Parsing

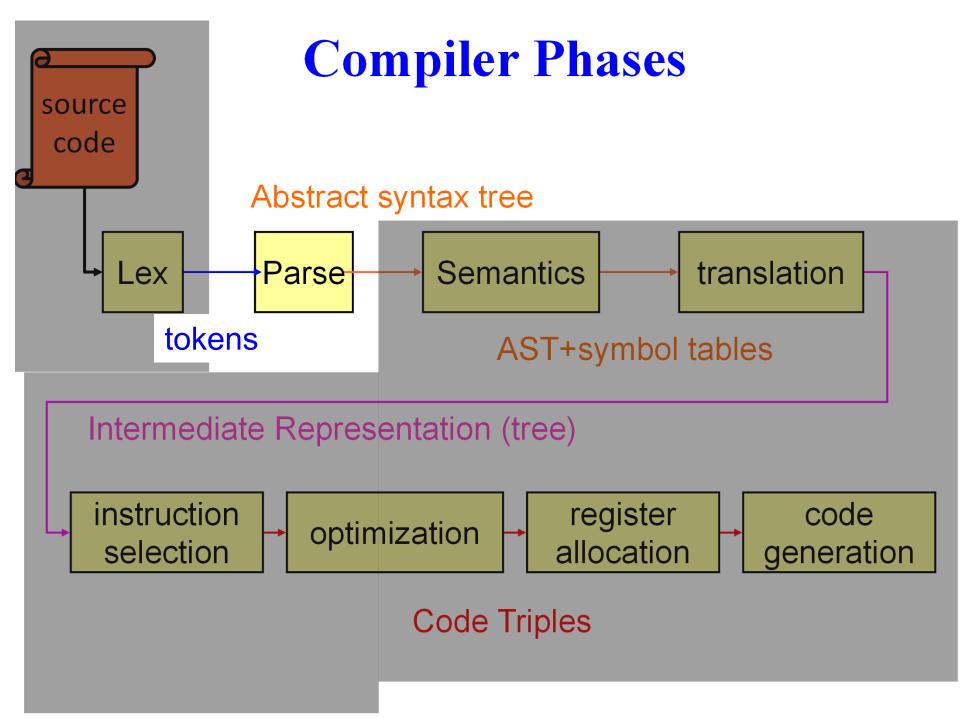
15-411/15-611 Compiler Design

Seth Copen Goldstein

September 17, 2019

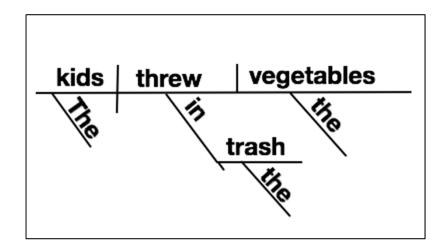
Today

- Languages and Grammars
- Context Free Grammars
- Derivations & Parse Trees
- Ambiguity
- Top-down parsers
- FIRST, FOLLOW, and NULLABLE
- Bottom-up parsers



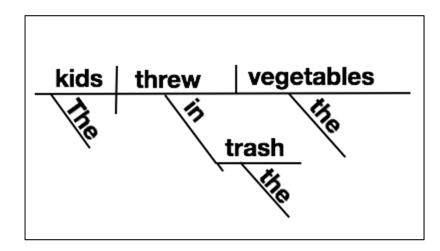
Languages

- Compiler translates from sequence of characters to an executable.
- A series of language transformations
- last week: characters → tokens
- today: tokens → "sentences"



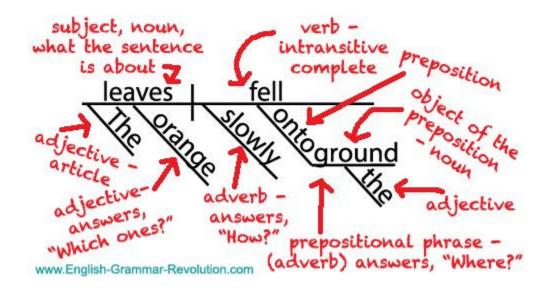
Languages

- Compiler translates from sequence of characters to an executable.
- A series of language transformations
- last week: characters → tokens
- today: tokens → parse trees



