
15-411 Compiler Design, Fall 2019

Lab 4

Seth and co.

Test Programs Due: 11:59 pm, Friday, October 25, 2019
Checkpoint Due: 11:59 pm, Tuesday, October 29, 2019
Compilers Due: 11:59 pm, Tuesday, November 5, 2019

1 Introduction

The goal of the lab is to implement a complete compiler for the language L4. This language extends
L3 with pointers, arrays, and structs. With the ability to store global state, you should be able to
write a wide variety of interesting programs. As always, correctness is paramount, but you should
take care to make sure your compiler runs in reasonable time.

2 L4 Syntax

The lexical specification of L4 is changed by adding ’[’, ’]’, ’.’, and ’->’ as lexical tokens; see
Figure 1. Whitespace, token delimiting, and comments are unchanged from languages L1, L2, and
L3.

The syntax of L4 is defined by the (no longer context-free!) grammar in Figure 2. Ambiguities
in this grammar are resolved according to the operator precedence table in Figure 3 and the rule
that an else provides the alternative for the most recent eligible if. Note that according to this
precedence table, *x++ parses as *(x++), which isn’t valid syntax. While we could allow *x++

because *x is unambiguously an lvalue and (*x)++ is unambiguously a statement, we disallow it.
This is both to match the precedence rules and also to avoid confusion with the different semantics
that statement has in C.

L4 syntax is not context-free

As noted above, the grammar presented for L4 is no longer context free. Consider, for example,
the statement

foo * bar;

If foo is a type name, then this is a declaration of a foo pointer named bar. If, however, foo is
not a type name, then this is a multiplication expression used as a statement.

For those of you using parser combinator libraries, you will be able to backtrack from a parse
decision based on whether an identifier is a type name, so this case should not be a problem.

1

ident ::= [A-Za-z_][A-Za-z0-9_]*

num ::= 〈decnum〉 | 〈hexnum〉

〈decnum〉 ::= 0 | [1-9][0-9]*

〈hexnum〉 ::= 0[xX][0-9a-fA-F]+

〈special characters〉 ::= ! ~ - + * / % << >>

< > >= <= == != & ^ | && ||

= += -= *= /= %= <<= >>= &= |= ^=

-> . -- ++ (|) [] , ; ? :

〈reserved keywords〉 ::= struct typedef if else while for continue break

return assert true false NULL alloc alloc_array

int bool void char string

Terminals referenced in the grammar are in bold. Other classifiers not referenced within the
grammar are in 〈angle brackets and in italics〉. ident, 〈decnum〉, and 〈hexnum〉 are described
using regular expressions.

Figure 1: Lexical Tokens

However, backtracking raises the specter of a performance bug, so you will need to closely consider
performance.

However, those of you using parser generators will have a harder time—the decision whether
to shift or reduce could might be made well ahead of when an identifier is determined to be a
typename or not. Solving this ambiguity is a bit tricky; below, we describe two approaches.

One way to handle this is to perform an ambiguous parse: use one rule to parse both the
declaration form and the expression form. Then undo an incorrect decision during elaboration. This
approach will almost certainly involve some other adjustment to various pieces of your grammar
and lexer. Looking over grammars and parsers from past years, we cannot honestly recommend
this technique—results seem to be largely contorted with low confidence in correctness.

Another option is to prevent incorrect decisions from being made. New type identifiers are
introduced at the top level (as a 〈gdecl〉), and so the parser can update mutable state to record
type identifiers as such. With this approach, the lexer can produce different tokens for type and
non-type identifiers. This was the solution intended by the designers of C, if one considers the
relevant footnote in their book.

This solves the parsing problem, but raises another. The lexer performs a lookahead in order
to find the longest match. This affects the lexing of a token which is used immediately after it is
introduced—consider:

typedef int foo;

foo func();

In this case, if the parser parses typedef int foo; the lexer may already have lexed the foo

at the beginning of the next line, so be careful! Despite this potential issue, we recommend this
approach because the grammar will continue to look natural and follow the actual understanding
of the language syntax.

