
Lecture Notes on
Dynamic Semantics

15-411: Compiler Design
Frank Pfenning, Rob Simmons, Jan Hoffmann∗

Lecture 14
October 10, 2019

1 Introduction

Earlier in the course, we specified the static semantics of a small imperative lan-
guage. In this lecture, we discuss the dynamic semantics of this language, that is,
how programs execute. The relationship between the dynamic semantics for a lan-
guage and what a compiler actually implements is usually much less direct than
for the static semantics. That’s because a compiler doesn’t actually run the pro-
gram. Instead, it translates it from some source language to a target language, and
then the program in the target language is actually executed.

In our context, the purpose of writing down the dynamic semantics is primarily
to precisely specify how programs are supposed to execute. Previously, we defined
how programs were supposed to execute either informally (“use left-to-right eval-
uation”) or by explicitly specifying the way an elaborated AST is compiled into
a lower-level language where effects are explicitly ordered. As our language be-
comes more complex, it will become increasingly important to make our language
specification formal to avoid the ambiguity inherent in informal descriptions.

We could continue to define our dynamic semantics by compiling the language
into a simpler form. (In fact, we are doing this to some degree, because we are
defining our dynamic semantics in terms of the elaborated AST, which is a simplifi-
cation of the concrete syntax. There is a trade-off here: the more work we do before
defining the dynamic semantics, the harder it is too see the relationship between
the original program and the program whose behavior we are defining.) Writing
down the dynamic semantics in terms of the source language, or something close
to it, has a number of advantages. The programmer is saved from needing to un-
derstand the behavior of the compiler in order to understand the specification of

∗Small modifications made by Seth Goldstein, 2019

LECTURE NOTES OCTOBER 10, 2019

Dynamic Semantics L14.2

the dynamic semantics. Conversely, the compiler writer is able to implement the
dynamic semantics in any way that conforms to the specification, rather than being
tied to a specific implementation strategy they have specified.

Defining both our formal dynamic semantics and static semantics over the same
elaborated AST also facilitates mathematically proving properties of the program-
ming language. Much of the theory of programming languages is concerned with
just that and therefore requires an dynamics semantics. Furthermore, if we de-
fine an operational specification of our language both before and after compilation,
we can consider proving that they always compute the same result. These topics,
however, are outside the scope of this course.

2 Evaluating Expressions

When trying to specify the dynamic semantics of a programming language, there
are a bewildering array of choices regarding the style of the semantics. At a high-
level, we can distinguish three different styles: operational (how is the program
executed?), denotational (what mathematical object is the program?), and axiomatic
(what can we prove about the program). In this course, we will exclusively use the
operational style since it is expressive and intuitive. However, even operational
semantics come in different flavors. Some choices are natural semantics (or evalua-
tion dynamics), structural dynamics, abstract machines, substructural operational
semantics, and many more. We use the mechanism of abstract machines, despite
some of its shortcomings. An advantage of an abstract machine is that its low-level
nature makes it relatively easy to formalize a language like C.

In an abstract machine semantics, which is a form of so-called small-step operational
semantics, we step through the evaluation of an expression e until we have reached
a value v. So the basic judgment might be written e −→ e′. However, this is
much too simplistic. For example, it does not represent the call stack, or the current
value of the variables that are recorded in an environment, or what to do with the
eventual value. We will introduce such semantic artifacts one by one, as they are
needed.

Consider the expression e1 + e2. By the left-to-right evaluation rule, we first
have to evaluate e1 and then e2. So when we evaluate e1 we have to “remember”
that we still have to evaluate e2 then sum up the value. The information on what
we still have to do is collected in a so-called continuation K. We write the judgment
as

eBK

which we read as “evaluate expression e and pass the result to the continuation K”. In
the continuation there is a “hole” (written as an underscore character _) in which
we plug in the value passed to it. So:

e1 + e2 BK −→ e1 B (_ + e2 , K)

LECTURE NOTES OCTOBER 10, 2019

Dynamic Semantics L14.3

When e1 has been reduced to a value c1, we plug it into the hole and evaluate e2
next;

c1 B (_ + e2 , K) −→ e2 B (c1 + _ , K)