Languages

- Compiler translates from sequence of characters to an executable.
- A series of language transformations
- last week: characters → tokens
- today: tokens → "sentences"



Grammers and Languages

- A grammer, G, recognizes a language, L(G)
 - $-\Sigma$ set of terminal symbols
 - A set of non-terminals
 - S the start symbol, a non-terminal
 - P a set of productions
- Usually,
 - $-\alpha$, β , γ , ... strings of terminals and/or non-terminals
 - A, B, C, ... are non-terminals
 - a, b, c, ... are terminals
- General form of a production is: $\alpha \rightarrow \beta$

Derivation

 A sequence of applying productions starting with S and ending with w

$$S \rightarrow \gamma_1 \rightarrow \gamma_2 \dots \rightarrow \gamma_{n-1} \rightarrow W$$

 $S \rightarrow^* W$

L(G) are all the w that can be derived from S

- Regular expressions and NFAs can be described by a regular grammar
- E.G., $S \rightarrow aA$ $A \rightarrow Sb$ $S \rightarrow \epsilon$
- An example derivation of aab:

- Regular expressions and NFAs can be described by a regular grammar
- E.G., a*bc*

$$S \rightarrow aS$$

 $S \rightarrow bA$
 $A \rightarrow \epsilon$
 $A \rightarrow cA$

$$S \rightarrow aS$$

- Regular expressions and NFAs can be described by a regular grammar
- E.G., a*bc*

$$S \rightarrow aS$$

 $S \rightarrow bA$
 $A \rightarrow \epsilon$
 $A \rightarrow cA$

$$S \rightarrow aS \rightarrow aaS$$

- Regular expressions and NFAs can be described by a regular grammar
- E.G., a*bc*

$$S \rightarrow aS$$

$$S \rightarrow bA$$

$$A \rightarrow \epsilon$$

$$A \rightarrow cA$$

$$S \rightarrow aS \rightarrow aaS \rightarrow aabA$$

- Regular expressions and NFAs can be described by a regular grammar
- E.G., a*bc*

$$S \rightarrow aS$$

$$S \rightarrow bA$$

$$A \rightarrow \epsilon$$

$$A \rightarrow cA$$

$$S \rightarrow aS \rightarrow aaS \rightarrow aabA \rightarrow aabcA$$

- Regular expressions and NFAs can be described by a regular grammar
- E.G., a*bc*

$$S \rightarrow aS$$

$$S \rightarrow bA$$

$$A \rightarrow \epsilon$$

$$A \rightarrow cA$$

$$S \rightarrow aS \rightarrow aaS \rightarrow aabA \rightarrow aabcA \rightarrow aabc$$

- Regular expressions and NFAs can be described by a regular grammar
- E.G., a*bc*

$$S \rightarrow aS$$

$$S \rightarrow bA$$

$$A \rightarrow \epsilon$$

$$A \rightarrow cA$$

- Above is a right-regular grammar
- All rules are of form:

$$A \rightarrow a$$

$$A \rightarrow aB$$

$$A \rightarrow \epsilon$$

 Regular expressions and NFAs can be described by a regular grammar

• right regular grammar: $A \rightarrow a$

 $A \rightarrow aB$

 $A \rightarrow \epsilon$

• left regular grammar: $A \rightarrow a$

 $A \rightarrow Ba$

 $A \rightarrow \epsilon$

 Regular grammars are either right-regular or left-regular.