2

〈program〉 ::= ε | 〈gdecl〉 〈program〉
〈gdecl〉 ::= 〈fdecl〉 | 〈fdef〉 | 〈typedef〉 | 〈sdecl〉 | 〈sdef〉
〈fdecl〉 ::= 〈type〉 ident 〈param-list〉 ;
〈fdef〉 ::= 〈type〉 ident 〈param-list〉 〈block〉
〈param〉 ::= 〈type〉 ident
〈param-list-follow〉 ::= ε | , 〈param〉 〈param-list-follow〉
〈param-list〉 ::= () | (〈param〉 〈param-list-follow〉)
〈typedef〉 ::= typedef 〈type〉 ident ;

〈sdecl〉 ::= struct ident ;

〈sdef〉 ::= struct ident { 〈field-list〉 } ;

〈field〉 ::= 〈type〉 ident ;

〈field-list〉 ::= ε | 〈field〉 〈field-list〉
〈type〉 ::= int | bool | ident | void | 〈type〉 * | 〈type〉[] | struct ident

〈block〉 ::= { 〈stmts〉 }
〈decl〉 ::= 〈type〉 ident | 〈type〉 ident = 〈exp〉
〈stmts〉 ::= ε | 〈stmt〉 〈stmts〉
〈stmt〉 ::= 〈simp〉 ; | 〈control〉 | 〈block〉
〈simp〉 ::= 〈lvalue〉 〈asop〉 〈exp〉 | 〈lvalue〉 〈postop〉 | 〈decl〉 | 〈exp〉
〈simpopt〉 ::= ε | 〈simp〉
〈lvalue〉 ::= ident | 〈lvalue〉 . ident | 〈lvalue〉 -> ident

| * 〈lvalue〉 | 〈lvalue〉 [〈exp〉] | (〈lvalue〉)
〈elseopt〉 ::= ε | else 〈stmt〉
〈control〉 ::= if (〈exp〉) 〈stmt〉 〈elseopt〉 | while (〈exp〉) 〈stmt〉

| for (〈simpopt〉 ; 〈exp〉 ; 〈simpopt〉) 〈stmt〉
| return 〈exp〉 ; | return ;

| assert (〈exp〉) ;

〈arg-list-follow〉 ::= ε | , 〈exp〉 〈arg-list-follow〉
〈arg-list〉 ::= () | (〈exp〉 〈arg-list-follow〉)
〈exp〉 ::= (〈exp〉) | num | true | false | ident | NULL | 〈unop〉 〈exp〉

| 〈exp〉 〈binop〉 〈exp〉 | 〈exp〉 ? 〈exp〉 : 〈exp〉 | ident 〈arg-list〉
| 〈exp〉 . ident | 〈exp〉 -> ident | alloc (〈type〉) | * 〈exp〉
| alloc array (〈type〉 , 〈exp〉) | 〈exp〉 [〈exp〉]

〈asop〉 ::= = | += | -= | *= | /= | %= | &= | ^= | |= | <<= | >>=

〈binop〉 ::= + | - | * | / | % | < | <= | > | >= | == | !=

| && | || | & | ^ | | | << | >>

〈unop〉 ::= ! | ~ | -

〈postop〉 ::= ++ | --

The precedence of unary and binary operators is given in Figure 3. Non-terminals are in 〈angle
brackets〉. Terminals are in bold. The absence of tokens is denoted by ε.

Figure 2: Grammar of L4

3

Operator Associates Meaning

() [] -> . n/a explicit parentheses, array subscript,

field dereference, field select

! ~ - * ++ -- right logical not, bitwise not, unary minus,

pointer dereference, increment, decrement

* / % left integer times, divide, modulo

+ - left integer plus, minus

<< >> left (arithmetic) shift left, right

< <= > >= left integer comparison

== != left overloaded equality, disequality

& left bitwise and

^ left bitwise exclusive or

| left bitwise or

&& left logical and

|| left logical or

? : right conditional expression

= += -= *= /= %=

&= ^= |= <<= >>= right assignment operators

Figure 3: Precedence of operators, from highest to lowest

3 L4 Semantics

The static and dynamic semantics for Lab 4 are described in the lecture notes discussing static
semantics, dynamic semantics, mutable store, and structs. Some specific points:

• Elaboration will need to deal with the fact that A[f(x)] += 3 cannot be elaborated into
assign(A[f(x)], A[f(x)]+3), because calling f(x) might have an effect, like printing or writing
to a pointer.

• You will have to preserve at least some size information during elaboration to generate cor-
rect code. We suggest you refer to the current (third) edition of Bryant and O’Hallaron’s
Computer Systems: A Programmer’s Perspective, or to the current semester’s 15-213 notes.
Pay particular attention to the effects of 32 bit operators in the upper 32 bits of the 64 bit
registers.

• Struct definitions obey scoping rules of the other global declarations, that is, they are available
only after their point of definition. However, structs may be declared implicitly; see Section
2 of the notes.

4

• The rules for struct declarations and definitions, mostly inherited from C, are carefully engi-
neered so that it should be possible to compute the size and field offsets of each struct without
referring to anything found later in the file. You probably want to store the sizes and field
offsets in global tables.

• Like type definitions, struct declarations and definitions can appear in external files.

