Loops

15-411/15-611 Compiler Design
Seth Copen Goldstein

October 31, 2019

Today

Control Flow Analysis

Finding Loops

Natural Loops
Reducability

Classic Loop Optimizations
— LICM

— Induction Variable Elimination

10/24/19

Common loop optimizations

Hoisting of loop-invariant computations Scalar opts,

— pre-compute before entering the loop DF analysis,
Elimination of induction variables Control flow
~ change p=i*w+b to p=b,p+=w, when w,b invariant?Na!ysis

Loop unrolling

— to improve scheduling of the loop body

Software pipelining Requires
— To improve scheduling of the loop body understan
Loop permutation ding data

dependen

— to improve cache memory performance _
cies

15-745 © 2008

Loops are Key

e Loops are extremely important
— the “90-10" rule

e Loop optimization involves
— understanding control-flow structure
— Understanding data-dependence information
— sensitivity to side-effecting operations

— extra care in some transformations such as
register spilling

15-745 © 2008

Finding Loops

e To optimize loops, we need to find them!

e Could use source language loop information in
the abstract syntax tree...

e BUT:

— There are multiple source loop constructs: for, while, do-
while, even goto in C

— Want IR to support different languages

— |deally, we want a single concept of a loop so all have same
analysis, same optimizations

— Solution: dismantle source-level constructs, then
re-find loops from fundamentals

cture 5 15-745 © 2008

A Loop
AN 4

preheader
entry edge
Loop |
header
back back
edge

edge

exit edge

Loop Terminology

Loop: Strongly Connected Component of CFG

ipreheaderl

entry edge

Loop

header

exit edge

10/24/19

Loop Terminology

Loop: Strongly Connected Component of CFG
Entry Edge: tail not in loop, head in loop.

ipreheaded

entry edge

Loop

header

back
edge

exit edge

10/24/19

Loop Terminology

Loop: Strongly Connected Component of CFG
Entry Edge: tail not in loop, head in loop.
Exit edge: tail in loop, head not in loop

preheaderl

entry edge

Loop

header

exit edge

10/24/19

Loop Terminology

Loop: Strongly Connected Component of CFG
Entry Edge: tail not in loop, head in loop.
Exit edge: tail in loop, head not in loop

Loop Header: target of entry edge [L

preheader

entry edge

Loop

header

exit edge

10/24/19

Loop Terminology

Loop: Strongly Connected Component of CFG
Entry Edge: tail not in loop, head in loop.
Exit edge: tail in loop, head not in loop

Loop Header: target of entry edge
AN 4

Back Edge: target is header, oreheader

entry edge

source is in loop

header

exit edge

Loop Terminology

Loop: Strongly Connected Component of CFG
Entry Edge: tail not in loop, head in loop.

Exit edge: tail in loop, head not in loop

Loop Header: target of entry edge

Back Edge: target is header, p\hld/

entry edge

source is in loop |
header
Preheader: f

Source of the only entry edge

exit edge

(You may have to add a preheader.)

15-411/611 10/24/19

Loop Terminology

Loop: Strongly Connected Component of CFG
Entry Edge: tail not in loop, head in loop.

Exit edge: tail in loop, head not in loop

Loop Header: target of entry edge

Back Edge: target is header, preheader
source is in loop 0P

Preheader: back o
Source of the only entry edge

Natural Loop: it edge
A Loop with only a single loop header

10/24/19

Finding Loops

e To optimize loops, we need to find them!
e Specifically:

— loop-header node(s)

e nodes in a loop that have immediate
predecessors not in the loop

— back edge(s) /
e control-flow edges to 7\

previously executed nodes

— all nodes in the loop body

15-745 © 2008

Control-flow analysis

e Many languages have goto and other
complex control, so loops can be hard to
find in general

e Determining the control structure of a
program is called control-flow analysis

e Based on the notion of dominators

Recall: Dominators

e adomb

— node a dominates b if every possible execution
path from entry to b includes a

e asdomb
— a strictly dominatesbifadombanda!=b

e aidomb

— a immediately dominates b if a sdom b, AND
there is no ¢ such that a sdom cand csdom b