Finally, when e2 has been reduced to a value c2 we perform the actual addition and
pass the result to K.

c2 B (c1 + _ , K) −→ cBK (c = c1 + c2 mod 232)

In the last rule we appeal to the mathematical operation of addition modulo 232 on
two given integers modulo 232. Since we describe C0, we assume that constants
are 32-bit words in two’s complement representation. All other binary modular
arithmetic operations ⊕ are handled in a similar way, so we summarize them as

e1 ⊕ e2 BK −→ e1 B (_⊕ e2 , K)
c1 B (_⊕ e2 , K) −→ e2 B (c1 ⊕ _ , K)
c2 B (c1 ⊕ _ , K) −→ cBK (c = c1 ⊕ c2 mod 232)

For an effectful operation such as division, the last step could also raise an arith-
metic exception arith (SIGFPE on the x86 architecture family, numbered 8). How do
we represent that? We would like to abort the computation entirely and go to a
state where the final outcome is reported as an arithmetic exception. We describe
this as follows:

e1 � e2 BK −→ e1 B (_� e2 , K)
c1 B (_� e2 , K) −→ e2 B (c1 � _ , K)
c2 B (c1 � _ , K) −→ cBK (c = c1 � c2)
c2 B (c1 � _ , K) −→ exception(arith) (c1 � c2 undefined)

Here, some care must be taken to define the value c1 � c2 correctly in the cases of
division and modulus, and the conditions under which the result is mathemati-
cally “undefined” (like division by zero) and therefore must raise an exception. We
have specified this in previous lectures and assignments, so we won’t detail the
conditions here.

What happens when evaluation finishes normally? In the case of the empty
continuation we stop the abstract machine and return value(c)

cB · −→ value(c)

Boolean expression and short-circuiting expressions work similarly.

e1 && e2 BK −→ e1 B (_ && e2 , K)
falseB (_ && e2 , K) −→ falseBK
trueB (_ && e2 , K) −→ e2 BK

Notice how e2 is ignored in case false is returned to the continuation (_ && e2 , K),
which encodes the short-circuiting behavior of the conjunction. Also note that we

LECTURE NOTES OCTOBER 10, 2019

Dynamic Semantics L14.4

now have two kinds of values: boolean values false and true as well as integer val-
ues c. We could have also defined boolean expressions as evaluating to integers
with a rule like true BK −→ 1 BK. By making true a value, we explicitly cap-
ture the fact that we expect integers and boolean expressions to not be confused at
runtime.

Example Consider the expression ((4 + 5) ∗ 10) + 2. Using our evaluation rules,
we obtion the following evaluation.

((4 + 5) ∗ 10) + 2 B ·
−→ (4 + 5) ∗ 10 B _ + 2
−→ 4 + 5 B _ ∗ 10 , _ + 2
−→ 4 B _ + 5 , _ ∗ 10 , _ + 2
−→ 5 B 4 + _ , _ ∗ 10 , _ + 2
−→ 9 B _ ∗ 10 , _ + 2
−→ 10 B 9 ∗ _ , _ + 2
−→ 90 B _ + 2
−→ 2 B 90 + _

−→ 92 B ·

3 Variables

We can continue along this line, be we get stuck for variables. Where do their
values come from? We need to add an environment η that maps variables to their
values. We write

η ::= · | η, x 7→ v

and η[x 7→ v] for either adding x 7→ v to η or overwriting the current value of x by
v (if η(x) is already defined). The state of the abstract machine now contains the
environment η. We separate by a turnstile (`) from the expression to evaluate and
its continuation.

η ` eBK

The rules so far just carry this along. For example:

η ` e1 ⊕ e2 BK −→ η ` e1 B (_⊕ e2 , K)
η ` c1 B (_⊕ e2 , K) −→ η ` e2 B (c1 ⊕ _ , K)
η ` c2 B (c1 ⊕ _ , K) −→ η ` cBK (c = c1 ⊕ c2 mod 232)

Variables are just looked up in the environment.

η ` xBK −→ η ` η(x) BK

Because we are interested in evaluating only expressions that have already passed
all static semantic checks of the language, we know that η(x) will be defined (all
variables must be initialized before they are used).

