Parsing

15-411/15-611 Compiler Design
Seth Copen Goldstein

September 17, 2019

Today

e Languages and Grammars

e Context Free Grammars

e Derivations & Parse Trees

e Ambiguity

e Top-down parsers

e FIRST, FOLLOW, and NULLABLE
e Bottom-up parsers

© 2019 Goldstein

Compiler Phases

Abstract syntax tree

Languages
e Compiler translates from sequence of
characters to an executable.
e A series of language transformations
e |ast week: characters — tokens
e today: tokens — “sentences”

kids | threw | vegetables

% l %

15-411/611 © 2019 Goldstein

Languages
e Compiler translates from sequence of
characters to an executable.
e A series of language transformations
e |ast week: characters — tokens
e today: tokens — parse trees

kids | threw | vegetables

% l %

15-411/611 © 2019 Goldstein

15-411/611

Languages
Compiler translates from sequence of
characters to an executable.
A series of language transformations
last week: characters — tokens
today: tokens — “sentences”

sub jeck, noun, verb -
what the sentence inkrawnsitive r-
is about v 4 complete P EFQS.._-&G
leaves I fell / % "
O, or., S
A 0, St OF
G %%E Al RO
& % round 4o, %, e
qr&c;:'e - Q Oy, %4
ckive” adverb - g o
“i{;,;efﬁl ? AnSwers, Sajeckivg
.,.N"c\‘u..c‘-"* i "How?” prepositional phrase -

L "
evolution.com (ﬂdve‘rb) anEwers, Where?

© 2019 Goldstein

Grammers and Languages

e A grammer, G, recognizes a language, L(G)

-2 set of terminal symbols
- A set of non-terminals
- S the start symbol, a non-terminal
- P a set of productions
e Usually,

-, B, 7, ... strings of terminals and/or non-terminals
— A, B, C, ... are non-terminals
—a, b, c, .. areterminals

e General form of a productionis: oo — f3

15-411/611 © 2019 Goldstein

Derivation

e A sequence of applying productions starting with
S and ending with w

S=>V,=>V5 e >V > W
S >*w
e [(G) are all the w that can be derived from S

© 2019 Goldstein

Regular Grammar (NFA)

e Regular expressions and NFAs can be
described by a regular grammar

e E.G,,
S—>aA
A - Sb
S—> ¢

e An example derivation of aab:

© 2019 Goldstein

Regular Grammar (NFA)

e Regular expressions and NFAs can be
described by a regular grammar
e E.G., a*bc*
S—>asS
S =2 bA

A— €
A - CcA

e An example derivation of aabc:
S—>asS

© 2019 Goldstein

Regular Grammar (NFA)

e Regular expressions and NFAs can be
described by a regular grammar
e E.G., a*bc*
S—>asS
S =2 bA

A— €
A - CcA

e An example derivation of aabc:
S 2> aS—> aa$s

© 2019 Goldstein

Regular Grammar (NFA)

e Regular expressions and NFAs can be
described by a regular grammar
e E.G., a*bc*
S—>asS
S =2 bA

A— €
A - CcA

e An example derivation of aabc:
S - aS—> aaS—> aabA

© 2019 Goldstein

Regular Grammar (NFA)

e Regular expressions and NFAs can be
described by a regular grammar
e E.G., a*bc*
S—>asS
S =2 bA

A— €
A - CcA

e An example derivation of aabc:
S - aS—> aaS—> aabA—> aabcA

© 2019 Goldstein

Regular Grammar (NFA)

e Regular expressions and NFAs can be
described by a regular grammar
e E.G., a*bc*
S—>asS
S =2 bA

A— €
A - CcA

e An example derivation of aabc:
S = aS—> aaS—> aabA-> aabcA - aabc

© 2019 Goldstein

Regular Grammar (NFA)

e Regular expressions and NFAs can be
described by a regular grammar

e E.G., a*bc*
S—>aS
S = bA
A€
A - cA
e Above is a right-regular grammar
e All rules are of form: A—a
A —> aB

A— €

© 2019 Goldstein

Regular Grammar (NFA)

e Regular expressions and NFAs can be
described by a regular grammar

e right regular grammar: A—a
A — aB
A—e

e |eft regular grammar: A—>a
A - Ba
A—e

e Regular grammars are either right-regular
or left-regular.

© 2019 Goldstein

15-411/611

Expressiveness

Restrictions on production rules limit
expressiveness of grammars.

