
Lecture Notes on
Structs

15-411: Compiler Design
Frank Pfenning and Jan Hoffmann∗

Lecture 16
October 17, 2019

1 Introduction

Pointers allow access to data stored in the heap. Arrays allow us to aggregate
data of the same type. Structs provides means to aggregate data of different types.
This creates few additional challenges in the C0 language definition and also in its
implementation (and, of course, the language fragment L4 used in this course).

2 Struct Declarations and Definitions

C0 (and L4) support a subset of the struct-related constructs in C. Structs may be
declared with

struct s;

or they can be defined by specifying the fields f1, . . . , fn of the struct with their types

struct s {τ1 f1; . . . τn fn; };

We will elaborate this into a form where, for typing purposes, we know s.fi : τi.
For compilation purposes we also compute offset(s, fi); see remarks later in this
lecture.

Because structs might require an arbitrary amount of memory, we stipulate that
they can never be held in variables, but must be allocated on the heap. To specify
this concisely we distinguish small types from large types. Values of small type fit in
registers, while values of large type must be on the heap. In L4, we have

• small types int, bool, τ∗, τ [], and

• large types struct s

∗Small changes by Seth Goldstein, 2019

LECTURE NOTES OCTOBER 17, 2019

Structs L16.2

We have the following significant restrictions on types:

• Local variables, function parameters, and return values must have small type.

• Left- and right-hand sides of assignments must have small type.

• Conditional expressions must have small type.

• Equality and disequality must compare expressions of small type.

• Expressions used as statements must have small type.

There are some scoping requirements imposed on structs, but they are surpris-
ingly lenient. The reason is that undefined structs provide a very weak form of
polymorphism. For example, we can pass values of type struct s ∗ as pointers
without needing to know how struct s is defined, as long as we don’t attempt to
access its fields. The following static semantic rules apply:

1. Field names occupy their own name space, so they cannot clash with variable,
function, or type names (but they must be distinct from keywords). The same
field names can be used in different struct definitions.

2. In a given struct definition, all field names must be distinct.

3. A struct may be defined at most once.

4. Types struct s that have not (yet) been defined may be referenced as long as
their size is irrelevant. The size of a struct is relevant in expressions alloc(struct s),
alloc array(struct s, e), and in struct definitions when serving as the type of a
field.

5. An occurrence of struct s in a context where its size is irrelevant serves as an
implicit declaration of the type struct s. In effect this means that explicit struct
declarations are optional (but encouraged as good style).

3 Expressions and Typing

The extension of the language of expressions and destinations is surprisingly eco-
nomical.

e ::= . . . | e.f
d ::= . . . | d.f

We also define (typically during elaboration):

e→f ≡ (∗e).f

which can also be used as a destination in the form d→f .

LECTURE NOTES OCTOBER 17, 2019

Structs L16.3

Γ ` e : struct s s.f : τ

Γ ` e.f : τ

For this rule to apply, struct s must have been defined. It is not sufficient for it to
have just been declared, because we could not determine the type of field f .

Because destinations are also expressions, no additional typing rules are needed
for destinations. But recall from the restrictions in Section 2 that prior rules are
severely restricted by allowing only small types.

4 Dynamic Semantics

As might be suspected, the dynamic semantics for structs is more difficult. This is
because we write programs as if structs would fit into variables; in reality we are
mostly manipulating their addresses. For example, under the definition

struct point {

int x;

int y;

};

and after

struct point* p = alloc(struct point);

the expression (∗p).y should evaluate to 0. But what is the value of ∗p? We could
say that ∗p evaluates to the value representing the entire struct, and write rules like
this:

H ; S ; η ` e.f BK −→ H ; S ; η ` eB (_.y , K)
H ; S ; η ` {x = v1, y = v2}B (_.y , K) −→ H ; S ; η ` v2 BK

but such a rule would seem to indicate that, in order to evaluate (∗p).y, we first
read the entire struct out of memory, obtaining the struct value {x = v1, y = v2},
and then we select the correct field v2 from that struct. This is not what will actually
happen when we execute this code. What actually should happen when we read
from (∗p).f is that we first get the address of the beginning of the struct, p. Next we
take the byte offset of the field y (4, under the x86-64 ABI we are using), counting
from the beginning of the struct, and add that to p. Finally, we retrieve the integer
stored at the address p+ 4.