LECTURE NOTES OCTOBER 10, 2019

Dynamic Semantics L14.5

4 Executing Statements

Executing statements in L3, the fragment of C0 we have considered so far, can
either complete normally, return from the current function with a return statement,
or raise an exception. The “normal” execution of a statement does not pass a value
to its continuation; instead it has an effect on its environment by assigning to its
existing variables or declaring new ones. We write this as

η ` s I K

where the continuation K should start with a statement. Statements don’t return
values, so every statement that terminates eventually becomes a nop. For example:

η ` seq(s1, s2) I K −→ η ` s1 I (s2 , K)
η ` nop I (s , K) −→ η ` s I K

The last line codifies that if there no further statement to execution, we grab the
first statement from the continuation. When executing an assignment we first have
to evaluate the assignment, then change the variable value in the environment.

η ` assign(x, e) I K −→ η ` eB (assign(x, _) , K)
η ` v B (assign(x, _) , K) −→ η[x 7→ v] ` nop I K

Conditionals follow the pattern of the short-circuiting conjunction.

η ` if(e, s1, s2) I K −→ η ` eB (if(_, s1, s2) , K)
η ` trueB (if(_, s1, s2),K) −→ η ` s1 I K
η ` falseB (if(_, s1, s2),K) −→ η ` s2 I K

While loops are a bit more complicated. We take a slight shortcut by using the
identity

while(e, s) ≡ if(e, seq(s,while(e, s)), nop)

to avoid writing out several rules implementing the right-hand side of this identity
directly.

η ` while(e, s) I K −→ η ` if(e, seq(s,while(e, s)), nop) I K

Loops bring up the question of non-termination, which is modeled naturally: we
just have abstract machine transitions s0 −→ s1 −→ s2 −→ · · · without
ever arriving at a final state. The final states are just nop I · and exception(E),
where E can currently be either arith or the abort exception caused by a failing
assert statement.

η ` assert(e) I K −→ η ` eB (assert(_),K)
η ` trueB (assert(_),K) −→ η ` nop I K
η ` falseB (assert(_),K) −→ exception(abort)

LECTURE NOTES OCTOBER 10, 2019

Dynamic Semantics L14.6

Declarations are also pretty straightforward, since they just add a new variable
with an undefined or useless value to the environment.

η ` decl(x, τ, s) I K −→ η[x 7→ nothing] ` s I K

In a language that permits shadowing of variables, we would have to save the
current value of x and restore it after s has finished executing. Or we would think
of η as a list where η(x) refers to the value of the rightmost occurrence, which
would be removed when we leave the scope of declaration. Or we could statically
rename the variables during elaboration so that no shadowing can occur during
execution.

At this point we have handled all salient statements except return statements
that are tied to function calls. We discuss them in the next section.

Example Consider the statement while(x > 0, assign(x, x + 1)) and η = [x 7→1].
Using rules for statement execution, we obtion the following execution; where s ≡
x = x+ 1.

[x 7→1] ` while(x > 0, s) I ·
−→ [x 7→1] ` if(x>0, seq(s,while(x>0, s)), nop) I ·
−→ [x 7→1] ` x > 0 B if(_, seq(s,while(x > 0, s)), nop)
−→ [x 7→1] ` x B _ > 0; if(_, seq(s,while(x > 0, s)), nop)
−→ [x 7→1] ` 1 B _ > 0; if(_, seq(s,while(x > 0, s)), nop)
−→ [x 7→1] ` 0 B 1 > _; if(_, seq(s,while(x > 0, s)), nop)
−→ [x 7→1] ` true B if(_, seq(s,while(x > 0, s)), nop)
−→ [x 7→1] ` seq(s,while(x > 0, s)) I ·
−→ [x 7→1] ` assign(x, x+ 1)) I while(x > 0, assign(x, x+ 1))
−→ [x 7→1] ` x+ 1 B assign(x, _));while(x > 0, s)
−→ [x 7→1] ` x B _ + 1; assign(x, _));while(x > 0, s)
−→ [x 7→1] ` 1 B _ + 1; assign(x, _));while(x > 0, s)
−→ [x 7→1] ` 1 B 1 + _; assign(x, _));while(x > 0, s)
−→ [x 7→1] ` 2 B assign(x, _));while(x > 0, s)
−→ [x7→2] ` nop I while(x > 0, s)
−→ [x7→2] ` while(x > 0, s) I ·
· · ·

