
Lecture Notes on
Instruction Selection

15-411: Compiler Design
Frank Pfenning and Jan Hoffmann∗

Lecture 2
August 28, 2019

1 Introduction

In this lecture we discuss the process of instruction selection, which typically turns
some form of intermediate code into a pseudo-assembly language (also called ab-
stract assembly) in which we assume to have infinitely many registers called “temps”.
There are multiple options for defining abstract assembly and it is a good abstrac-
tion level for many optimizations. A more high-level version is based on three-
address instructions and generic operations. A more low-level version could use
two-address instructions and some x86 specific registers an operations. The next
step in the compiler is register allocation, which assigns machine registers and
stack slots to the temps in abstract assembly before emitting the actual assembly
code. Additional material regarding instruction selection can be found in the text-
book [App98, Chapter 9].

2 A Simple Source Language

In this lecture, we use a simple source language where a program is just a sequence
of assignments terminated by a return statement. The right-hand side of each as-
signment is a simple arithmetic expression. Later in the course we describe how the
input text is parsed and translated into some intermediate form. Here we assume
we have arrived at an intermediate representation where expressions are still in
the form of trees and we have to generate instructions in pseudo-assembly. We call
this form IR Trees (for “Intermediate Representation Trees”). We also assume that
IR trees are well-formed, that is, the compiler successfully performed the semantic
analysis (type checking, variable initialization, etc.).

∗Updated by Seth Copen Goldstein

LECTURE NOTES AUGUST 28, 2019

Instruction Selection L2.2

We describe the possible IR trees in a kind of pseudo-grammar, which should
not be read as a description of the concrete syntax, but the recursive structure of
the data.

Programs ~s ::= s1, . . . , sn sequence of statements

Statements s ::= x = e assignment
| return e return, always last

Expressions e ::= c integer constant
| x variable
| e1 ⊕ e2 binary operation

Binops ⊕ ::= + | − | ∗ | / | . . .

3 Abstract Assembly Target Code

For our simple source, we use an equally simple target. Our target language has
fixed registers and also arbitrary variables, called here temps. We allow variables
x with the same name to appear both in expressions in IR trees and as instruction
operands.

Programs ~i ::= i1, . . . , in

Instructions i ::= d← s move
| d← s1 ⊕ s2 binary operation
| ret

Operands d, s ::= r register
| c integer constant (immediate)
| t temp (variable)

We use d to denote operands of instructions that are destinations of operations
and s for sources of operations. There are some restrictions. In particular, immediate
operands cannot be destinations. More restrictions arise when memory references
are introduced. For example, it may not be possible for more than one operand to
be a memory reference.

There is no technical reason to distinguish between temps and registers. How-
ever, it is a cleaner approach to make the distinction if you want to introduce some
registers in the abstract assembly: While temps can always be renamed without
changing the outcome of the program, registers cannot be renamed in this way.

To give an example of the use of a register in abstract assembly, we assume that
we have return register rret to which we move the result before executing the return
instruction ret.

LECTURE NOTES AUGUST 28, 2019

Instruction Selection L2.3

4 Maximal Munch

The simplest algorithm for instruction selection proceeds top-down, traversing the
input tree and recursively converting subtrees to instruction sequences. For this to
work properly, we either need to pass down or return a way to refer to the result
computed by an instruction sequence. In lecture, it was suggest to pass down a
destination for the result of an operation. We therefore have to implement a function

cogen(d, e) a sequence of instructions implementing e,
putting the result into destination d.

e cogen(d, e) proviso
c d← c

x d← x

e1 ⊕ e2 cogen(t1, e1), cogen(t2, e2), d← t1 ⊕ t2 (t1, t2 fresh)

If our target language has more specialized instructions we can easily extend
this translation by matching against more specialized patterns and matching against
them first. For example: if we want to implement multiplication by the constant 2
with a left shift, we would add one or two patterns for that.