Expressiveness

- Restrictions on production rules limit expressiveness of grammars.
- No restrictions allow a grammar to recognize all recursively enumerable languages
- A bit too expressive for our uses ©
- Regular grammars cannot recognize aⁿbⁿ
- We need something more expressive

Chomsky Hierarchy

Class	Language	Automaton	Form	"word" problem	Example
0	Recursively Enumerable	Turing Machine	any	undecidable	Post's Corresp. problem
1	Context Sensitive	Linear- Bounded TM	αΑβ→αγβ	PSPACE- complete	a ⁿ b ⁿ c ⁿ
2	Context Free	Pushdown Automata	А→α	cubic	a ⁿ b ⁿ
3	Regular	NFA	A→a A→aB	linear	a*b*

Today

- Languages and Grammars
- Context Free Grammars
- Derivations & Parse Trees
- Ambiguity
- Top-down parsers
- FIRST, FOLLOW, and NULLABLE
- Bottom-up parsers

Context-Free Grammar

- A context-free grammar, G, is described by:
 - Σ , a set of terminals (which are just the set of possible tokens from the lexer) e.g., if, then, while, id, int, string, ...
 - A, a set of non-terminals.
 Non-terminals are syntactic variables which define sets of strings in the language e.g., stmt, expr, term, factor, vardecl, ...
 - **–** S
 - P

Context-Free Grammar

- A context-free grammar, G, is described by:
 - $-\Sigma$, a set of terminals ...
 - A, a set of non-terminals.
 - S, S ∈ A, the start symbol
 The set of strings derived from S are the valid string in the language.
 - P, set of productions that specify how terminals and non-terminals combine to form strings in the language a production, p, has the form: $A \rightarrow \alpha$

Context-Free Grammar

- A context-free grammar, G, is described by:
 - $-\Sigma$, a set of terminals ...
 - A, a set of non-terminals.
 - $-S, S \in A$, the start symbol
 - P, set of productions ... a production, p, has the form: : $A \rightarrow \alpha$
- E.g.,: S := E S := print E E := E + TT := F terminals

What makes a grammar CF?

- Only one NT on left-hand side → context-free
- What makes a grammar context-sensitive?
- $\alpha A\beta \rightarrow \alpha \gamma \beta$ where
 - $-\alpha$ or β may be empty,
 - but γ is not-empty
- Are context-sensitive grammars useful for compiler writers?

Matching Parenthesis

$$S \rightarrow (S)$$

$$S \rightarrow SS$$

$$S \rightarrow \epsilon$$

Simple Grammar of Expressions

```
S := Exp
```

Exp := Exp + Exp

Exp := Exp - Exp

Exp := Exp * Exp

Exp := Exp / Exp

Exp := id

Exp := int

Describes a language of expressions. e.g.: 2+3*x

Derivations

 A sequence of step in which a non-terminal is replaced by its right-hand side.

