions in a pair of
array references

For Example:
A(I,j) = A(I,k) + C
<I,I> isthe first subscript
<j, k> isthe second subscript

Basics: Complexity

A subscript is said to be

— ZIV if it contains no index
zero index variable

— SIV if it contains only one index
single index variable

— MIV if it contains more than one index
multiple index variable

For Example:
A(5,I+1,3) = A(1,I,k) + C
First subscript is ZIV
Second subscript is SIV
Third subscript is MIV

15-411/611

33

Basics: Separability

e A subscript is separable if its indices do not
occur in other subscripts

e |f two different subscripts contain the same
index they are coupled

For Example:

A(I+1,3j) = A(k,3j) + C
Both subscripts are separable
A(I,j,j) = A(I,j,k) + C
Second and third subscripts are coupled

15-411/611

Basics:Coupled Subscript Groups

e Why are they important?

Coupling can cause imprecision in dependence
testing

DO I =1, 100
S1 A(I+l,I) = B(I) + C
S2 D(I) = A(I,I) * E
ENDDO

15-411/611

Dependence Testing: Overview

Partition subscripts of a pair of array references into separable
and coupled groups

Classify each subscript as ZIV, SIV or MIV
— Reason for classification is to reduce complexity of the tests.

For each separable subscript apply single subscript test.
Continue until prove independence.

Deal with coupled groups
If independent, done

Otherwise, merge all direction vectors computed in the previous
steps into a single set of direction vectors

36

Step 1: Subscript Partitioning

e Partitions the subscripts into separable and minimal coupled
groups

e Notations

// S 1s a set of m subscript pairs S, S,, ...S, each enclosed in
n loops with indexes I, I,, ... I, which 1s to be

partitioned into separable or minimal coupled groups.
// P 1s an output variable, containing the set of partitions
// n, 1s the number of partitions

15-411/611 37

15-411/611

Subscript Partitioning Algorithm

procedure partition(S,P, n,)

n,=m,
fori := 1tomdoP,= {S;};
fori := 1tondobegin

k := <none>
for each remaining partition P; do
if there exists s & P; such that s contains I; then
if k= <none > then k =;
else begin P, =P, U P;; discard Pj; n,=n,—1; end
end

end partition

38

Step 2: Classity as Z1V/SIV/MIV

e Easy step

e Just count the number of different indices in a
subscript

1111111111

Step 3: Applying Single Subscript Tests

o /IV Test

e S|V Test

— Strong SIV Test

— Weak SIV Test
e Weak-zero SIV
e Weak Crossing SIV

e S|V Tests in Complex Iteration Spaces

Z.1V Test

DO § = 1, 100
S A(el) = A(e2) + B(J)
ENDDO

el,e2 are constants or loop invariant symbols
If (e1-e2)!=0 No Dependence exists

Strong SIV Test

e Strong SIV subscripts are of the form
<ai +c,al + C'2>
e For example the following are strong SIV

subscripts
(i +1,i)

(41 +2,4i + 4)

Strong SIV Test Example

DO k = 1, 100
DO j = 1, 100
s1 A(3+1,k) = ...
S2 ... =2A(5,k) + 32
ENDDO
ENDDO

- Strong SIV Test

Geometric View of Strong SIV Tests

vy A

‘01/31 —c2/a2 Ni]

o . Ci—(C:
d=1i'—iI=

a

Dependence exists if |d|<U-L

15-411/611

Weak SIV Tests

e Weak SIV subscripts are of the form

[- o\
\4l TC, AL TGy
e For example the following are weak SIV

subscripts (i1 1.5)

(2i+1,i+5)
(2i +1,-2i)

Geometric view of weak SIV

Geometric View of Strong SIV Tests

Weak-zero SIV Test

e Special case of Weak SIV where one of the
coefficients of the index is zero

e The test consists merely of checking whether
the solution is an integer and is within loop
bounds . ¢,-¢ and,L<Li<U

l:
a,

15-411/611

Weak-zero SIV Test

Geometric View of Weak-zero SIV Subscripts

€2
/ g(i)
' i

L Y

Weak-zero SIV & Loop Peeling

DOi=1, N
S, Y(i, N) = Y(1, N) + Y(N, N)
ENDDO

Can be loop peeled to...