e cogen(d, e) proviso
c d← c

x d← x

2 ∗ e cogen(t, e), d← t << 1 (t fresh)
e ∗ 2 cogen(t, e), d← t << 1 (t fresh)

e1 ⊕ e2 cogen(t1, e1), cogen(t2, e2), d← t1 ⊕ t2 (t1, t2 fresh)

Since ∗ is a binary operation (that is, ⊕ can be ∗), the patterns for e now need to
be matched in the listed order to avoid ambiguity and to obtain the intended more
efficient implementation. If we always match the deepest pattern first at the root
of the expression, this algorithm is called maximal munch. This is also a first indi-
cation where the built-in pattern matching capabilities of functional programming
languages can be useful for implementing compilers.

Now the translation of statements is straightforward. We write cogen(s) for
the sequence of instructions implementing statement s. We assume that there is a
special return register rret so that a return statement is translated to a move into the
return register followed by a return instruction.

s cogen(s)

x = e cogen(x, e)

return e cogen(rret, e), ret

LECTURE NOTES AUGUST 28, 2019

Instruction Selection L2.4

Now a sequence of statements constituting a program is just translated by ap-
pending the sequences of instructions resulting from their translations. Maximal
munch is easy to implement (especially in a language with pattern matching) and
gives acceptable results in practice.

5 A Simple Example

Let’s apply our translation to a simple program

z = (x + 3) ∗ (y − 5), return z

Working through code generation and always working on the left subtree before
the right now, we obtain

cogen(z = (x + 3) ∗ (y − 5)), cogen(return z)
= cogen(z, (x + 3) ∗ (y − 5)), cogen(rret, z), ret
= cogen(t1, x + 3), cogen(t2, y − 5), z ← t1 ∗ t2, rret ← z, ret
= cogen(t3, x), cogen(t4, 2), t1 ← t3 + t4,

cogen(t5, y), cogen(t6, 5), t2 ← t5 − t6, z ← t1 ∗ t2
rret ← z, ret

After one more step, we obtain the following program

t3 ← x
t4 ← 3
t1 ← t3 + t4
t5 ← y
t6 ← 5
t2 ← t5 − t6
z ← t1 ∗ t2
rret ← z
ret

6 Generating “Better” Code

From the example we see that the resulting program has a lot of redundant move
instructions. We can eliminate the redundancy in several ways, all of which are
prototypical for many of the choices you will have to make while writing your
compiler.

1. We can completely redesign the translation algorithm so it generates better
code.

LECTURE NOTES AUGUST 28, 2019

Instruction Selection L2.5

2. We can keep the basic structure of the translation but add special cases to
avoid introducing some glaring redundancies in the first place.

3. We can keep the translation the same and apply optimizations subsequently
to eliminate redundancies.

Let’s work through the options.
Instead of passing down a destination, we can have the translation generate and

return a source operand which can be used to refer to the value of the expression.
Here is what this might look like. We write ě (read: “down e”) for the sequence of
instructions generated for e and ê (read: “up e”) as the source operand we can use
to refer to the result.

e ě ê proviso
c · c

x · x

e1 ⊕ e2 ě1, ě2, t← ê1 ⊕ ê2 t (t fresh)

and for statements
s š

x = e ě, x← ê

return e ě, rret ← ê, ret

In this formulation, it seems fewer moves are generated from expressions, but we
pay for that with explicit moves for assignment and return statements because we
cannot pass the left-hand side of the assignment or the return register as an argu-
ment to the translation. Working through this new translation for the same pro-
gram

z = (x + 3) ∗ (y − 5), return z

we obtain
t1 ← x + 3
t2 ← y − 5
t3 ← t1 ∗ t2
z ← t3
rret ← z
ret

We observe that straightforward recursive instruction selection, whether we pass
destinations down or source operands up, naturally introduces some extra move
instructions.

