15-411 Compiler Design, Fall 2018
Lab 3

Seth and co.

Test Programs Due: 11:59 pm, Tuesday, October 8, 2018
Compilers Due: 11:59 pm, Tuesday, October 15, 2018

1 Introduction

The goal of the lab is to implement a complete compiler for the language L3. This language extends
L2 with the ability to define functions and call them. This means you will have to change all phases
of the compiler from the second lab. One can write some interesting recursive and iterative functions
over integers in this language. Correctness is still paramount, but performance starts to become a
bit more of an issue as we run larger and more interesting test cases.

2 L3 Syntax

The lexical specification of L3 remains unchanged from that of L2, except that comma (,) is now
a lexical token. The syntax of L3 is a superset of 1.2, as presented in Figure 1. Ambiguities in this
grammar are resolved according to the same rules of precedence as in L2. The main extension is
to allow definitions of functions and transparent definitions of types. We also have function calls
as expressions, as well as a new statement assert(e) with its meaning from CO and C, aborting the
program if e evaluates to false. Finally, we have the new type void, used only as the return type
for functions not intended to return a value.

Ambiguities in the grammar are resolved according to the operator precedence table in Figure 2
and the rule that an else provides the alternative for the most recent eligible if.



(program) = ¢ | (gdecl) (program)
(gdecl) = (fdecl) | (fdefn) | (typedef)
(fdecl) = (type) ident (param-list) ;
(fdefn) = (type) ident (param-list) (block)
(param) = (type) ident
(param-list-follow) == € | , (param) (param-list-follow)
(param-list) 2= () | ((param) (param-list-follow) )
(typedef) = typedef (type) ident ;
(type) == int | bool | ident | void
(block) = { (stmts) }
(decl) = (type) ident | (type) ident = (exp)
(stmts) = € | (stmt) (stmts)
(stmt) = (simp) ; | (control) | (block)
(simp) = (lvalue) (asop) (exp) | (Ivalue) (postop) | (decl) | (exp)
(simpopt) = € | (simp)
(lvalue) = ident | ( (lvalue) )
(elseopt) n= € | else (stmt)
(control) = if ( (exp) ) (stmt) (elseopt)
| while ( (exp) ) (stmt)
| for ( (simpopt) ; (exp) ; (simpopt) ) (stmt)
|  return (exp) ; | return ;
| assert ( (exp) ) ;
(arg-list-follow) m= € | , (exp) (arg-list-follow)
(arg-list) = () | ((exp) (arg-list-follow) )
(exp) 2= ((exp)) | num | true | false | ident
| (unop) (exp) | (exp) (binop) (exp)
\ exp) 7 (exp) : (exp) | ident (arg-list)
(asop) n= = | 4= | m= | k= | /= | %= | &= | "= | |= | <<= | >>=
(binop) e N AR R R ey
| & I & | ] << | >
(unop) n= 0| 7] -
(postop) n= 4+ | -

The precedence of unary and binary operators is given in Figure 2. Non-terminals are in (angle
brackets). Terminals are in bold. The absence of tokens is denoted by e.

Figure 1: Grammar of L3



Operator Associates Meaning
O n/a explicit parentheses
[ right logical not, bitwise not, unary minus, increment, decrement
* /% left integer times, divide, modulo
+ - left integer plus, minus
<< >> left (arithmetic) shift left, right
< <= > >= left integer comparison
== I= left overloaded equality, disequality
& left bitwise and
- left bitwise exclusive or
| left bitwise or
&& left logical and
I left logical or
? right conditional expression
= += —-= x= [= Y=
&= "= |= <<= >>= right assignment operators

Figure 2: Precedence of operators, from highest to lowest

3 L3 Elaboration

Each kind of global declaration (gdecl) is based on a closely corresponding construct in C.

e fdecl: declares a function; like a function prototype in C.

e fdefn: defines a function; like a function definition in C.

e typedef: defines an alias for a type that is transparent to the type system, just as in C.

The semantics are complicated because the language also intrinsically supports a foreign func-
tion interface through a mechanism of headers. Consult the section on the compile-time environ-
ment for details on how headers are supplied. For now, it is sufficient to know that a header is a
list of gdecls that satisfy the following conditions:

e They are treated as if they are available to the L3 program before the gdecls in the L3 sources

proper.

e They can contain type definitions and function declarations, but not function definitions.
These are instead supplied by the runtime environment in the linking phase.

e The fact that a function declaration was supplied in a header is an essential distinguishing
factor that is preserved for the purpose of the static semantics.



To expeditiously capture the similarity and differences between global declarations in headers
and in L3 sources, we assume that the header is parsed with the same rules as for sources, and the
resulting declarations are tagged as external.