Back edges and loop headers

e A control-flow edge
from node B3 to B2
is a back edge if

B2 dom B3

e Furthermore, in
that case node B2 is

a loop header

Natural loop

e Consider a back edge from node n to node h

e The natural loop of n—h is the set of nodes L
such that for all xelL:

— h dom x and
— there is a path from x to n not containing h

exit edge

back
edge

exit edge

Examples

Simple example:

(often it’s more complicated, since a FOR loop found
in the source code might need an if/then guard)

Lecture 5 15-745 © 2008

20

Examples

Try this:

Examples

for (..) {

if "\

} ei;e {

if (X) {

break;

Lecture 5 15-745 © 2008 22

for (..) {
if {

} e]'."se {

Examples

lexically, in loop,

but not in natural
loop

if (X)/{/
e;

break;

15-745 © 2008

23

Lecture 5

for (..) {
if {

} e]'."se {

Examples

lexically, in loop,

but not in natural
loop

if (xl/[/

break;

and another
reason why CFG
analysis is
preferred over
source/AST loops

15-745 © 2008

24

Examples

e Yes, it can happenin C

Natural Loops

One loop per header..

What are the natural loops?

0
{0,1,2}
1
l
~. 0
3 {}
1 2

{1,2,3} {1,2},{0,1,2,3}

Nested Loops

e Unless two natural loops have the same
header, they are either disjoint or nested
within each other

e If Aand B are loops (sets of blocks) with
headers a and b suchthata#band b € A

—-BCA
— loop B is nested within A
— B is the inner loop

e Can compute the loop-nest tree

General Loops

e A more general looping structure is a strongly
connected component of the control flow graph

E. > such that

SCC’? —scc

— subgraph <N

every block in N___is reachable from every other
node using only edges in E__

Not very useful definition of a loop

15-745 © 2008

Reducible Flow Graphs

There is a special class of flow graphs, called reducible flow
graphs, for which several code-optimizations are especially
easy to perform.

In reducible flow graphs loops are unambiguously defined
and dominators can be efficiently computed.

Reducible flow graphs

: A flow graph G is reducible iff we can partition the edges
into two disjoint groups, forward edges and back edges, with the
following two properties.

1. The forward edges form an acyclic graph in which every node can
be reached from the initial node of G.

2. The back edges consist only of edges whose heads dominate their

tails.
Why isn’t this l
reducible? 0
This flow graph has no back edges. Thus, it would be 1 2

reducible if the entire graph were acyclic, which is

not the case.

cture 5 15-7453® 2008

Alternative definition

: A flow graph G is reducible if we can repeatedly
collapse (reduce) together blocks (x,y) where x is the only
predecessor of y (ignoring self loops) until we are left with a
single node

| | | |
0] ; 0

; ™ 3.3
j> 1,2 j> 1,2,3 Il
| |

s 3 0,1,2,3

Properties of Reducible Flow Graphs

e In a reducible flow graph,
all loops are natural loops

e Can use DFS to find loops
e Many analyses are more efficient

— polynomial versus exponential

Good News

e Most flow graphs are reducible
e Languages prohibit irreducibility
— goto free C
— Java

-C0 ©

e Programmers usually don’t use such
constructs even if they’re available

— >90% of old Fortran code reducible

Dealing with Irreducibility

e Don’t
e Can split nodes and duplicate code to get

reducible graph
— possible exponential blowup

e Other techniques...

Loop optimizations:
Hoisting of loop-invariant
computations

Loop-invariant computations

e A definition
t=xopy
in a loop is (conservatively) loop-invariant if

— X and y are constants, or

— all reaching definitions of x and y are
outside the loop, or

— only one definition reaches x (or y), and
that definition is loop-invariant

e so0 keep marking iteratively

Loop-invariant computations

e Be careful:

t = expr;

for () {
S =
t =
X =
}

t * 2;

Of course, not an issue in SSA

tl = expr;
L1:
brc L2;
t2 = phi(tl, t3);
s=t2 * 2;

loop_invari {3 =|oop_invariant_expr;

t + 2;

x1=13* 2;

jmp L1;
L2:

e Even though t’'s two reaching expressions are
each invariant, s is not invariant...