5 Function Calls

A function call first has to evaluate the function arguments, from left to right. Then
we invoke the function, whose body starts to execute in an environment that maps
that formal parameters of the function to the argument values. But meanwhile we
have to save the current environment of the caller somewhere. Similarly, we also
have to save the continuation of the caller, so that when the callee returns we pass
it the return value. So a stack frame 〈η,K〉 consists of an environment η and a

LECTURE NOTES OCTOBER 10, 2019

Dynamic Semantics L14.7

continuation K.
Call stack S ::= · | S , 〈η,K〉

Now states representing evaluation of expression and execution of statements have
the forms

Evaluation S ; η ` eBK
Execution S ; η ` s I K

We only show the special case of evaluation function calls with two and zero argu-
ments. This gets the point across while avoiding nitpicky details of working with
multiple-argument functions.

S ; η ` f(e1, e2) BK −→ S ; η ` e1 B (f(_, e2) , K)
S ; η ` c1 B (f(_, e2) , K) −→ S ; η ` e2 B (f(c1, _) , K)
S ; η ` c2 B (f(c1, _) , K) −→ (S , 〈η,K〉) ; [x1 7→ c1, x2 7→ c2] ` s I ·

(given that f is defined as f(x1, x2){s})

S ; η ` f() BK −→ (S , 〈η,K〉) ; · ` s I ·
(given that f is defined as f(){s})

In the next-to-last rule we see a new environment with values for x1 and x2 and a
new stack frame save the caller’s environment η and continuation K.

When executing a return statement we simply have to restore the caller’s envi-
ronment and continuation from the stack and pass the return value to the caller’s
continuation.

S ; η ` return(e) I K −→ S ; η ` eB (return(_) , K)
S , 〈η′,K ′〉 ; η ` v B (return(_) , K) −→ S ; η′ ` v BK ′

In order to support functions returning void, we can use a useless value, nothing,
and elaborate “return;” as return(nothing). We also assume that elaboration adds
an additional return(nothing) statement to the end of every void function. As an
alternative, we could explicitly add a rule for function calls that finish without a
return statement:

S , 〈η′,K ′〉 ; η ` nop I · −→ S ; η′ ` nothing BK ′

6 Statics, Dynamics, and Safety

We start the machine initially in a state where we call the main function, and we
stop the abstract machine if we reach this continuation.

· ; · ` main() B · (initial state)
· ; η ` cB · −→ value(c) (final state)

which will eventually step to value(c), where c is returned by the main function. We
have defined four kinds of machine state ST :

LECTURE NOTES OCTOBER 10, 2019

Dynamic Semantics L14.8

• S ; η ` eBK – Evaluating the expression e with the continuation K

• S ; η ` s I K – Executing the statement s with the continuation K

• value(c) – Final state, return a value

• exception(E) – Final state, report an error

We’ve also written a bunch of transition rules ST −→ ST ′. Can we say any-
thing about whether those rules are reasonable or not?

Obviously we don’t expect any final state to be on the left-hand side of a tran-
sition. On that basis we could say that any rule like value(3) −→ value(4) is an
unreasonable rule. We might also care that the language is deterministic: that every
machine state ST has at most one state ST ′ such that ST −→ ST ′.

In the other direction, there are many examples of non-final states that have no
transition: S; η ` 42 B (if(_, s1, s2);K) is one example, and ·; · ` nop I · is another.
Such states are called stuck – it is literally undefined what the program should do
in such a state. The central relationship between the static semantics and dynamic
semantics is that any program that passes the static semantics should be free of un-
defined behavior, that is, free of stuck states. This can be expressed mathematically:

Theorem 1 (No undefined behavior) If a program is valid as defined by the static se-
mantics, and
·; · ` main() −→ ST 1 −→ . . . −→ ST n

then either ST n is a final state or else ST n is not-stuck because there exists a state ST ′
such that ST n −→ ST ′.