Y(1, N) = Y(1, N) + Y(N, N)
DO i = 2, N-1

s1 Y(i, N) = Y(1, N) + Y(N, N)
ENDDO
Y(N, N) = Y(1, N) + Y(N, N)

15-411/611

49

Weak-crossing SIV Test

e Special case of Weak SIV where the coefficients
of the index are equal in magnitude but
opposite in sign

e The test consists merely of checking whether
the solution index ;-<—%

2a
is 1. within loop bounds and is
2. either an integer or has a non-integer
part equal to 1/2

15-411/611

Weak-crossing S1V Test

Geometric View of Weak-crossing SIV Subscripts

‘ line of symmetry

J(1)

/ 8(i)
A (m)

PR e,

/

51

Weak-crossing SIV &
Loop Splitting

DO i =1, N
S1 A(i) = A(N-i+l) + C
ENDDO

This loop can be split into...

DO i = 1, (N+1)/2
A(i) = A(N-i+l) + C
ENDDO
DO i = (N+1)/2 + 1, N
A(i) = A(N-i+l) + C
ENDDO

15-411/611

Breaking Conditions

e Consider the following example
DO I =1, L

51 A(I + N) = A(I) + B
ENDDO

e |f L.<=N, then there is no dependence from s, to
itself

. 1L<=N is called the Breaking Condition

Using Breaking Conditions

e Using breaking conditions then can generate alternative code if
it would help

IF (L<=N) THEN
A(N+1:N+L) = A(1l:L) + B

ELSE
DO I =1, L

S1 A(I + N) = A(I) + B
ENDDO

ENDIF

Index Set Splitting

DO I = 1,100
DO J =1, T
s1 A(J+20) = A(J) + B
ENDDO
ENDDO
;d-U-L) _20-CD _,,

For values of U1,)

there is no dependence

Index Set Splitting

e This condition can be used to create a part of
the loop that is independent

DO I = 1,20
DO J =1, I
Sla A(J+20) = A(J) + B

ENDDO
ENDDO Now the inner loop for the

first nest is independent.
DO I = 21,100

DO J = 1, Ix
S1lb A(J+20) = A(J) + B
ENDDO
ENDDO

15-411/611

61

15-411/611

How are we doing so far?

Empirical study froom Goff, Kennedy, & Tseng

— Look at how often independence and exact dependence
information is found in 4 suites of fortran programs

— Compare ZIV, SIV (strong, weak-0, weak-crossing, exact),
MIV, Delta

— Check usefulness of symbolic analysis
ZIV used 44% of time and proves 85% of indep

Strong-SIV used 33% of time and proves 5%
(success per application 97%)

S-SV, 0-SIV, x-SIV used 41%

MIV used only 5% of time

Delta used 8% of time, proves 5% of indep

Coupled subscripts rare (20% overall, but concentrated)

62

15-411/611

Merging Results

After we test all subscripts we have vectors for each
partition. Now we need to merge these into a set of
direction vectors for the memory reference

Since we partitioned into separable sets we can do
cross-product of vectors from each partition.

Start with a single vector = (*,%,...,*) of length depth
of loop nest.

Foreach parition, for each index involved in vector
create new set from
old vector-these_indicies x this set

Example Merge

For |
For]
S, A[J-1] = ...
S, .. = A[J]

For subscript in A using S, as source and S, as target: J has
DV of -1

Merge -1 into (*,*) -> (*,-1). What does this mean?
* (<,-1): true dep in outer loop

* (=,-1): anti-dep from S, to S, =2 (=,1)

* (>-1): anti-dep from S, to S, in outer loop =2 (<,-1)

15-411/

Our Goal: Increase locality

[Is there locality to eproit?J Use Reuse Analysis to

determine amount of
possible reuse.

Can we transform loop to

turn reuse into locality? Use dependence

information to determine
pace of possible

] transformations.

Perform unimodular
transformations.

Possibly introduce Tiling turn n-deep into 2n-deep

[Transform Loop using SRP

Unimodular Transforms

e Interchange
permute nesting order

e Reversal
reverse order of iterations
e Skewing
scale iterations by an outer loop index

Interchange

e Change order of loops
e For some permutationp ofl...n

for Il = .. for Ip(l) —

for I2 = .. for Ip(2) —

for I :=. for I, :=
body body

e Legal if permutation on dependence vector
is legal

15-411/611 72

Transform and matrix notation

e |f dependences are vectors in iteration
space, then transforms can be represented
as matrix transforms

e E.g., fora 2-deep loop, interchange is:

