15-411 Compiler Design, Fall 2019
Lab 6 - Create Your Own Adventure

Seth and co.

Due 11:59pm, Thursday, December 5, 2019
Papers due 11:59pm, Tuesday, December 10, 2019

1 Introduction

The main goal of the lab is to explore advanced aspects of compilation. This writeup describes the
process for proposing your own Lab 6; other writeups detail other options.

2 Requirements

You are required to hand in three separate items:

e The working compiler and support materials (runtime, etc.) that implement your proposed
project.

e Any additional tests and framework to test your project.

e A term paper describing and critically evaluating your project.

2.1 Possibilities

This is your opportunity to implement your ideas in the project proposals that were submitted a
few weeks back. Hopefully you have had time to think through the implementation and consider
the feasability of your ideas and are all ready to go! As we mentioned, the ideas put forward in the
proposal are not binding so feel free to choose any of the other pre-defined L6 options or maybe a
different CYOA altogether.

2.2 Tests and Measurement Tools

You need to demonstrate that your compiler is correct. How you do this will obviously depend
heavily on the project you propose. You may need to write new tests to exercise the Lab 6 portions
of your compiler; you may need to construct a customized testing framework. Before proposing a
project, you should give some thought to your testing approach. If there will be no way to check
whether your compiler meets the goals of your project, we will probably not be satisfied with your
project!



2.3 Term Paper
Your paper should follow this outline.

1. Introduction. This should provide an overview of the proposed project, give a sketch of your
implementation, and briefly summarize results.

2. Project. Give a specification for your project.

3. Implementation. Describe the modifications made to your compiler to meet the project goals,
including data structures and algorithms. Describe also any runtime system required for your
project.

4. Testing Methodology. Describe the design of your testing approach. Include any relevant
information such as the criteria you used as you selected or designed your tests, how you
constructed your testing system, and how your testing approach verifies the functionality of
your compiler. What you put in this section will, of course, depend on your project.

5. Analysis. Critically evaluate your compiler and sketch future improvements one might make
to your current implementation.

The term paper will be graded. There is no hard limit on the number of pages, but we expect
that you will have approximately 5-10 pages of reasonably concise and interesting analysis to
present.

3 Deliverables and Deadlines

All your code should be placed in subdirectories of the 1ab6 directory as before. Be sure to push
to a branch named lab6cyoa. The autograder will run regression tests against your own tests and
the same tests it used in Lab 5, but these will not directly contribute to your grade (in particular,
you may intentionally implement features that are not backwards-compatible). We will grade you
based on the code and README file(s) you have checked in at the deadline.

3.1 Compiler Files (due 11:59pm on Thu Dec 5)

As for all labs, the files comprising the compiler itself should be collected in the 1ab6/ directory
which should contain a Makefile. Important: You should also update the README file and insert
a roadmap to your code. This will be a helpful guide for the grader. In particular, since there are
likely to be many different projects undertaken, do introduce the project at the very top of the
README.

Issuing the shell command

% make
should generate the appropriate files so that
% bin/cOc --exe <args>

will run your compiler and produce an executable. It is not necessary to continue supporting any
compiler flags besides -t.
After running make, issuing the shell command



% make test
should run your own tests and print out informative output. The command
% make clean

should remove all binaries, heaps, and other generated files.

If it is reasonable, you should modify the driver from Lab 5 to test your extended compiler. If
there are any special instructions we need to follow in order to be able to run the driver on your
compiler and test it, specify these instructions in your README file.

Runtime environment (due 11:59pm on Thu Dec 5)

Because you may have implemented a new runtime, your compiler should have an additional flag
--exe. If your compiler is given a well-formed input file foo.11 or foo.12 as a command-line
argument and is also given the ——exe argument, it should generate a target file called foo.11.s or
foo.12.s (respectively) in the same directory as the source file, and should also compile the runtime
and link it with your generated assembly to create an executable foo.ll.exe or foo.1l2.exe
(respectively). We will test your compiler against the regression suite, but the grade reported by
the autograder won’t directly contribute to your grade.

3.2 Tests and Measurement Tools (due 11:59pm on Thu Dec 5)

In a directory called 1ab6/tests/, include all the tests that you selected or wrote for the purpose
of testing your project. If they are to be used in a different way than a vanilla L4 test, you should
include a README file explaining exactly how to use your tests, and make test should run your
tests.

If you also do any performance testing in the same vein as lab5, include the necessary files in
bench/.

3.3 Term Paper (due 11:59pm on Tue Dec 10)

Submit your term paper in PDF form via Gradescope before the stated deadline. Early submissions
are much appreciated since it lessens the grading load of the course staff near the end of the semester.
You may not use any late days on the term paper describing your implementation of
Lab 6!

4 Notes and Hints

e You will be assigned a mentor that will help you to define the project and to make sure that
the course staff can evaluate your work.

e Discuss your ideas with your mentor to get feedback on feasibility and scope of the project
before embarking on it.

e Try to identify some intermediate goals in case your overall project turns out to be too
ambitious. You should clearly indicate what your intermediate goals are in your proposal.



e Apply regression testing. It is very easy to get caught up in new features. Please make sure
that the L4 portion of your compiler continues to work correctly (keeping in mind that not
all changes are expected to be backward compatible)!