No restrictions allow a grammar to
recognize all recursively enumerable
languages

A bit too expressive for our uses ©
Regular grammars cannot recognize a"b"

We need something more expressive

© 2019 Goldstein

17

Chomsky Hierarchy

llword”
Class Language Automaton problem

Recursively Turing HEEIEES
0 Enumerable Machine any undecidable Corresp.
problem
Context Linear- PSPACE- I
1 Sensitive Bounded TM s complete e
2 Context Free AR A—a cubic a"b"
Automata
3 Regular NFA A—a linear a’b’

A—aB

15-411/611 2019 Goldstein 18

Today

e Languages and Grammars

e Context Free Grammars

e Derivations & Parse Trees

e Ambiguity

e Top-down parsers

e FIRST, FOLLOW, and NULLABLE
e Bottom-up parsers

© 2019 Goldstein

Context-Free Grammar

e A context-free grammar, G, is described by:

— 2, a set of terminals (which are just the set of
possible tokens from the lexer)
e.g.,,1f, then,while, 1d, 1nt, string, ...

— A, a set of non-terminals.
Non-terminals are syntactic variables which
define sets of strings in the language
e.g., stmt, expr, term, factor, varded|, ...

-5
e

Context-Free Grammar

e A context-free grammar, G, is described by:
— 2, a set of terminals ...
— A, a set of non-terminals.

—S,S € A, the start symbol
The set of strings derived from S are the valid
string in the language.

— P, set of productions that specify how
terminals and non-terminals combine to form
strings in the language
a production, p, has the form: A— o

Context-Free Grammar

e A context-free grammar, G, is described by:
— 2, a set of terminals ...
— A, a set of non-terminals.
—S,S € A, the start symbol

— P, set of productions ...
a production, p, has the form: : A—> o
- E.g.,. S:=E
S:=printtE

E := E + T
4 erminals

non- ’rermmals

What makes a grammar CFE?

e Only one NT on left-hand side — context-free
e What makes a grammar context-sensitive?

e aAB—ayp where
— a or 3 may be empty,
— but vy is not-empty

e Are context-sensitive grammars useful for
compiler writers?

Matching Parenthesis

S - (S)
S—>SS
S—>¢€

© 2019 Goldstein

Simple Grammar of Expressions

S = Exp

Exp := Exp + Exp
Exp = Exp - Exp
Exp = Exp * Exp
Exp .= Exp / Exp
Exp = 1d

EXp = 1int

Describes a language of expressions. e.g.: 2+3*x

© 2019 Goldstein

Derivations

e A sequence of step in which a non-terminal is
replaced by its right-hand side.

1 §S._ . -Fwvn >

2 Ex There are possibly many derivations
determined by the NT chosen to (D

3 B> expand.

4 Exp:= Exp ™ Exp vy v —cap =d,

5 Exp:= Exp / Exp by 2 = Exp + Exp * id,

6 Exp:=id by 7 = int, + Exp * id,

7 EXPI: int by 7 p— lntz + lnt3 * ldx

do leftmost derivation

© 2019 Goldstein

Leftmost Derivations

e |eftmost derivation: leftmost NT always chosen

NONOC bW N

S =Exp

Exp:= Exp + Exp
Exp:= Exp - Exp
Exp:= Exp * Exp
Exp:= Exp / Exp
Exp:= id

Exp:= int

© 2019 Goldstein

S
by 1 = Exp
by 4 = Exp * Exp
by 2 = Exp + Exp * Exp
by 7 = int, + Exp * Exp
by 7 = int, + int; * Exp

by 6 = int, + int; * id,

Rightmost Derivations

e Rightmost derivation: rightmost NT always

NONOC bW N

chosen

S =Exp

Exp:= Exp + Exp
Exp:= Exp - Exp
Exp:= Exp * Exp
Exp:= Exp / Exp
Exp:= id

Exp:= int

© 2019 Goldstein

S
by 1 = Exp
by 4 = Exp * Exp
by 6 = Exp * id,
by 2 = Exp + Exp * id,
by 7 = Exp + int; * id,

by 7 = int, + int; * id,

Parse Trees

e symbols in rhs are children of NT being

rewritten
s ©
by 1 = Exp G

by 4 = Exp * Exp

by 2 = Exp + Exp ™ Exp G @ G
by 7 = int, + Exp * Exp

by 7 = int, + int; * Exp GGG °

by 6 = int, + int; * id, e e

© 2019 Goldstein

Parse Trees

e parse tree for rightmost derivation

; &

by 1 = Exp

by 4 = Exp *
by 6 = Exp
by 2 = Exp + Exp * id,
by 7 = Exp + int; * id,

by 7 = int, + int; * id,

Ambiguous Grammars

sentence with >1 parse trees. or,

e |f grammer has >1 leftmost (rightmost)
derivations it is ambiguous

Converting Expression Grammar

e Adding precedence with more non-
terminals

e One for each level of precedence:
= (+-) exp
- (*, /) term
— (id, int) factor

— Make sure parse derives sentences that
respect the precedence

— Make sure that extra levels of precedence can
be bypassed, i.e., “x” is still legal