In a course like 15-312, we would learn how to prove these sorts of theorems, but
just stating the theorem is still useful as a specification. If we can find a counterex-
ample, a program that passes the static semantics and yet gets stuck in a non-final
state according to the dynamic semantics, then we know that we need to change
either or static or dynamic semantics.

LECTURE NOTES OCTOBER 10, 2019

Dynamic Semantics L14.9

7 Summary

We use � to stand for either a pure operation ⊕, or a potentially effectful operation
� as well as shift, comparison, and bitwise operators.

Expressions e ::= c | e1 � e2 | true | false | e1 && e2 | x | f(e1, e2) | f()

Statements s ::= nop | seq(s1, s2) | assign(x, e) | decl(x, τ, s)
| if(e, s1, s2) | while(e, s) | return(e) | assert(e)

Values v ::= c | true | false | nothing

Environments η ::= · | η, x 7→ c

Stacks S ::= · | S , 〈η,K〉

Cont. frames φ ::= _� e | c� _ | _ && e | f(_, e) | f(c, _)
| s | assign(x, _) | if(_, s1, s2) | return(_) | assert(_)

Continuations K ::= · | φ , K

Exceptions E ::= arith | abort

LECTURE NOTES OCTOBER 10, 2019

Dynamic Semantics L14.10

S ; η ` e1 � e2 BK −→ S ; η ` e1 B (_� e2 , K)
S ; η ` c1 B (_� e2 , K) −→ S ; η ` e2 B (c1 � _ , K)
S ; η ` c2 B (c1 � _ , K) −→ S ; η ` cBK (c = c1 � c2)
S ; η ` c2 B (c1 � _ , K) −→ exception(arith) (c1 � c2 undefined)

S ; η ` e1 && e2 BK −→ S ; η ` e1 B (_ && e2 , K)
S ; η ` falseB (_ && e2 , K) −→ S ; η ` falseBK
S ; η ` trueB (_ && e2 , K) −→ S ; η ` e2 BK

S ; η ` xBK −→ S ; η ` η(x) BK

S ; η ` nop I (s , K) −→ S ; η ` s I K
S ; η ` assign(x, e) I K −→ S ; η ` eB (assign(x, _) , K)
S ; η ` cB (assign(x, _) , K) −→ S ; η[x 7→ c] ` nop I K

S ; η ` decl(x, τ, s) I K −→ S ; η[x 7→ nothing] ` s I K

S ; η ` assert(e) I K −→ S ; η ` eB (assert(_) , K)
S ; η ` trueB (assert(_) , K) −→ S ; η ` nop I K
S ; η ` falseB (assert(_) , K) −→ exception(abort)

S ; η ` if(e, s1, s2) I K −→ S ; η ` eB (if(_, s1, s2) , K)
S ; η ` trueB (if(_, s1, s2),K) −→ S ; η ` s1 I K
S ; η ` falseB (if(_, s1, s2),K) −→ S ; η ` s2 I K

S ; η ` while(e, s) I K −→ S ; η ` if(e, seq(s,while(e, s)), nop) I K

S ; η ` f(e1, e2) BK −→ S ; η ` e1 B (f(_, e2) , K)
S ; η ` c1 B (f(_, e2) , K) −→ S ; η ` e2 B (f(c1, _) , K)
S ; η ` c2 B (f(c1, _) , K) −→ (S , 〈η,K〉) ; [x1 7→ c1, x2 7→ c2] ` s I ·

(given that f is defined as f(x1, x2){s})

S ; η ` f() BK −→ (S , 〈η,K〉) ; · ` s I ·
(given that f is defined as f(){s})

S ; η ` return(e) I K −→ S ; η ` eB (return(_) , K)
(S , 〈η′,K ′〉) ; η ` v B (return(_) , K) −→ S ; η′ ` v BK ′

· ; η ` cB (return(_) , K) −→ value(c)

LECTURE NOTES OCTOBER 10, 2019

	Introduction
	Evaluating Expressions
	Variables
	Executing Statements
	Function Calls
	Statics, Dynamics, and Safety
	Summary