In C, we could write this symbolically using the address-of operation, and say
that evaluating p->f is the same as evaluating *(&((*p).f)). In general, when
the expression has a large type, we evaluate ∗e, by taking the value of e but not
dereferencing it. This is quite similar to what we have to do when ∗d appears as
an l-value on the left-hand side of an assignment. To unify these, we introduce

LECTURE NOTES OCTOBER 17, 2019

Structs L16.4

the new construct &e where e has a large type. This is not an extension of the
source language (which would greatly complicate its semantics), but we use it in
the description of the operational semantics.

It first use in field access. For an expression e.f we evaluate it exactly as de-
scribed above: rather than getting the entire struct, we get the address the desired
field in the struct and dereference that instead.

H ; S ; η ` e.f BK −→ H ; S ; η ` ∗(&(e.f)) BK

Next we have several rules for computing addresses of expressions of large type.

H ; S ; η ` &(∗e) BK −→ H ; S ; η ` eBK

H ; S ; η ` &(e.f) BK −→ H ; S ; η ` &eB (&(_.f) , K)
H ; S ; η ` aB (&(_.f) , K) −→ H ; S ; η ` a+ offset(s, f) BK

(a 6= 0, a : struct s)
H ; S ; η ` aB (&(_.f) , K) −→ exception(mem) (a = 0)

H ; S ; η ` &(e1[e2]) BK −→ H ; S ; η ` e1 B (&(_[e2]) , K)
H ; S ; η ` aB (&(_[e2]) , K) −→ H ; S ; η ` e2 B (&(a[_] , K)
H ; S ; η ` iB (&(a[_] , K) −→ H ; S ; η ` a+ i|τ |BK

a 6= 0, 0 ≤ i < length(a), a : τ []
H ; S ; η ` iB (&(a[_] , K) −→ exception(mem)

a = 0 or i < 0 or i ≥ length(a)

These are the only cases, because they are the only possibilities for expressions of
large type: a field dereference, a pointer dereference, or an array access.

Because of the layout requirements of C and C0, address calculation sometimes
have to iterate. This is captures in the rules above by one address calculus invoking
another in the continuation. To see the need for that, we extend the example above.

struct point {

int x;

int y;

};

struct line {

struct point A;

struct point B;

};

In the code fragment

struct line* L = alloc(struct line);

...

int x = (*L).B.y;

LECTURE NOTES OCTOBER 17, 2019

Structs L16.5

we have to compute the address of (∗L).B.y. Such a computation would proceed
as follows:

H ; S ; η ` assign(x, (∗L).B.y)I K

−→ H ; S ; η ` ((∗L).B.y) B(assign(x, _) , K)

−→ H ; S ; η ` ∗(&((∗L).B.y)) B(assign(x, _) , K)

−→ H ; S ; η ` &((∗L).B.y) B(∗(_) , assign(x, _) , K)

−→ H ; S ; η ` &((∗L).B) B(&(_.y) , ∗(_) , assign(x, _) , K)

−→ H ; S ; η ` &(∗L) B(&(_.B) , &(_.y) , ∗(_) , assign(x, _) , K)

−→ H ; S ; η ` L B(&(_.B) , &(_.y) , ∗(_) , assign(x, _) , K)

−→ H ; S ; η ` a B(&(_.B) , &(_.y) , ∗(_) , assign(x, _) , K)
(given that H ; S ; η(L) = a, a 6= 0)

−→ H ; S ; η ` a+ 8 B(&(_.y) , ∗(_) , assign(x, _) , K)
(given that offset(line, B) = 8)

−→ H ; S ; η ` a+ 12 B ∗ (_) , assign(x, _) , K
(given that offset(point, y) = 4)

−→ H ; S ; η ` c B(assign(x, _) , K)
(given that H(a+ 12) = c)

−→ H ; S ; η[x 7→ c] ` nop I K

5 Revisiting Assignment

We can exploit this new construct to simplify rules for assignment to destinations
that are not variables (that is, they denote addresses on the heap).