A Better Exp Grammar

1S = EXp >

2 Exp .= Exp + Term by 1= Exp

3 Exp :=Exp-Term by 2 = Exp + Term

4 Exp := Term by 4 = Term + Term
5 Term :=Term * Factor by 7 = Factor + Term
6 Term :=Term / Factor by 9 = int, + Term

/ Term :=Factor

- *x
8 Factor :=id by 5 = int, + Term * Factor

9 Factor := int by 7 = int, + Factor * Factor

by 9 = int, + int; * Factor

by 8 — lntz + lnt3 * ldx

What is the parse tree?

15-411/611 © 2019 Goldstein 33

S

15-411/611

Another Ambiguous Grammer

.= 1f E thenS
| if EthenSelseS
| other

What is the parse tree for:
ifEthen ifEthenSelseS?

What is the language designers intention?

Is there a context-free solution?

© 2019 Goldstein

34

Dangling Else Grammar

S := matchedS
| unmatchedS

unmatchedS:= ifE thenS

| if Ethen matchedS else unmatchedS

e |s this clearer?

e What is parse tree for: Lf E then ifE thenSelseS?

15-411/611 2019 Goldstein 35

A primitive robot

Swing := Back Swing Forward
|

Back = back-1-inch

Forward = forward-2-inchs

e What is L(Swing)?

© 2019 Goldstein

A primitive robot

S =BSF
|
= Db

F = f

e What is L(Swing)?
e What is the parse tree for “bbff”

© 2019 Goldstein

15-411/611

Parsing a CFG

e Top-Down
— start at root of parse-tree
— pick a production and expand to match input
— may require backtracking
— if no backtracking required, predictive
e Bottom-up
— start at leaves of tree
— recognize valid prefixes of productions
— consume input and change state to match
— use stack to track state

© 2019 Goldstein

Top-down Parsers

e Starts at root of parse tree and recursively
expands children that match the input

e In general case, may require backtracking
e Such a parser uses recursive descent.

e When a grammar does not require
backtracking a predictive parser can be
built.

© 2019 Goldstein

- W

A Predictive Parser

BSF

b
f

S04

BO) {
FO {

if match('b") -> B(); S(); F(); action();

else return:

mustMatch('b’); action(); return;}
mustMatch('f'); action(); return;}

2019 Goldstein

Top-Down parsing

e Start with root of tree, i.e., S

e Repeat until entire input matched:

— pick a non-terminal, A, and pick a production
A—y that can match input, and expand tree

— if no such rule applies, backtrack

e Key is obviously selecting the right
production

© 2019 Goldstein

Top-down for Exp Grammar

O 00O NONOl b WN =

m M 4 4 4 mMmmmWm

S int, - int; * id,

int, - int; * id,

15-411/611

© 2019 Goldstein

Top-down for Exp Grammar

O 00O NONOl b WN =

M4 44 mMmMmmMm®»

= S lint, - int; * id,
E+T byl= E lint, - int; * id,
=E-T by2= E+T lint, - int; * id,
=T by4d—= T+T |int, - int; * id,
=T*F by 7= F+T |int, - int3 * id,
T/F by 9 = int,+ T int,|- int; * id,
int

15-411/611

2019 Goldstein

43

Top-down for Exp Grammar

O 00O NONOl b WN =

m M 4 4 4 mMmmmWm

S
byl= E

int, - int; * id,

int, - int; * id,

by2= E+T
by4d—= T+T
by 7= F+T
by 9 = int,+ T

int, - int; * id,
int, - int; * id,
int, - int; * id,

int,|- int; * id,

15-411/611

by3= E-T
by4d—= T-T
by 7= F-T
by 9= int,-T

int, - int; * id,
int, - int; * id,
int, - int; * id,

int,l- int; * id,

by5:> intZ-T*F

© 2019 Goldstein

int, -int; * id,

44

Top-down for Exp Grammar

1 S - S lint, - int; * id,
> E:=E+T byl= E lint, - int; * id,
3 E:=E-T by2—= E+T lint, - int; * id,
4 E =T by4—= T+T |int, - int; * id,
5 T:=T*F by 7= F+T |int, - int3 * id,
2 $::T/F by 9 = int,+ T int,|- int; * id,
8 F tid by3= E-T lint, - int; * id,
9 F :=int by4d—= T-T lint, - int; * id,