15-745 © 2008

37

Hoisting

e In order to “hoist” a loop-invariant
computation out of a loop, we need a place
to put it

e We could copy it to all immediate
predecessors (except along the back-edge) of
the loop header...

e ...But we can avoid code duplication by
ensuring there is a pre-header

Hoisting

Hoisting

preheaders

3

‘\

cod

Hoisting conditions

e For a loop-invariant definition
d:t=xopy
e we can hoist d into the loop’s pre-header
only if

1. d’s block dominates all loop exits at which t is live-out,
and
2. d is only the only definition of t in the loop, and

3. tis not live-out of the pre-header

15-745 © 2008

We need to be careful...

e All hoisting conditions must be satisfied!

LO:
t=20
Ll:
i=1i+1
t=a*b
M[i] = t

if i<N goto L1
L2:
Xx =t

OK

LO:

t=0
Ll:

if i>=N goto L2
i=1i+1
t=a*b

M[i] = t

goto L1
L2:

Xx =t

LO:
t
Ll:
i i 1
t a b
M[1i] =t

t=20

M[]j] = t

if i<N goto L1
L2:

0

+
*

violates 1,3

15-745 © 2008

violates 2

We need to be careful...

e All hoisting conditions must be satisfied!

LO:
t=20
Ll:
i=1i+1
t=a*b
M[i] = t

if i<N goto L1
L2:
Xx =t

OK

LO:

t=20
Ll:

if i>=N goto L2
i=1i+1
t=a*b

M[1i] =t

goto L1
L2:

X =t

LO:
t
Ll:
i i 1
t a b
M[1i] =t

t=20

M[]j] = t

if i<N goto L1
L2:

0

+
*

violates 1,3

15-745 © 2008

violates 2

LICM subsumed by PRE

e Don’t actually have to implement Loop
invariant code motion since PRE subsumes
it anyway!

10/24/19

Loop optimizations:
Induction-variable
Strength reduction

The basic idea of IVE

e Suppose we have a loop variable
— iinitially O; each iterationi=i+1

e and a variable that linearly depends on it:

X=i*cl+c2

e In such cases, we can try to
— initialize x =i, * c1 + c2 (execute once)

— increment x by c1 each iteration

Simple Example of IVE

H:
for 1 = 0 to n ;f<i
a[i] =0) K <
M[k]
i <-
goto

0

>= n goto exit
i*x 4

J + a

<- 0

i+1

H

Clearly, j & k do not need to be computed anew each
time since they are related to i and i changes linearly.

15-745 © 2008

if i

k <-
M[k]
i1 <-
goto

Simple Example of IVE

i <-0
0 Jj' <- 0
k' <- a

>= n goto exit H:

if 1 >= n goto exit

i * 4 . .
j + a >] <=7
k <- k'

<- 0
i 41 M[k] <- O
H i<-i+1

J' <- 3' + 4
k' <- k' + 4
goto H

But, then we don't even need j (orj')

15-745 © 2008 48

Simple Example of IVE

i1<-0

j' <- 0 i<-0

k' <- a k' <- a

_ _ _ H:

if i >= n goto exit if i >= n goto exit
J <=3 > k <- k'

k <- k' M[k] <- O
M[k] <- O i<-1i+1
i<-1i+1 k' <- k' + 4
j' <= 3J' + 4 goto H

k' <- k' + 4

goto H

Do we need i?