do leftmost derivation

Leftmost Derivations

Leftmost derivation: leftmost NT always chosen

Rightmost Derivations

Rightmost derivation: rightmost NT always chosen

Parse Trees

symbols in rhs are children of NT being

rewritten S

by
$$1 \Rightarrow Exp$$

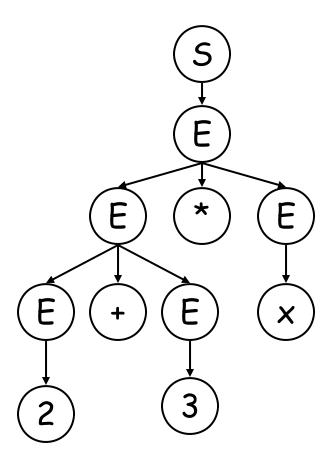
by
$$4 \Rightarrow Exp * Exp$$

by
$$2 \Rightarrow Exp + Exp * Exp$$

by
$$7 \Rightarrow int_2 + Exp * Exp$$

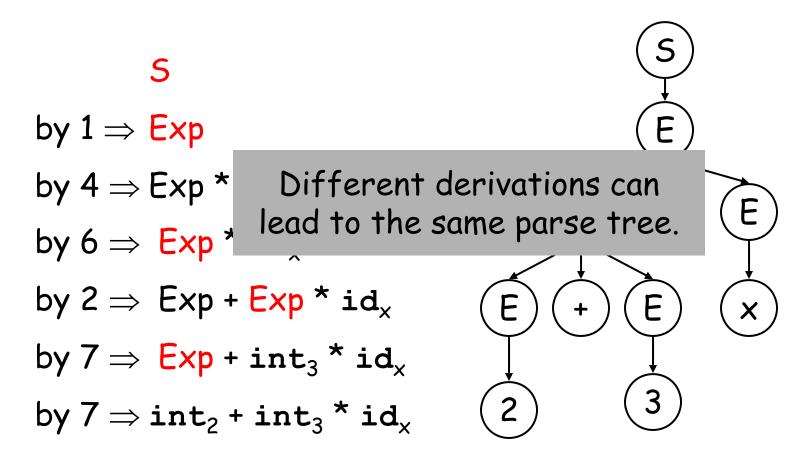
by
$$7 \Rightarrow int_2 + int_3 * Exp$$

by
$$6 \Rightarrow int_2 + int_3 * id_x$$



Parse Trees

parse tree for rightmost derivation



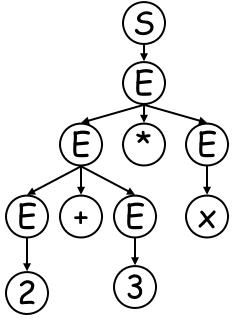
What about different parse trees for same sentence?

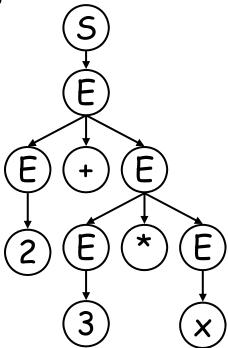
Ambiguous Grammars

• A gra What does ambiguity point out? a sentence with >1 parse trees. or,

If grammer has >1 leftmost (rightmost)

derivations it is ambiguous





Converting Expression Grammar

- Adding precedence with more nonterminals
- One for each level of precedence:
 - -(+, -) exp
 - -(*,/) term
 - (id, int) factor
 - Make sure parse derives sentences that respect the precedence
 - Make sure that extra levels of precedence can be bypassed, i.e., "x" is still legal

A Better Exp Grammar

1 S := Exp

2 Exp := Exp + Term

3 Exp := Exp - Term

4 Exp := Term

5 Term := Term * Factor

6 Term := Term / Factor

7 Term := Factor

8 Factor := id

9 Factor := int

5

by $1 \Rightarrow Exp$

by $2 \Rightarrow Exp + Term$

by $4 \Rightarrow \text{Term} + \text{Term}$

by $7 \Rightarrow Factor + Term$

by $9 \Rightarrow int_2 + Term$

by $5 \Rightarrow int_2 + Term * Factor$

by $7 \Rightarrow int_2 + Factor * Factor$

by $9 \Rightarrow int_2 + int_3 * Factor$

by $8 \Rightarrow int_2 + int_3 * id_x$

What is the parse tree?

Another Ambiguous Grammer

- What is the parse tree for:if E then if E then S else S?
- What is the language designers intention?
- Is there a context-free solution?

Dangling Else Grammar

```
S := matchedS
| unmatchedS
unmatchedS := if E then S
| if E then matchedS else unmatchedS
matchedS := if E then matchedS else matchedS
Later we will see another way to do this.
```

- Is this clearer?
- What is parse tree for: if E then if E then S else S?

A primitive robot

```
Swing := Back Swing Forward |

Back := back-1-inch

Forward := forward-2-inchs
```

What is L(Swing)?

A primitive robot

```
S := B S F
|
B := b
F := f
```

- What is L(Swing)?
- What is the parse tree for "bbff"

Parsing a CFG

Top-Down

- start at root of parse-tree
- pick a production and expand to match input
- may require backtracking
- if no backtracking required, predictive

Bottom-up

- start at leaves of tree
- recognize valid prefixes of productions
- consume input and change state to match
- use stack to track state

Top-down Parsers

- Starts at root of parse tree and recursively expands children that match the input
- In general case, may require backtracking
- Such a parser uses recursive descent.
- When a grammar does not require backtracking a predictive parser can be built.