• We expect your generated code to explicitly capture memory errors, rather than counting on
the operating system to notice and raise SIGSEGV (11). In order to enforce that, the signal
associated with memory errors will be SIGUSR2 (12). You can raise this signal explicitly with
the standard raise(sig) function.

The default library for this lab, 15411-l4.h0, is a modification of the previous library that
uses 8-byte floating point values stored in pointers rather than 4-byte floating point values stored
in integers. We encourage you to use this library in some of your test cases!

For this lab, you do not need to lay out structs in a way that is compatible with C, but you
are encouraged to do so. You should respect the machine’s alignment requirements so that integers
and booleans are aligned at least 0 modulo 4 and addresses at least 0 modulo 8, but beyond that,
we will not require strict adherence. One reason for this flexibility is that we allow you to represent
structs and arrays containing boolean values however you want. Here is what we will potentially
test:

• Integers must be stored in memory as 4 continuous bytes (little-endian, as usual on x86-64)

• Pointers must be stored in memory as 8 continuous bytes (little-endian, as usual on x86-64)

• Structs and arrays which contain only ints (and other structs which contain only ints, and so
on) must store the ints continuously, in order, where a, the address of the struct or value of
the array, is the address of the first struct field or array element, a + 4 is the address of the
second struct field or array element, and so on.

• Ditto for structs and arrays which contain only pointers, except that a + 8 is the address of
the second struct field or array element.

4 Project Requirements

For this project, you are required to hand in test cases and a complete working compiler for L4
that produces correct target programs written in Intel x86-64 assembly language.

We also require that you document your code. Documentation includes both inline documenta-
tion and a README document which explains the design decisions underlying the implementation
along with the general layout of the sources. If you use publicly available libraries, you are required
to indicate their use and source in the README file. If you are unsure whether it is appropriate
to use external code, please discuss it with course staff.

When we grade your work, we will use the gcc compiler to assemble and link the code you
generate into executables using the provided runtime environment on the lab machines.

Your compiler and test programs must be formatted and handed in as specified below. For this
project, you must also write and hand in at least 20 test programs, at least two of which must fail
to compile, at least two of which must generate a runtime error, and at least two of which must
execute correctly and return a value.

5

Test Files

Test programs should have extension .l4 and start with one of the following lines:

//test return i program must execute correctly and return i
//test div-by-zero program must compile but raise SIGFPE

//test abort program must compile and run but raise SIGABRT

//test memerror program must compile and run and raise SIGUSR2

//test error program must fail to compile due to an L3 source error
//test typecheck program must typecheck correctly (see below)
//test compile program must typecheck, compile, and link (see below)

followed by the program text. In L4, the exceptions defined are SIGABRT (6), SIGFPE (8), and
SIGUSR2 (12).

Since the language now supports function calls, the runtime environment contains external
functions providing output capabilities (see the runtime section for details). However, we do not
check that the output is correct, merely that correct values are eventually returned from library
calls.

If the test program $test.l4 is accompanied by a file $test.h0 (same base name, but h0

extension), then we will compile the test treating $test.h0 as the header file. Otherwise, we will
treat ../runtime/15411-l4.h0 as the header file for all l4 tests, and we will pass that header file
to your compiler with the -l argument. The 15411-l4.h0 header file describes a library for double-
precision floating point arithmetic and printing operations; our testing framework will ignore any
output performed from the printing operations. You are strongly encouraged, but not required, to
write tests that take advantage of this library.

If your tests use a header file that you wrote, your test must start with the line //test error or
//test typecheck. If you include a note that explains what your header file and your test is doing,
we might change it to allow the autograder to try to compile (//test compile) or run (anything
else). Only tests utilizing header files that you wrote should begin with //test typecheck.

L4 is the first Turing-complete language explored in this class. As such, you should be able to
write some very interesting tests, perhaps adapted from the programs and libraries you wrote in
the 15-122 course on Principles of Imperative Computation that uses C0.

Please do not submit test cases that are only slightly different from each other in terms of
the behavior exercised. In addition, we would like some fraction of your test programs to perform
“interesting” computations; please briefly describe such examples in a comment in the file. Disal-
lowed are programs which compute Fibonacci numbers, factorials, greatest common divisors, the
Ackermann function, and minor variations thereon. Please use your imagination!

Compiler Files

The files comprising the compiler itself should be collected in a directory compiler/ which should
contain a Makefile. Important: You should also update the README file and insert a description
of your code and algorithms used at the beginning of this file. Even though your code will not be
read for grading purposes, we may still read it to provide you feedback. The README will be crucial
information for this purpose.