Let us consider the first translation again to explore Option 2. It is easy to add

LECTURE NOTES AUGUST 28, 2019

Instruction Selection L2.6

further instructions to avoid generating unnecessary moves. For example:

e cogen(d, e) proviso
c d← c

t d← t

c⊕ e2 cogen(t2, e2), d← c⊕ t2 (t2 fresh)
x⊕ e2 cogen(t2, e2), d← s⊕ t2 (t2 fresh)
e1 ⊕ c cogen(t1, e1), d← t1 ⊕ c (t1 fresh)
e1 ⊕ x cogen(t1, e1), d← t1 ⊕ x (t1 fresh)
· · · · · ·

e1 ⊕ e2 cogen(t1, e1), cogen(t2, e2), d← t1 ⊕ t2 (t1, t2 fresh)

One can see that this can lead to an explosion in the size of the translation code,
especially once source and target become richer languages. Also, are we really sure
that we have now eliminated the undesirable redundancies? In the table above not
yet, unless we introduce even more special cases (say, for an operation applied to a
variable and a constant). Generally speaking, our advice is to keep code generation
and other transformations as simple as possible, using clear and straightforward
translations that are easy to understand. This, however, means that even for this
very small pair of source and target language, it is worthwhile to consider how we
might eliminate moves.

7 The First Two Optimizations

The first two optimizations are aimed at eliminating moves, t ← s. There are two
special cases: s could be a constant, or s could be a temp. We first consider the case
t← c for a constant c. We would like to replace occurrences of t by c in subsequent
instructions, an optimization that is called constant propagation. However, we can
not replace all occurrence of t. Consider, for example:

1 : t ← 5
2 : x ← t− 4
3 : t ← x + 7
4 : z ← t− 1

In line 3, we store the value of x + 7 in t, so t may no longer refer to 5. So it would
be incorrect to replace t in line 4 by the constant 5. So we stop with the replacement
of t by 5 when we reach an instruction that redefines t.

The second case is an assignment t ← x, just moving a value from one temp
to another. Again, we would like to replace occurrences of t by x, an optimiza-
tion called copy propagation. The condition is slightly more complicated than for

LECTURE NOTES AUGUST 28, 2019

Instruction Selection L2.7

constant propagation. Consider, for example:

1 : t ← x
2 : x ← y − 4
3 : z ← t + 7

We cannot replace the occurrence of t in line 3 by x, because x now potentially
holds a different value than it did in line 1. So we have to stop replacement of t by
x at an assignment to either t or x. In this case, it is also not possible to remove the
move in line 1 since we are still accessing t in line 3.

We can simplify these conditions. For example, if t is indeed a true, fresh tem-
porary variable introduced in our translation, then we assign to it only once. So we
don’t even need to check if it is assigned to again. However, if there are variables
in the source program which are assigned to more than once, the condition still has
to be checked.

8 Static Single Assignment Form

The conditions on the two optimization in the previous sections are not too oner-
ous, but once the language and our optimizations become more complex, so do
the conditions. As we have seen, they can be drastically simplified if we know
that every variable will be assigned to only once. The idea now is to transform
the program into this form, called static single assignment (SSA) to simplify the op-
timizations. This has emerged as a de facto standard representation in modern
compilers and is used by tools such as the LLVM. In this lecture we only see a first,
very simple version of it.

We describe the algorithm for converting a program to SSA informally, by ex-
ample. Consider the following program:

1 : t ← 5
2 : x ← t− 4
3 : t ← t + x
4 : z ← t− 1

We traverse the program line by line, maintaining a current version number for
each temp. When we see a temp for the first time, we assign it version 0 and replace
subsequent occurrences as operands by this version. If it is defined by an instruc-
tion (here this means that is assigned a new value), then we increase the generation
number. After we carry this out on the code above we obtain the following SSA
form:

1 : t0 ← 5
2 : x0 ← t0 − 4
3 : t1 ← t0 + x0
4 : z0 ← t1 − 1

LECTURE NOTES AUGUST 28, 2019

Instruction Selection L2.8

This new program will in general use more temps, corresponding to different gen-
erations of the original temps, but it will always perform the same computations.
Now we can optimize simply by replacement since every temp is defined only
once.