TN

10 L 0flp2] [

e Since, T is a linear transform, Td is
transformed dependence:

B

Reversal

e Reversal of ith loop reverses its traversal, so it
can be represented as:
Diagonal matrix with it element = -1.

e For 2 deep loop, reversal of outermost is:

SR T

Skewing
 Skew loop |; by a factor f w.r.t. loop I, maps

(D1sees Piseees D joeer) (D1sees Piseres P+ JDjse-)

e Example for 2D

el 5 P

Loop Skewing Example

for Il =0 to 5 D={(0r1)r(1ro)i(1'1)}
for I, :=0 to 6
A[I,+1] :=1/3 % (A[L,] +A[I,+1] +A[I, +2])

P
] z
i

for I, :=0 to 5
for I, :=1I;, to 6+I;
A[I,-I,+1] :=1/3* (A[I,-I,] +A[I,-I,+1] +A[I,-I,+2])

D={(011)I(111)I(1I0)}

15-411/611 76

Legal Transformations

e Distance/direction vectors give a partial
order among points in the iteration space

e Aloop transform changes the order in
which 'points’ are visited

e The new visit order must respect the
dependence partial order!

But...is the transform legal?

e Loop reversal ok?
e Loop interchange ok?
i
for 1 = 0 to N-1

for 3 = 0 to N-1
A[i+1][3] += A[i]I[3]];

But...is the transform legal?

e Loop reversal ok?
e Loop interchange ok?

i

for i = 0 to N-1 g/géﬁ/glgﬁlg
for § = 0 to N-1 O/OOO/O/OO/O
A[i+1] [3+1] += A[i][5]; o’o;o//cfo’o;o/o
ST

O O
S

O

But...is the transform legal?

e \What other visit .

order is legal here? Q\Q\Q\ Q\Q\Q\O
AN N S

NNt

for i = 0 to TS) O

. O~
for j = 0 to N-2 & #

A[j+1] = @

(A[J] + A[j+1] + A[j+2])/3;
DD

1111111111

But...is the transform legal?

e \What other visit
order is legal here?

for i = 0 to TS
for j = 0 to N-2
A[j+1] =
(A[3] + A[j+1] + A[j+2])/3;

1111111111

But...is the transform legal?

e Skewing...

906900000
990000.000

iy

111111111

But...is the transform legal?

e Skewing...now we can
block

c‘g":r
<%
&t/

W O=0—0-0\ .
VL A
cgoffcSca iy ofic

eSspdllcSces
e %-%0%)\p>e %,

We have made the inner loop, Fully Permutable

But...is the transform legal?

e Skewing...now we can loop

interchange

»
CmINVY

=)

=

.
D C

9

Unimodular transformations

e Express loop transformation as a matrix multiplication

e Check if any dependence is violated by multiplying the
distance vector by the matrix — if the resulting vector is
still lexicographically positive, then the involved
iterations are visited in an order that respects the
dependence.

Reversal Interchange Skew

cd L

“A Data Locality Optimizing Algorithm”, M.E.Wolf and M.Lam

15-411/611

SRP

e Extract Dependence Information
e Extract Locality Information

e Search Possible Transformation Space for
most Locality

Searching the Space
for I, :=0 to 5
for I, :=0 to 6
A[I,+1]1=1/3* (A[I,]+A[I,+1] +A[I,+2])

Uniformly Generated Set: D=(0,1),(1,0),{1-1)}

(A[I,], A[I,+1] ,A[I,+2]} H = [o]

Original Loop: 1
Type reuse space reuse factor
Self-Temporal: Ker(H) = span{(1,0)} S
Self-Spatial: Ker(H,) = span{(1,0),(0,1)} L

Group-Temporal: span{(1,0),(0,1)} 3

Possible Transformations
e span{(0,1)} T= [1 0] 1/L

0 1

e span{(1,0)} illegal

1 0

e span{(1,0),(0,1)} T=[1 1] 1/(sL)

1111111111

SRP

e Extract Dependence Information
e Extract Locality Information

e Search Possible Transformation Space for
most Locality

e Transform Loop using T
— rewrite index expressions
— rewrite bounds

e If Neccesary, Tile

Logistics

Recitation: Local optimizations

Extension on Lab5 (iff you come to lecture)
— Yaron Minsky coming from Jane Street

Other Guest Lectures: Frank Pfenning, TBD

Projects

— CYA

— Extending CO

— Garbage Collection
— Concurrency (?)