15-745 © 2008

Simple Example of IVE

Rewrite comparison

i<-20 i<-20
k' <- a k' <- a
H:
if 1 >= n goto exit if k' >= a+(n*4) goto exi
k <- k' > k <- k'
M[k] <- 0 M[k] <- 0
i<<-1+1 k' <- k' + 4
k' <- k' + 4 goto H
goto H

But, a+(n*4) is loop invariant

15-745 © 2008 50

Simple Example of IVE

i <-0
k' <- a

Invariant code motion on a+(n*4)

H:

if k' >= a+(n*4)goto exit

k <- k'
M[k] <- 0
k' <- k'
goto H

+ 4

=)

k' <- a
n' <- a+ (n * 4)

if k' >= n' goto exit
k <- k'

M[k] <- O

k' <- k' + 4

goto H

now, we do copy propagation and eliminate k

15-745 © 2008

51

Simple Example of IVE

Copy propagation
k' <- a k' <- a
n' <-a+ (n * 4) n' <-a+ (n * 4)

H:

if k' >= n' goto exit if k' >= n' goto exit
k <- k' M[k'] <- 0
M[k] <- O j‘> k' <- k' + 4
k' <- k' + 4 goto H

goto H

Voila!l

15-745 © 2008 52

Simple Example of IVE

Compare original and result of IVE

i<-20

if 1 >= n goto exit
j <-1i*}4

k <- jJ + a

M[k] <- O
i<-1i+1

goto H

k' <- a
n' <-a+ (n * 4)

if k' >= n' goto exit

M[k'] <- 0
k' <- k' + 4
goto H

Voila!l

15-745 © 2008

53

What we did

e identified induction variables (i,j,k)
e strength reduction (changed * into +)
e dead-code elimination (j <-j')

* useless-variable elimination (j' <-j' + 4)
(This can also be done with ADCE)

e loop invariant identification & code-motion
e almost useless-variable elimination (i)

® COpY propagation

Is it faster?

e On some hardware, adds are much faster
than multiplies

e Fewer instructions (better S behavior)

e Furthermore, one fewer value is computed,
— thus potentially saving a register
— and decreasing the possibility of spilling

Loop preparation

e Before attempting IVE, it is best to first
perform :

— constant propagation & constant folding
— Copy propagation
— loop-invariant hoisting

How to do it, step 1

e First, find the basic IVs
— scan loop body for defs of the form

X=X+COrx=x—=c
where c is loop-invariant

— record these basic IVs as
x=(x, 0, c)
— this represents the IV: x=x* ¢

Representing 1Vs

e Characterize all induction variables by:

(base-variable, offset, multiple)

— where the offset and multiple are loop-invariant

e |OW, after an induction variable is defined it
equals:

offset + multiple * base-variable

How to do it, step 2

e Scan for derived IVs of the form
k=i*cl+c2

— where i is a basic |V,
this is the only def of k in the loop, and
cl and c2 are loop invariant

e We say kis in the family of |
e Record as k = (i, c2, c1)

How to do it, step 3

e |terate, looking for derived IVs of the form
k=j*cl+c2
— where IV j =(i, a, b), and
— this is the only def of k in the loop, and

— there is no def of i between the def of j and the
def of k

— ¢l and c2 are loop invariant
e Record as k = (i, a*cl1, b*cl+c2)

Simple Example of IVE

i <-

if i
J <-
k <-
M[k]
i <-
goto

0

>= n goto exit
i* 4

J + a

<- 0

i+1

H

i:(i,0,1) i.e.,i=0+1%j
j: (i,0,4) i.e,j=0+4%j
k:(i,a,4) i.e.,k=a+4%*ij

So, j & k are in family of |

15-745 © 2008

Identifying Induction Variables

e Two steps:
— Find Basic lvs of formi <« i *c
— Find Derived Ivs of form k «<—j *cork <« j *c

10/24/19

Finding Basic IVs

e Maintain two tables:
— basic: Holds all vars that can be basic IV

— other: Holds all vars that cannot be basic IV

e Scan stmts in loop:
—ifi « i £cand| g other, then put in basic

— if i «— anything else, then remove from basic
and put in other

10/24/19

Finding Derived 1Vs

e Scan statements to create worklist W

— if var defined more than once and var ¢ basic,
then, put into other

— if stmt uses any var € basic, insert into W
e Repeat until W is empty:
— if shas form “k < j * x” or “k <~ j £x” AND

k .91: Other AND_ Why do we know that j is
X is loop invari an induction var?