When we introduce loops and conditionals into our language, the SSA form
becomes somewhat more complicated, but it is still simpler than the conditions we
would other have to check for our optimizations. In the presence of loops, more
example, even if there is only a single instruction t← . . . for a given temp t, it may
be assigned to every time around the loop. That’s why it is called static single as-
signment form: in the program text (statically) there is only one assignment to each
temp, but while executing the program (dynamically) the temp may still assume
many different values.

We encourage you to introduce SSA form into your compilers as early as possi-
ble in the semester, in order to avoid significant restructuring when the time comes
to implement serious optimizations.

9 “Optimal” Instruction Selection

If we have a good cost model for instructions, we can often find better translations
if we apply dynamic programming techniques to construct instruction sequences
of minimal cost, from the bottom of the tree upwards. In fact, one can show that
we get “optimal” instruction selection in this way if we start with tree expressions.

On modern architectures it is very difficult to come up with realistic cost mod-
els for the time of individual instructions. Moreover, these costs are not additive
due to features of modern processors such as pipelining, out-of-order execution,
branch predication, hyper-threading, etc. Therefore, optimal instruction selection
is more relevant when we optimize code size, because then the size of instructions
is not only unambiguous but also additive. Since we do not consider code-size op-
timizations in this course, we will not further discuss optimal instruction selection.

10 x86-64 Considerations

Assembly code on the x86 or x86-64 architectures is not as simple as the assump-
tions we have made here, even if we are only trying to compile straight-line code.
One difference is that the x86 family of processors has two-address instructions,
where one operand will function as a source as well as destination of an instruction,
rather than three-address instructions as we have assumed above. Another is that
some operations are tied to specific registers, such as integer division, modulus,
and some shift operations. We briefly show how to address such idiosyncrasies.

To implement a three-address instruction we replace it by a move and a two-

LECTURE NOTES AUGUST 28, 2019

Instruction Selection L2.9

address instruction. For example:1

3-address form 2-address form x86-64 assembly
d← s1 + s2 d← s1 MOVL s1, d

d← d + s2 ADDL s2, d

Here we use the GNU assembly language conventions where the destination of
an operation comes last, rather than the Intel assembly language format where it
comes first.

In order to deal with operations tied to particular registers we have to make
similar transformations. It is important to keep the live range of these registers
short, so they interfere with other registers as little as possible, as explained in
Lecture 3 on register allocation.

11 Extensions

In general, there will be inter-dependencies of instruction selection and register
allocation. The register allocation depends on which instructions are executed, es-
pecially for special instructions on x86-64. Also some of the analysis needed for
register allocation may depend on the selected instructions. Conversely, however,
optimal instructions may depend on the register assignment. For these and similar
reasons, recent advanced compilers, especially those following the so-called SSA
intermediate representation combine register allocation and code generation into a
joint phase.

Questions

1. How can you implement the data structures for an intermediate representa-
tion as defined in this lecture?

2. What are the advantages of working with a 3-address intermediate represen-
tation compared to a 2-address representation and vice versa?

3. What is the advantage and disadvantage of using macro expansion for in-
struction selection, i.e., to associate exactly one instruction sequence to each
individual piece of the intermediate language?

4. Why do many CPUs provide such an asymmetric set of instructions? Why
do they not just provide us with all useful instructions and no special register
requirements?

1Careful: as we noticed during Lecture 3, the shown translation from 3-address to 2-address form
requires some conditions unless the source is in SSA form. What are these conditions?

LECTURE NOTES AUGUST 28, 2019

Instruction Selection L2.10

References

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cambridge
University Press, Cambridge, England, 1998.

LECTURE NOTES AUGUST 28, 2019

	Introduction
	A Simple Source Language
	Abstract Assembly Target Code
	Maximal Munch
	A Simple Example
	Generating ``Better'' Code
	The First Two Optimizations
	Static Single Assignment Form
	``Optimal'' Instruction Selection
	x86-64 Considerations
	Extensions