A program is now simply is list of global declarations and definitions. It must elaborate and
then store the elaborated (internal) form of function declarations, definitions, and type definitions.

For each function declaration

T f(Tix1, ..., TnTn);
or function definition
T (a1, Tnxn){s}
we obtain a declaration f : (71,...,7,) — 7 and, in a addition, a corresponding definition of f in
the second case.
For each type definition
typedef 7 «

which defines the type name « as a transparent synonym for 7, we obtain a definition o = 7. 7
must be a valid type itself, which right now just means that it cannot be void.
A context I' that we can use for type checking, therefore now contains:

r == |0, fi(rn,...,m) =7 | Ta=7|T,x:7
While elaborating a program, we must obey the following scoping rules:

e A function may be declared several times, in which case the declarations must be compatible
(same argument and return types, though not necessarily the same names for the arguments).
External functions (functions with at least one declaration in a header file) must not ever be
defined. Other functions that are referenced in a call—even in unreachable code—must be
defined exactly once and be compatible with their declaration (if there is one). Functions
that are never referenced in a call do not need to be defined, even if they have been declared
previously, but they may not be defined more than once.

e The name of a function is visible after its first declaration, and within and after its definition.
This means a single recursive function does not require a declaration, but two mutually
recursive functions require at least one forward declaration. Note that the main() function
is considered implicitly declared and referenced before any of the code that is explicit in the
.13 file.

e The name of a defined type is visible after its definition. Type names may be defined only
once.

e Names of functions and variables may not collide with defined type names.

4 L3 Static Semantics

Due to the presence of functions and defined type names, type checking is more complex than
in L2. We refer to function parameters or variables declared in the body of functions as local
variables. As noted in the previous section, the typing context I' contains declarations for functions
f:(n,...,7) — 7, type names o = 7, and local variables x : 7. We shall refer to the last
occurrence of f in the function declaration list of I" with the notation I'(f).



e Function parameters and locally declared variables with overlapping scopes may not have the
same name. Among other things, this means that for a given function, all function parameters
must have distinct names. However, local variables are allowed to shadow function names.
This is similar to the behavior of C. You can emulate this specification, for example, by
extending the rules for declarations from L2 as follows:

x ¢ Dom(l") T,xz:7F swvalid

I' - declare(z, 7, s) valid

Dx)=(r,...,7) =7 T,z:7F swvalid

I - declare(x, 7, s) valid
e A function must be called with the correct number of arguments, and with compatible types.

The whole expression has the corresponding return type.

L(f)=(r,....,7n) >7 Ther:m - Thley:m,
L'k fler,...,en): T

e The new type void is allowed only as the return type of a function. It expresses that the
function returns no value. Such a function can not be called inside an expression, but only
directly as a statement.

e A function returning void does not require an explicit return statement at the end of each
control flow path starting from the beginning of the function. Any explicit return that happens
to be present must have the form “return;” with no argument.

e The new statement assert(e) is typed by

I' - e : bool
I I assert(e) valid

As you can probably observe, we have imported a lot of the non-uniform behavior of C to
L3, especially with respect to name collisions and shadowing. It is plausible to handle these
inconsistencies to varying extents in the elaborator and the type checker. You are free to make
design decisions that suit your compiler. However, wherever you draw your module boundaries (if
at all), think carefully about why your implementation is equivalent to this specification.

The static check that there is a return statement along every control flow path from the beginning
of a function is similar to L2, except that we omit this check for functions returning void. The
check that all local variables are defined before they are used also proceeds as in L2, where function
parameters are considered defined at the beginning of the function body. This is because they will
have values when the execution of the body of a function commences.

Now that we have function calls, we define main as an identifier with the special requirement
that it can only be defined as a function with no parameters and the return type of int. Execution
of an L3 program begins in the main function. Please refer to the section describing the runtime.



5 L3 Dynamic Semantics

The dynamic semantics of L3 directly extends the dynamic semantics from L2.

Function calls f(eq,...,e,) are very similar to their counterparts in C with the following signif-
icant difference: they must evaluate their arguments from left to right before passing the resulting
values to f. The same is true for other operators that evaluate their arguments. For example, in
e1 + ez, we must evaluate e; before ey. Since L3 has several kinds of effects (arithmetic exception,
nontermination, abort, and even output), this specification now becomes significant (when it was
not observable in L2).

The new statement assert(e) first evaluates e. If the result is true, the assertion succeeds and
we just continue with the next statement. If e is false, it raises the SIGABRT exception (6). In your
code you can achieve this by calling the function abort () which takes no arguments.

Expressions may appear as statements, because we now have the concept of expressions with
side-effects. These side-effects are quite simple in L3: arithmetic exceptions, program abort, non-
termination, and output done by library functions. An error can also arise when a program runs out
of stack space. Different systems handle this differently. The autograder runs on an Ubuntu system
that seems to consistently raise SIGBUS (7) when it runs out of stack space, but other systems may
raise SIGSEGV (11).