H ; S ; η ` assign(d, e) I K −→ H ; S ; η ` &dB (assign(_, e) , K) (d 6= x)

H ; S ; η ` aB (assign(_, e) , K) −→ H ; S ; η ` eB (assign(a, _) , K)

H ; S ; η ` v B (assign(a, _) , K) −→ H[a 7→ v] ; S ; η ` nop I K (a 6= 0)

H ; S ; η ` v B (assign(a, _) , K) −→ exception(mem) (a = 0)

When structs are allocated in memory, all the fields are initialized with their default
values. As mentioned in the previous lecture, this just means filling the memory
with 0, which is what the C library function calloc does.

Using address-of in assignment also allows us to handle statements of the form
d *= e. If d is just an identifier x, then this can be elaborated into assign(x, x × e),
but in the event that d denotes an address on the heap, we need to first evaluate
that address a denoted by d, then read from the address and compute the value
that needs to be written back to the same address. If we elaborate d �= e into a
new form asnop(d,�, e) when d 6= x, then these rules work to describe dynamic
semantics:
H ; S ; η ` asnop(d,�, e) I K −→ H ; S ; η ` &dB (asnop(_,�, e) , K)

H ; S ; η ` aB (asnop(_,�, e) , K) −→ H ; S ; η ` eB (asnop(a,�,) , K)

H ; S ; η ` v B (asnop(a,�,) , K) −→ H ; S ; η ` assign(a, ∗a� v) I K

LECTURE NOTES OCTOBER 17, 2019

Structs L16.6

6 Dealing with Different Data Sizes

In L2 and L3 we only had integers and booleans, but in L4 we have data of different
sizes. For small types, we have the following table:

L4 type size in bytes C type
|int| = 4 int

|bool| = 4 int

|τ∗| = 8 t *

|τ []| = 8 t *

|struct s| = size(s) struct s

Note that we have decided to represent L3 booleans as integers in C, rather than as
members of the type bool (defined as an alias to _Bool). This is because booleans
in C, according to the x86-64 ABI, have width 1 byte and do not need to be aligned.1

Actually, the introduction of type bool to C seems relatively recent, so just using
type int to represent truth values is not inconsistent with the C philosophy. In
full C0 we decided on representing C0 booleans as C booleans, since we also have
characters of width 1 byte and therefore cannot avoid dealing with data of size 1.

The size of a struct type is computed by laying out the structs in memory from
left to right, inserting padding to make sure that each field is properly aligned.
Each integer and boolean must be aligned at 0 modulo 4, each pointer or array
reference must be aligned at 0 modulo 8, and each enclosed struct must be aligned
according to its most stringent field requirement. Furthermore, we add padding
at the end so that the whole struct has a size which is 0 modulo its most stringent
field requirement. This is so arrays can be laid out simply by knowing the size of
its type. The C library function calloc should always return a pointer that is 0
modulo 8 and therefore appropriate for any struct we might want to allocate.

7 Detail: Register Sizes

Dealing with data of different sizes will likely require maintaining additional infor-
mation in your compiler so you can pick the right load/store and register move-
ment instructions (movl vs. movq), the right comparisons (cmpl vs. cmpq), reserve
the appropriate amount of stack space, allocate the appropriate amount of heap
space, and do correct address calculations.

The good news is that in L3 and L4, registers only need to hold 4 byte or 8 byte
values. Still, it is very easy to introduce bugs when you do not explicitly medi-
ate changes in data size. For example, for the intermediate form we recommend

1This created some significant complications in writing the compiler for L3 that we wanted to
avoid.

LECTURE NOTES OCTOBER 17, 2019

Structs L16.7

disallowing instructions of the form

d64 ← s32

where s and d are registers of the indicated sizes, but writing one of

d64 ← zeroextend s32

d64 ← signextend s32

and similarly for truncations in the other directions. This should ensure that you
do not accidentally apply incorrect transformations, like copy propagation, if the
destination and source of a “move” have different sizes.

On the x86-64 architecture, both move and arithmetic instructions that target a
32-bit register have the peculiar effect of zero-extending the value into the whole
64-bit register. For example,

MOVL %EAX, %EAX

has an effect: it replaces bits 32–63 of %RAX by 0. Similarly,

XORL %EAX, %EAX

will set all 64 bits of %RAX to 0, not just the lowest 32.

LECTURE NOTES OCTOBER 17, 2019

	Introduction
	Struct Declarations and Definitions
	Expressions and Typing
	Dynamic Semantics
	Revisiting Assignment
	Dealing with Different Data Sizes
	Detail: Register Sizes