A Predictive Parser

```
S := BSF
                 Idea is for parser to do something
                  besides recognize legal sentences.
                 if match('b') -> B(); S(); F(); action();
                 else return:
                 mustMatch('b'); action(); return;}
                 mustMatch('f'); action(); return;}
```

Top-Down parsing

- Start with root of tree, i.e., S
- Repeat until entire input matched:
 - pick a non-terminal, A, and pick a production $A \rightarrow \gamma$ that can match input, and expand tree
 - if no such rule applies, backtrack
- Key is obviously selecting the right production

```
1 S := E

2 E := E + T

3 E := E - T

4 E := T

5 T := T * F

6 T := T / F

7 T := F

8 F := id

9 F := int
```

```
1 S:= E
2 E:= E+T
3 E:= E-T
4 E:= T
5 T:= T*F
6 T:= T/F
7 T:= F
8 F:= id
```

F := int

Must backtrack here!

1	S := E
2	E := E + T
3	E := E - T
4	E := T
5	T := T * F
6	T := T / F
7	T := F
8	F := id
9	F := int

5	$int_2 - int_3 * id_x$
by $1 \Rightarrow E$	$int_2 - int_3 * id_x$
by $2 \Rightarrow E + T$	int ₂ - int ₃ * id _x
by $4 \Rightarrow T + T$	$int_2 - int_3 * id_x$
by $7 \Rightarrow F + T$	$int_2 - int_3 * id_x$
by 9 \Rightarrow int ₂ + T	int_2 - int_3 * id_x
by $3 \Rightarrow E - T$	int ₂ - int ₃ * id _x
by $4 \Rightarrow T - T$	$int_2 - int_3 * id_x$
by $7 \Rightarrow F - T$	$int_2 - int_3 * id_x$
by 9 \Rightarrow int ₂ - T	int ₂ - int ₃ * id _x
by $5 \Rightarrow \mathtt{int}_2 - T*F$	int ₂ - <mark>int₃ * id_x</mark>

```
1 S := E
2 E := E + T
3 E := E - T
4 E := T
5 T := T * F
6 T := T / F
7 T := F
8 F := id
9 F := int
```

```
|int_2 - int_3 * id_x|
 by 1 \Rightarrow E
                                                       int_2 - int_3 * id_x
 by 2 \Rightarrow E + T
                                                       |int<sub>2</sub> - int<sub>3</sub> * id<sub>x</sub>
by 4 \Rightarrow T + T
                                                       |int<sub>2</sub> - int<sub>3</sub> * id<sub>x</sub>
 by 7 \Rightarrow F + T
                                                       int<sub>2</sub> - int<sub>3</sub> * id<sub>x</sub>
 by 9 \Rightarrow int_2 + T
                                                         int<sub>2</sub> - int<sub>3</sub> * id<sub>x</sub>
 by 3 \Rightarrow E - T
                                                       int_2 - int_3 * id_x
 by 4 \Rightarrow T - T
                                                       lint_2 - int_3 * id_x
 by 7 \Rightarrow F - T
                                                       |int_2 - int_3 * id_x|
 by 9 \Rightarrow int_2 - T
                                                         int<sub>2</sub> - int<sub>3</sub> * id<sub>x</sub>
```

What kind of derivation is this parsing? nt2 - int3 * idx

9 F := int

$$\begin{array}{c} \mathsf{S} \\ \mathsf{by} \ 1 \Rightarrow \ \mathsf{E} \\ \mathsf{by} \ 2 \Rightarrow \ \mathsf{E} + \mathsf{T} \\ \mathsf{by} \ 2 \Rightarrow \ \mathsf{E} + \mathsf{E} + \mathsf{T} \\ \mathsf{by} \ 2 \Rightarrow \ \mathsf{E} + \mathsf{E} + \mathsf{E} + \mathsf{T} \end{array}$$

Will not terminate! Why?

grammar is left-recursive

What should we do about it?