6 Project Requirements

For this project, you are required to hand in test cases and a complete working compiler for L3
that produces correct target programs written in Intel x86-64 assembly language.

We also require that you document your code. Documentation includes both inline documenta-
tion and a README document which explains the design decisions underlying the implementation
along with the general layout of the sources. If you use publicly available libraries, you are required
to indicate their use and source in the README file. If you are unsure whether it is appropriate
to use external code, please discuss it with course staff.

When we grade your work, we will use the gcc compiler to assemble and link the code you
generate into executables using the provided runtime environment on the docker containers.

Your compiler and test programs must be formatted and handed in as specified below. For this
project, you must also write and hand in at least 20 test programs, at least two of which must fail
to compile, at least two of which must generate a runtime exception, at least two of which must
execute correctly and return a value, and at least two of which must include header files that you
wrote (see below).

Test Files

Test programs should have extension .13 and start with one of the following lines
//test return 1 program must execute correctly and return ¢
//test div-by-zero program must compile but raise SIGFPE
//test abort program must compile and run but raise SIGABRT
//test error program must fail to compile due to an L3 source error
//test typecheck program must typecheck correctly (see below)
//test compile program must typecheck, compile, and link (see below)

followed by the program text. In L3, the exceptions defined are SIGABRT (6) and SIGFPE (8).



If the test program $test.13 is accompanied by a file $test.hO (same base name, but hO
extension), then we will compile the test treating $test.hO0 as the header file. Otherwise, we will
treat ../runtime/15411-13.h0 as the header file for all 13 tests, and we will pass that header
file to your compiler with the -1 argument. The 15411-13.h0 header file describes a library for
floating point arithmetic and printing operations; our testing framework will ignore any output
performed from the printing operations. You are encoraged but not required to write tests that
take advantage of this library.

Tests that use a .hO0 header file that you wrote might typecheck but fail to link because they
refer to functions that aren’t provided by the system: your header file can describe a library that
can’t possibly be implemented (see busy.13 and busy.hO for an example).

Tests which use a .1h0 header file that you wrote might also take advantage of functions provided
in 1libc or libgcc (see rand.13 and rand.hO for an example). But many of these functions can
cause the test cases to behave badly. Therefore, if your tests use a header file that you wrote, your
test must start with the line //test error or //test typecheck. Only tests utilizing header files
that you wrote should begin with //test typecheck.

Now that the language we are compiling supports function calls, we would like some fraction of
your test programs to compute “interesting” functions on specific values; please briefly describe such
examples in a comment in the file. Disallowed are programs which compute Fibonacci numbers,
factorials, greatest common divisors, and minor variants thereof. Please use your imagination. We
will read your tests!

Compiler Source Files

The files comprising the compiler itself should be collected in a directory compiler/ which should
contain a Makefile. Important: You should also update the README file and insert a description of
your compiler’s structure, and any design decisions or specific algorithms utilized at the beginning
of this file. Even though your code will not be read for grading the code quality, we may still read
it for for the code reviews and to provide you feedback. The README will be crucial information for
this purpose.

Issuing the shell command

% make lab3
from within the compiler directory should generate the appropriate files so that
% bin/cOc <args>

will run your L3 compiler. If your compiler detects any (compile-time) errors in the source program,
it should exit with a non-zero return code. If compilation succeeds and target code is generated,
the compiler should then exit with a return code of 0. The command

% make clean

should remove all binaries, heaps, and other generated files.



Important: You should also update the README file and insert a description of your compiler
structure and any specific algorithms you implemented at the beginning of this file.

Your compiler is also expected to recognize a flag -t which, when present on the command line,
stops the compiler immediately after typechecking and before the rest of the compiler runs. The
exit code of your compiler should indicate success (0) if the code is well-formed, and failure (1)
otherwise. If your compiler indicates success when run with -t, then it should be able to compile
the file without further errors. You are encouraged to implement -00 and -01 flags, representing
different tradeoffs between compilation speed and runtime performance of your compiled program.
The autograder will invoke your compiler with whichever flag you have set as the default. You are
additionally encouraged to perform analysis on the file you are compiling to determine whether your
compiler can feasibly perform more expensive optimizations (such as register allocation) within the
specified limit. We recommend falling back to faster, if less optimal, optimization strategies when
necessary.

Runtime Environment

Your compiler should accept a single, optional command line argument -1 which must be given the
name of a file as an argument. For instance, we will be calling your compiler using the following
command: bin/cOc -1 ../runtime/15411-13.h0 $test.13. Here, 15411-13.h0 is the header
file mentioned in the elaboration and static semantics sections. You may not assume that the
header file parses and typechecks correctly.