Issuing the shell command

6

% make lab4

should generate the appropriate files so that

% bin/c0c <args>

will run your L4 compiler. The command

% make clean

should remove all binaries, heaps, and other generated files.

Runtime Environment

Your compiler should accept a single, optional command line argument -l which must be given the
name of a file as an argument. For instance, we will be calling your compiler using the following
command: bin/c0c -l ../runtime/15411-l4.h0 $test.l4. Here, 15411-l4.h0 is the header
file mentioned above. You may not assume that the header file parses and typechecks correctly.

The 15411-l4.h0 header file describes a library for manipulating double-precision floating-point
values. The implementation of this library can be found in lab4/runtime/run411.c. You should
assume the types of the implementation match the types in the header file.

The GNU compiler and linker will be used to link your assembly to the implementations of the
external functions, so you need not worry much about the details of calling to external functions.
You should ensure that the code you generate adheres to the C ABI for Linux on x86-64. As a
reminder from lab 3, in order for the linking to work, you must adhere to the following conventions:

• External functions must be called as named.

• Non-external functions with name name must be called _c0_name. This ensures that non-
external function names do not accidentally conflict with names from standard library which
could cause assembly or linking to fail.

• Non-external functions must be exported from (declared to be global in) the assembly file you
generate, so that our test harness can call them and verify your adherence to the ABI.

• You may notice that the functions c0 alloc and c0 alloc array are implemented in run411.c.
This is because run411.c is a modified version of the c0 reference runtime, which needs these
functions since the reference compiler targets C, rather than assembly. Please do not use
these functions. You must implement alloc and alloc array yourself. In practice, this
means you should be calling calloc in your generated assembly.

The runtime environment defines a function main() which calls a function _c0_main() your
assembly code should provide and export. Your compiler will be tested in the standard Linux
environment on the lab machines; the produced assembly must conform to this environment.

What to Turn In

You may turn in code and have it autograded as many times as you like, without penalty. In fact,
we encourage you to hand in to verify that the autograder agrees with the driver results that you
use for development, and also as insurance against a last-minute rush. The submission with the
highest grade will count.

You will submit:

7

Before Friday, October 25, 11:59 pm At least 20 test cases, at least two of which generate an
error, at least two of which raise a runtime exception, and at least two of which return a
value. You will submit to the Test 4 assesment on Notolab. The directory tests should
only contain your test files. The autograder will test your test files and notify you if there is
a discrepancy between your answer and the outcome of the reference implementation. If you
feel the reference implementation is in error, please notify the instructors.

Before Tuesday, October 29, 11:59 pm A compiler which can typecheck the language of lab
4. You will submit to the Lab 4 Checkpoint assessment on Notolab, containing the same
files as the full Lab 4 (see below). The autograder will build your compiler, run it on all
existing test files using the “-t” switch, and log which files successfully compiled and which
did not. If a test fails to compile unexpectedly (or the reverse), we will mark the test as
failed. The checkpoint will grade typechecking only.

Before Tuesday, November 5, 11:59 pm The complete compiler. You will submit to the Lab
4 assessment on Notolab’. The directory compiler/lab4 should contain only the sources for
your compiler and be submitted as described above. The autograder will build your compiler,
run it on all existing test files, link the resulting assembly files against our runtime system (if
compilation is successful), execute the binaries (each with a 6 second time limit), and finally
compare the actual with the expected results.

Please note that any submission past 11:59 pm on the due dates for either the tests or the
compiler will result in the usage of late days. This policy will apply even if the late submission(s)
has a lower grade than any previous submission before the deadline. However, we will still count
your highest submission across all submissions.

Checkpoint Scoring

Your compiler will be graded against the test cases, and your score is computed as follows. Note
that the checkpoint will only see whether a given test compiles successfully (or not), and will mark
tests as passed/failed accordingly.

20 * (% passed of new) +
40 * (% passed of large & only & basic) +
20 * (% passed of quarantine)
= checkpoint subtotal

penalty = min(40, (1 point per failure) + (0.5 points per timeout [excluding quarantined]))

checkpoint total = checkpoint subtotal - penalty

Lab Scoring

Your compiler will be graded against the test cases, and your score is computed as follows.
20 * (% passed of new) +
40 * (% passed of large & only & basic) +
20 * (% non-fail of quarantine) +

8

= checkpoint subtotal

penalty = min(40, (1 point per failure) + (0.5 points per timeout [excluding quarantined]))

lab total = lab subtotal - penalty

Scoring

Your final score for Lab 4 will be computed as
total = max(0.2 * checkpoint total + 0.8 * lab total, lab total)

9

	Introduction
	L4 Syntax
	L4 Semantics
	Project Requirements