Eliminate left-recursion

Does this work?

```
S := E
                               S := E
                            2 E := T + E
2 E := E + T
3 E := E - T
                            3 E := T - E
4 E := T
                            4 E := T
                            5 T:=F*T
 T := T * F
6 T := T/F
                            6 T := F / T
7 T := F
                            7 T := F
8 F := id
                            8 F := id
   F := int
                               F := int
```

It is right recursive, but also right associative!

Eliminating Left-Recursion

Given 2 productions:

$$A := A \alpha \mid \beta$$
 Where neither α nor β start with A (e.g., For example, E := E + T | T)

• Make it right-recursive:

A:=
$$\beta$$
 R

R:= α R

| R is right recursive

Extends to general case.

Rewriting Exp Grammar

1 S := E

2 E := E + T

3 E := E - T

4 E := T

5 T := T * F

6 T := T/F

7 T := F

8 F := id

9 F := int

 $1 \quad S \coloneqq E$

2' E' := + T E'

3' E' := - T E'

4' E' :=

5' T':= * F T'

6' T':=/FT'

7' T':=

8 F := id

9 F := int

Is this legible?

2 E := T E'

5 T := F T'

Try again

1 S := E

2 E := TE'

2' E' := + T E'

3' E' := - T E'

4' E' :=

5 T := F T'

5' T' := * F T'

6' T':= / F T'

7' T':=

8 F := id

9 F := int

S

by $1 \Rightarrow E$

by $2 \Rightarrow TE'$

by $5 \Rightarrow F T' E'$

by $9 \Rightarrow 2 \text{ T' E'}$

by $7' \Rightarrow 2 E'$

by $3' \Rightarrow 2 - TE'$

by $5 \Rightarrow 2 - F T' E'$

by $9 \Rightarrow 2 - 3 \top E'$

by $5' \Rightarrow 2 - 3 * F T' E'$

•int₂ - int₃ * id_x

int₂ ●- int₃ * id_x

int₂ ●- int₃ * id_x

int₂ - •int₃ * id_x

int₂ - •int₃ * id_x

 $int_2 - int_3 \bullet^* id_x$

int₂ - int₃ * ●id_x

|int₃ * id_x•

int₃ * id_x●

int₃ * id_×●

Unlike previous time we tried this, it appears that only one production applies at a time. I.e., no backtracking needed. Why?

Lookahead

- How to pick right production?
- Lookahead in input stream for guidance
- General case: arbitrary lookahead required
- Luckily, many context-free grammers can be parsed with limited lookahead
- If we have $A \rightarrow \alpha \mid \beta$, then we want to correctly choose either $A \rightarrow \alpha$ or $A \rightarrow \beta$
- define FIRST(α) as the set of tokens that can be first symbol of α , i.e.,
 - $a \in FIRST(\alpha)$ iff $\alpha \rightarrow^* a\gamma$ for some γ

Lookahead

- How to pick right production?
- If we have $A \rightarrow \alpha \mid \beta$, then we want to correctly choose either $A \rightarrow \alpha$ or $A \rightarrow \beta$
- define FIRST(α) as the set of tokens that can be first symbol of α , i.e., $a \in FIRST(\alpha)$ iff $\alpha \to^* a\gamma$ for some γ
- If $A \rightarrow \alpha \mid \beta$ we want: FIRST(α) \cap FIRST(β) = \emptyset
- If that is always true, we can build a predictive parser.