by 7= F-T |int, - int; * id,

by 9= int,- T int,l- int; * id,

15-411/611 2019 Goldstein

45

Top-down for Exp Grammar

. _: x =

1 S:=E > J_'ntz %nt3*l_-dx
2 E .:E"'T by1:> E 1nt2-1nt3 ldx
3 E:=E-T by2:> E+T intz-int3*id><
4 E =T by2= E+E+T int, - int; * id,
5 T:=T*F by2= E+E+E+T int, - int; * id,
6 T:=T/F

7 Tz

8 F:=id Will not terminate!l Why?

9 F :zint

grammar is left-recursive

What should we do about it?

Eliminate left-recursion

15-411/611 © 2019 Goldstein

Does this work?

=T+E
=T-E
T

2 E

F T

3 E
4 E
5 T

6 T:=F/T

A
non

(i

o0 O

=E+T
=E-T

2 E

T*F

3 E
4 E
5 T

6 T:=T/F

A
non

(I

o0 O\

It is right recursive, but also right associativel

© 2019 Goldstein

15-411/611

Eliminating Left-Recursion

e Given 2 productions:
A=Ao |
Where neither a nor [3 start with A

(e.g., Forexample, E:=E+T | 1)

e Make it right-recursive: v

A:=[3R
R:=0aR |Ris right recursive

e Extends to general case.

© 2019 Goldstein

Rewriting Exp Grammar

O 00 N O U1 B W N -

MMM M 4 4 4 m m m OB

15-411/611

m O\
1
+ M

-
-
-

m m
s
|
=
m m

*FT
=/FT

R B

OWoONO O NWwN+—
I
'.l.
Q.

b
'.l-
o
(.'.

|

2019 Goldstein

2 E=TFE

5 T:=FT

49

Try again

15-411/611

S
1 S:=E | byl= E

g, E_TTEE by2= TE

3 p.--TE | BYS=>FTE

4 FE = by9= 2TFE

5 T:=FT by 77 = 2 F

5 T=*FT | by3y=2-TF

6 T=/FT | pby5= 2-FTE

g :zid by9= 2-3TE
9O Fi—int | BYS=2-3*FTE

2019 Goldstein

®int, - int; * id,
®int, - int; * id,
®int, - int; * id,
®int, - int; * id,
int, ®- int; * id,
int, ®- int; * id,
int, - ®int; * id,
int, - ®int; * id,
int, - int; ®* id,
int, - int3; * @id,
int; * id @
int; * id @

int; * id @

50

L.ookahead

How to pick right production?

Lookahead in input stream for guidance

General case: arbitrary lookahead required

f we have A — o |

_uckily, many context-free grammers can
e parsed with limited lookahead

3, then we want to

correctly choose either A—> o orA — f3

define FIRST(a) as the set of tokens that
can be first symbol of q, i.e.,
a € FIRST(a) iff oo >* ay for some y

© 2019 Goldstein

L.ookahead

How to pick right production?

If we have A — o | 3, then we want to
correctly choose either A—> o orA — f3

define FIRST(a) as the set of tokens that
can be first symbol of q, i.e.,
a € FIRST(a) iff oo >* ay for some y

If A— o | Bwe want:
FIRST(at) N FIRST(B) = &

If that is always true, we can build a
predictive parser.

© 2019 Goldstein

FIRST sets

e We use next k characters in input stream to guide
the selection of the proper production.

e Given: A :=a | B we want next input character to
decide between a and f3.

e FIRST(a) = set of terminals that can begin
any string derived from o..

e |OW: a € FIRST(a) iff oo =* ay for some vy

e FIRST(at) N FIRST(B) = & — no backtracking needed

Computing FIRST (o)
e Given X := ABC, FIRST(X) = FIRST(A B C)
e Can we ignhore B or C?

e Consider:
A:=a

© 2019 Goldstein

Computing FIRST (o)
e Given X := ABC, FIRST(X) = FIRST(A B C)
e Can we ignhore B or C?

e Consider:
A:=a

C:=c
e FIRST(X) must also include FIRST(C)

e |[OW:
— Must keep track of NTs that are nullable

15-411/622 . (©2019Goldstein

nullable(A)

e nullable(A) is true if A can derive the empty
string
e For example:

B:=XYDb
X: =X

| YY
Y=

In this case, nullable(X) = nullable(Y) = true

nullable(B) = false

© 2019 Goldstein

FOLLOW(A)

e FOLLOW(A) is the set of terminals that can
immediately follow A in a sentential form.