The 15411-13.1h0 header file describes a library for manipuating floating-point values. The
implementation of this library can be found in 1ab3/runtime/rund4il.c. You should assume the
types of the implementation match the types in the header file.

The GNU compiler and linker will be used to link your assembly to the implementations of the
external functions, so you need not worry much about the details of calling to external functions.
You should ensure that the code you generate adheres to the C ABI for Linux on x86-64. In order
for the linking to work, you must adhere to the following conventions:

e External functions must be called as named.

e Non-external functions with name name must be called _cO_name. This ensures that non-
external function names do not accidentally conflict with names from standard library which
could cause assembly or linking to fail.

e Non-external functions must be exported from (declared to be global in) the assembly file
you generate, so that our test harness can call them and verify your adherence to the calling
conventions.

The runtime environment defines a function main() which calls a function _cO_main() your
assembly code should provide and export. Your compiler will be tested in the standard Linux
environment on the docker containers; the produced assembly must conform to this environment.

In order to satisfy the ABI of libraries that take or return the type bool, you must implement
this type such that false maps to 0 and true maps to 1 when calling external functions, though you
are free to implement your own representations internally if you wish. For the sake of uniformity,
it will still suffice to treat boolean values as 32-bit integers; there may be occasion to reconsider
this in Lab 4 or 5.



What to Turn In

You may turn in code and have it autograded as many times as you like, without penalty. In fact,
we encourage you to hand in to verify that the autograder agrees with the driver results that you
use for development, and also as insurance against a last-minute rush. The submission with the
highest grade will count.

You will submit:

Before Tuesday, October 8, 11:59 pm At least 20 test cases, at least two of which generate
an error, at least two of which raise a runtime exception, and at least two of which return a
value, and at which two of which use a header file that you wrote.

You will submit by to the Test 3 assessment on Notolab. The directory tests should only
contain your test files. The autograder will test your test files and notify you if there is a
discrepancy between your answer and the outcome of the reference implementation. If you
feel the reference implementation is in error, please notify the instructors.

Before Tuesday, October 15, 11:59 pm The complete compiler. You will submit to the Lab
3 assessment on Notolab. The directory compiler/lab3 should contain only the sources for
your compiler. The autograder will build your compiler, run it on all existing test files, link
the resulting assembly files against our runtime system (if compilation is successful), execute
the binaries, and finally compare the actual with the expected results.

The results of the autograding are available at Notolab at https://notolab.ml/.

Please note that any submission past 11:59 pm on the due dates for either the tests or the
compiler will result in the usage of late days. This policy will apply even if the late submission(s)
has a lower grade than any previous submission before the deadline. However, we will still count
your highest score across all submissions.

Code Review

We will be holding code reviews on the week of October 21. We will post sign ups for slots on Piazza
as soon as we finalize the schedules. The purpose of the code review is to make sure that both
partners understand the whole compiler, from the lexing and parsing all the way to x86 codegen.
We will ask questions pertaining to any part of the compiler, and both partners are expected to be
able to answer them.

The instructors will be looking through your code and READMEs before meeting with you, so
make sure that the READMEs are updated to reflect the organization of your code.

Scoring

Your compiler will be graded against the test cases, and your score is computed as follows.
20 * (% passed of new) +
40 * (% passed of large & only & basic) +
20 * (% non-fail of quarantine) +
= subtotal

total = subtotal - (1 point per failure) - (0.5 points per timeout [excluding quarantined])


https://notolab.ml/

7 Notes and Hints

Elaboration

Please take the recommended elaboration strategy seriously. It significantly streamlines your com-
piler and reducing the amount of work you do in each remaining pass of a multi-pass compiler.
Isolating elaboration also makes your source code more portable.

We again highly recommend using an explicit elaboration pass, rather than transforming source
code on the fly during parsing. This will make the next lab a significantly smoother experience.

Static Checking

The specification of static checking should be implemented on abstract syntax trees, translating
the rules into code. You should take some care to produce useful error messages.

Compiling Functions

It is not a strict requirement, but we recommend compiling functions completely independently
from each other, taking care to respect the calling conventions but making no other assumptions.
Interprocedural program analysis and optimization is difficult and, if you do it at all, is better left
to a later lab.

Calling Conventions

Your code must strictly adhere to the x86-64 calling conventions. Please refer to the course webpage
for resources on the ABI and calling conventions. A particular point of note: %rsp must be 16-byte
aligned. GCC often ignores this rule when it isn’t actively using floating point numbers, because
the requirement is only consequential when the floating point stack is in use.

10



	Introduction
	L3 Syntax
	L3 Elaboration
	L3 Static Semantics
	L3 Dynamic Semantics
	Project Requirements
	Notes and Hints