FIRST sets

- We use next k characters in input stream to guide the selection of the proper production.
- Given: A := $\alpha \mid \beta$ we want next input character to decide between α and β .
- FIRST(α) = set of terminals that can begin any string derived from α .
- IOW: $\mathbf{a} \in \mathsf{FIRST}(\alpha)$ iff $\alpha \Rightarrow^* \mathbf{a} \gamma$ for some γ

• FIRST(α) \cap FIRST(β) = $\emptyset \rightarrow$ no backtracking needed

Computing FIRST(α)

- Given X := A B C, FIRST(X) = FIRST(A B C)
- Can we ignore B or C?
- Consider:

Computing FIRST(α)

- Given X := A B C, FIRST(X) = FIRST(A B C)
- Can we ignore B or C?
- Consider:

- FIRST(X) must also include FIRST(C)
- IOW:
 - Must keep track of NTs that are nullable
 - For nullable NTs, determine FOLLOWS(NT)

nullable(A)

- nullable(A) is true if A can derive the empty string
- For example:

In this case, nullable(X) = nullable(Y) = true nullable(B) = false

FOLLOW(A)

- FOLLOW(A) is the set of terminals that can immediately follow A in a sentential form.
- I.e., $a \in FOLLOW(A)$ iff $S \Rightarrow^* \alpha Aa\beta$ for some α and β

Building a Predictive Parser

- We want to know for each non-terminal which production to choose based on the next input character.
- Build a table with rows labeled by non-terminals, A, and columns labeled by terminals, a. We will put the production, $A := \alpha$, in (A, a) iff
 - FIRST(α) contains a or
 - nullable(α) and FOLLOW(A) contains a

The table for the robot

B := b

F := f

	FIRST	FOLLOW	nullable
S	b	\$	yes
В	b	b,f	no
F	f	f,\$	no

	b	f	\$
5			
В			
F			

The table for the robot

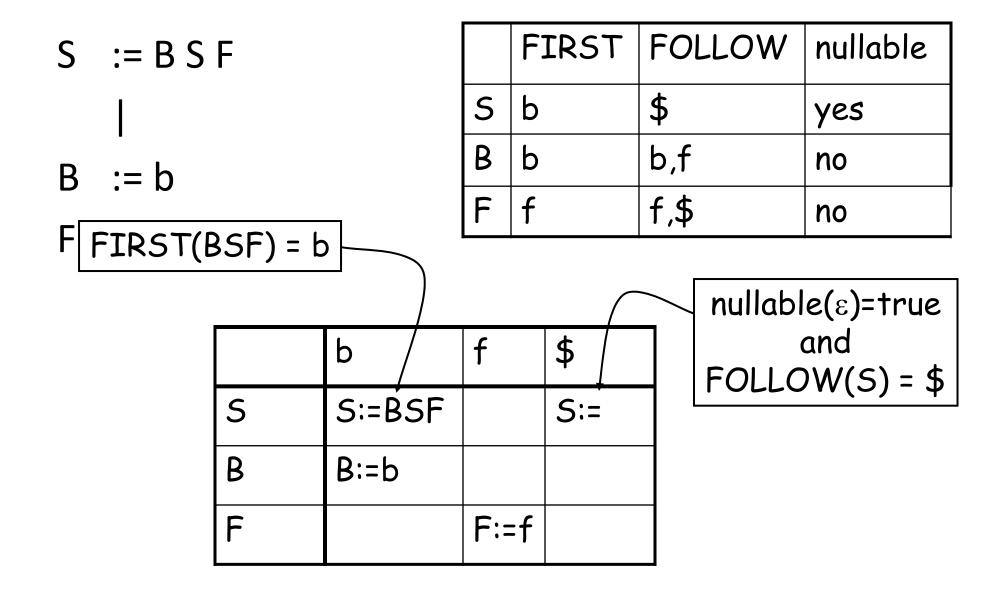


Table 1

1	5	:=	E

	FIRST	FOLLOW	nullable
S	id, int	\$	
E	id, int	\$	
E'	+, -	\$	yes
T	id, int	+,-,\$	
T	/,*	+,-,\$	yes
F	id, int	/, * ,\$	

	+	-	*	/	id	int	\$
S							
Е							
E'							
Т							
T'							
F							

Table 1

1	S	:=	E
_		•	_

	FIRST	FOLLOW	nullable
S	id, int	\$	
Е	id, int	\$	
E'	+, -	\$	yes
T	id, int	+,-,\$	
T	/,*	+,-,\$	yes
F	id, int	/, * ,\$	