e if j € basic, then kis derived JV
enter k into derivedTable
put all stmts using k into W

10/24/19

Finding Derived 1Vs

e Repeat until W is empty:

— if shas form “k < j * x” or “k <~ j £ x” AND
k ¢ other AND
X is loop invariant, then

e if j € basic, then k is derived IV
enter k into derivedTable
put all stmts using k into W

e else if j € derivedTable, then

—if only def of j reaching k is in loop AND
there is only 1 def reaches k AND
no assignment to i between j & k, then
put k in derivedTable
put all stmts using k into W

Tracking tuples

e As we gather lvs we record:
(base, offset, multiple) for each one

e For IV k:
— if it is basic, the record: (k, O, c)

— else if defined as “k < j * x” AND j has (i, a, b)
record: (i, a*x, b*x)

— else if defined as “k «—j £x” AND j has (i,a,b)
record: (i, atx, b)

10/24/19

Finding the 1Vs

e Maintain three tables: basic & maybe & other

e Find basic lvs:
Scan stmts. If var ¢ maybe, and of proper
form, put into basic. Otherwise, put var in
other and remove from maybe.

e Find compound lvs:

— If var defined more than once, put into other

— For all stmts of proper form that use a basic IV
e FIX THIS SLIDE

IV Optimizations

e Once we have identified all lvs and
recorded their tuples, we perform 3
optimizations:

— strength reduction
— useless-variable elimination
— Comparison rewriting

10/24/19

How to do it, step 4

e This is the strength reduction step

e For an induction variable k = (i, c1, c2)

— initialize k =i * c2 + cl1 in the preheader

— replace k’s def in the loop by
k=k+c2

— make sure to do this after i’s def

How to do it, step 5

This is the comparison rewriting step

For an induction variable k = (i, a,, b,)
— If k used only in definition and comparison

— There exists another variable, j, in the same
class and is not “useless” and j=(i, a,, b))

Rewrite k < n as
j<(b/by)(n-a)+a;

Note: since they are in same class:
(-a;)/b; = (k-a,)/by

Notes

e Are the cl, c2 constant, or just invariant?

— if constant, then you can keep folding them: they’re
always a constant even for derived Vs

— otherwise, they can be expressions of loop-invariant
variables

e But if constant, can find IVs of the type
X =1i/b

and know that it’s legal, if b evenly divides the
stride...

Is it faster? (2)

e On some hardware, adds are much faster
than multiplies

e But...not always a win!

— Constant multiplies might otherwise be
reduced to shifts/adds that result in even
better code than IVE

— Scaling of addresses (i*4) might come for free
on your processor’s address modes

e So maybe: only convert i*cl+c2 when cl
is loop invariant but not a constant

Loop Unrolling

e For loops with a small body:

— significant portion of time spent incrementing
and testing induction variables

— May be stalled due to dependencies
(more on this later)

e Loop unrolling reduces overhead (and
increases opportunity for superscalar to
tolerate latencies) by copying body of loop

10/24/19

Unroll Mechanism

e Aloop L with header h and backedges s—h

— copy L to a new loop L’ with header h’” and
backedges s’ —h’

— changes edges s—h in L to s—h’
— change backedges in L" from s’—h

e Change IVs

e Must deal with potential left over iterations
in an epiloge

10/24/19

IV changes for unrolling

Eliminate IV in L

create new IV, i’ <—i+c that dominates all
back edges of new loop

Change uses of 1V, i, to be proper offset

change final test of IV to account for A
unrolls.

Finally, insert epilogue to deal with left
overs.

10/24/19

15-411/611

e Putin example

10/24/19

76

Common loop optimizations

Hoisting of loop-invariant computations

— pre-compute before entering the loop
Elimination of induction variables

— change p=i*w+b to p=b,p+=w, when w,b invariant
Loop unrolling

— to to improve scheduling of the loop body

Software pipelining
— To improve scheduling of the loop body Requires
understanding

_ data dependencies
— to improve cache memory performance

Loop permutation

15-745 © 2008

77