* |.e,
a € FOLLOW(A) iff S =* aAa} for some o and 3

Building a Predictive Parser

e We want to know for each non-terminal which
production to choose based on the next input
character.

e Build a table with rows labeled by non-terminals,
A, and columns labeled by terminals, a. We will
put the production, A :=a, in (A, a) iff
— FIRST(ot) contains a or
— nullable(a) and FOLLOW(A) contains a

© 2019 Goldstein

The table for the robot

S :=BSF FIRST | FOLLOW |nullable
| S|b $ yes
B :=b B |b b.f no
Eo.=f Fif f.$ ho
b f |$
S
B
F

S

B

The table for the robot

=BSF

|
=b

FIRST(BSF) = b

FIRST |FOLLOW |nullable
S|b $ yes
B|b b,f no
F |f f.$ no

/4 nullable(e)=true

and
f b /_ FOLLOW(S)=$%

S S:=BSF S:=
B B:=b
F F:=f

© 2019 Goldstein

Table 1

VWCENOOhWwNnN =

MM A4 44 4mMmmMmmmwun

—- m
m

m Vot
— — -
m m

*FT
/FT

-
Q.

int

FIRST |FOLLOW |nullable
S |id,int |$
E |id, int |$
E' |+, - $ yes
T |id, int [+-$
T/, * +-.% yes
F |id, int |/, *$%
+ - / id | int | $

M| HdA[M MW

15-411/611

VWCENOOhWwNnN =

MM 44 4mmmm o

Table{ [FIRST [FOLLOW [nullable
S |id,int |$
E E |id,int |$
TE E' |+, - $ yes
‘_’Ig T |id,int |+-$
T1/,% +-.% yes
FT F lid,int |/,*$%
“FT L |- /1 id | int | $
=/FT S =E [=E
.4 E :=TE' [=TE'
int £ =+TE' [=-TE =
T =FT [=FT
T k= = =*FT[=/FT =
F =id |=int

© 2019 Goldstein

Using the Table

e Each row in the table becomes a function

e For each input token with an entry:
Create a series of invocations that
implement the production, where

— a non-terminal is eaten
— a terminal becomes a recursive call

e For the blank cells implement errors

© 2019 Goldstein

Example function

+ - * / id int $

S =E |=E

E =TE' [=TE'

|E' =+TE' [=-TF' =TE' [=TE' |:=

r handle errors?

T s - :=*FTIHOW To aln eelr'r'or's..

F | t=id lk=int | |

Eprime () {

switch (token) {
case PLUS: eat (PLUS); T(); Eprime(); break;
case MINUS: eat (MINUS); T();, Eprime(); break;
case ID: T(); Eprime();
case INT: T(); Eprime();
default: error () ;

15-411/611 © 2019 Goldstein

Left-Factoring

Predictive parsers need to make a choice
based on the next terminal.

Consider:
S:=1f E then S else S
| if E then S

When looking at i £, can’t decide
so left-factor the grammar

S:=1f E then S X
X =else S

© 2019 Goldstein

Top-Down Parsing

e Can be constructed by hand

e LL(k) grammars can be parsed
— Left-to-right
— Leftmost-derivation

— with k symbols lookahead

e Often requires
— |eft-factoring
— Elimination of left-recursion

© 2019 Goldstein

Bottom-up parsers

e What is the inherent restriction of top-
down parsing, e.g., with LL(k) grammars?

© 2019 Goldstein

Bottom-up parsers

e What is the inherent restriction of top-
down parsing, e.g., with LL(k) grammars?

e Bottom-up parsers use the entire right-
hand side of the production

e LR(k):
— Left-to-right parse,
— Rightmost derivation (in reverse),
— k look ahead tokens

© 2019 Goldstein

Top-down vs. Bottom-up

LL(k), recursive descent LR(k), shift-reduce

scanned unscanned scanned unscanned

Top-down Bottom-up

X W

i I
o X X

Example - Top-down
Is this grammar LL(k)?

How can we make it LL(k)?

O X W0
n non

X
bR
aR
I

What about a bottom up parse?

© 2019 Goldstein

Example - Bottom-up

right-most derivation: S

Left-to-Right, Rightmost in reverse 5 (o)

baa

Xaa & @
Xa

X ®

S

2019 Goldstein

Top-down vs. Bottom-up

LL(k), recursive descent LR(k), shift-reduce

scanned unscanned scanned unscanned

Top-down Bottom-up