	+	-	*	/	id	int	\$
5					:=E	:=E	
Е					:=TE'	:=TE'	
E'	:=+TE'	:=-TE'					:=
T					:=FT'	:=FT'	
T	:=	:=	:=*FT'	:=/FT'			:=
F					:=id	:=int	

Using the Table

- Each row in the table becomes a function
- For each input token with an entry:
 Create a series of invocations that implement the production, where
 - a non-terminal is eaten
 - a terminal becomes a recursive call
- For the blank cells implement errors

Example function

```
$
                          int
                      lid
                      :=E
                          :=E
                      |:=TE' |:=TE'
:=+TE'
     :=-TE'
                      |:=TE' |:=TE'
                How to handle errors?
           :=*FT
                     :=id :=int
   Eprime() {
       switch (token) {
       case PLUS: eat(PLUS); T(); Eprime(); break;
                     eat(MINUS); T(); Eprime(); break;
       case MINUS:
                     T(); Eprime();
       case ID:
                     T(); Eprime();
       case INT:
      default:
                     error();
```

Left-Factoring

- Predictive parsers need to make a choice based on the next terminal.
- Consider:

```
S:=if E then S else S
| if E then S
```

- When looking at if, can't decide
- so left-factor the grammar

```
S := if E then S X
X := else S
|
```

Top-Down Parsing

- Can be constructed by hand
- LL(k) grammars can be parsed
 - Left-to-right
 - Leftmost-derivation
 - with k symbols lookahead
- Often requires
 - left-factoring
 - Elimination of left-recursion

Bottom-up parsers

 What is the inherent restriction of topdown parsing, e.g., with LL(k) grammars?

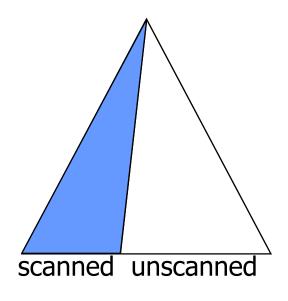
Bottom-up parsers

- What is the inherent restriction of topdown parsing, e.g., with LL(k) grammars?
- Bottom-up parsers use the entire righthand side of the production
- LR(k):
 - Left-to-right parse,
 - Rightmost derivation (in reverse),
 - k look ahead tokens

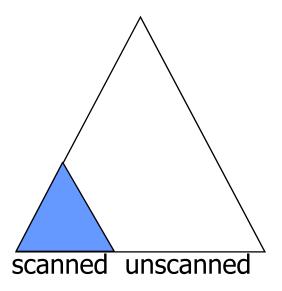
Top-down vs. Bottom-up

LL(k), recursive descent

LR(k), shift-reduce



Top-down



Bottom-up

Example - Top-down

Is this grammar LL(k)?

How can we make it LL(k)?

What about a bottom up parse?

Example - Bottom-up

right-most derivation:

LR parser gets to look at an entire right hand side.

Left-to-Right, Rightmost in reverse

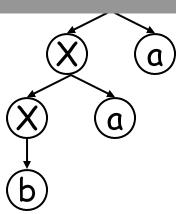
baa

Xaa

Xa

X

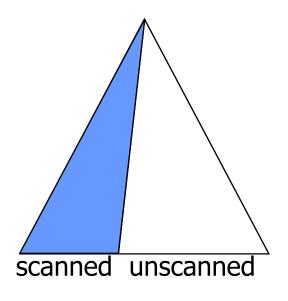
S



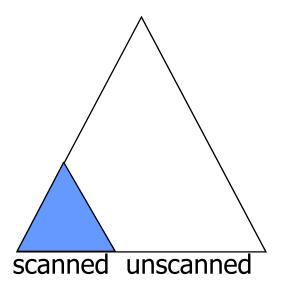
Top-down vs. Bottom-up

LL(k), recursive descent

LR(k), shift-reduce



Top-down



Bottom-up