Assignment 4: Semantics

15-411: Compiler Design
Due Sunday, November 3, 2019 (11:59pm)

Reminder: Assignments are individual assignments, not done in pairs. The work must be
all your own. Please hand in your solution electronically in PDF format and refer to the
late policy for written assignments on the course web pages.

Problem 1: Generalized Ifs (15 points)

In this problem, assume we're using a subset of the restricted abstract syntax used in lec-
ture, and the corresponding statics and dynamics. For your convenience, these are repro-
duced below.

Language
Operators @ == + <
Expressions e == n|z|e; @ ey |ei&er
Statements s = assign(x,e)|if(e,s1,s2) | while(e,s)
| return(e) | nop | seq(s1, s2) | decl(x, T, s)
Statics
I(z)="71
I'Fx:71 I'Hn:int I' - true : bool '+ false : bool
I'Fei:int T'Feg: int I'kFep:int T'Feo: int I'Fes :bool T'Fes:bool
I'kep +eg:int I'F e <es:bool I'F e1&&es : bool

ASSIGNMENT 4 SUNDAY, NOVEMBER 3, 2019 (11:59PM)

Semantics

A4.2

IMNz)=7 Tre:7

F'Fe:bool Tk sp:|[7]

Ik ose: 7]

I' - assign(z,e) : [7]

'Fe:bool Tk s:[7]

't if(e, s1,$82) : [7]

I'ke:r

I' - while(e, s) :

I'Fnop:

Dynamics

nke Ge> K
77"61[>(_@€2,K)
nkc>(aé_, K)

n Fei&&es > K
n - false > (_&&es, K)
Nk true > (_&&es, K)

nkFax> K

n - assign(z,e) » K
ntc> (assign(z,), K)

nk decl(z,7,s) » K
nt if(e, s1,s2) » K
Nk true > (if(—, s1, s2),
nF false > (if(_, s1, s2)

n - while(e,s) » K

n F return(e) » K
Nt v> (return(_), K)

[7] I' - return(e) : [7]
F'kFsy:fr] TEsy:]r]
[7] 'k seq(s1, s2) : [7]
Lz’ s 7]
'k decl(z,7',s): [7]
— nkei>(—dey, K)
— nked (@ _,K)
— nkcp> K (c=c1 @)
— T]|—€1I>(_&&62,K)
— nkfalse> K
— n Feyo> K
— nknl@)> K
— nker (assign(z,_), K)
— 1z ¢ Fnop» K
— nlz — nothing] - s » K
— nker (if(-, s1,$2), K)
K) — nksis K
,K) — nksop K
— nt if(e, seq(s,while(e,s)),nop) » K
— nke> (return(_), K)
— value(v)

Thinking about C, Jan realizes how convenient it would be to have conditionals operate on
any type by implicitly casting them to booleans. For example, we would expect the code

fragment

if (7) { do_something fun();

else { do_something not_fun(); }

¥

to call do_something_fun() in C, as 7 is non-zero. However, in CO we only have a judge-
ment for when the expression being compared upon is a boolean. To solve this problem,

ASSIGNMENT 4

SUNDAY, NOVEMBER 3, 2019 (11:59PM)

Semantics A4.3

Jan adds a new typing rule
F'Fe:int I'ksp:[r] I'Fsy:7]
't if(e,s1,82):[7]

However, when he runs a small program using the semantics, the program gets stuck.

if (7) {
return 1;
} else {
return O;
}

1. What could be wrong?
2. Provide a trace in the format from lecture exposing the problem.

3. Help Jan out and provide a fix for this issue that will allow if statements to function
as he desires. Ensure that your fix does not break any other features of this language.

Problem 2: Enums (20 Points)

Many programming languages contain enumerations or sets of named constants. These
enum constructs appear in languages such as C, C++, and Java, among others.

In C, enumeration types u can be declared as

enum u;
or defined as

enum u {v1,...,0};
where vy, ..., v, are distinct identifiers, and u is an identifier. Enum values are introduced

by named constants v;, which are now valid expressions. Enum values can be used in
switch statements, which take the form

switch(e){vy = s1|...| vn = sn}

Informally, a switch statement inspects the enum value that e evaluates to and branches
accordingly. In the above example, if e steps to the constant v;, then the statement s; will
be executed. If e steps to v, then sp will be executed. The pattern continues.

Below are a couple of rules that begin to describe the static semantics of enumerations.

?

S1 -
E;Fl—switch(e){vlr—)sl|...|vnr—>5n}:?() Sk w:?

(S2)

ASSIGNMENT 4 SUNDAY, NOVEMBER 3, 2019 (11:59PM)

Semantics Ad44

The rules use an enumeration signature ¥ that contains all defined enumerations. You
can assume that every enumeration u and every element v appears at most once in the
signature.

You=-|enumu{vy,..., 0}, %

(a) Complete the type rules for enumerations to maintain the type safety of C0. Hint:
one thing that the premises for the rule S1 should check is that the named constants
v1,. .., U, are distinct and exhaustive.

(b) Extend the dynamic semantics for expressions and statements to describe the evalu-
ation of named constants and the execution of switch statements.

Problem 3: Polymorphism (25 points)

The CO language provides only a very weak form of polymorphism, essentially using
struct s in a library header, where struct s has not yet been defined. C provides a
more expressive, but inherently unsafe, mechanism by allowing pointers of type void*. A
pointer of this type can reference data of any type. The programmer uses explicit casts to
convert to and from this type. Some discussion and examples can be found in the notes
on Lecture 19 in the course on Principles of Imperative Computation. In this problem we ex-
plore a safe version of void* which implements runtime tag-checking of types—which,
incidentally, is the approach taken in C0’s successor C1.

Tagging and Untagging Data

The key to making coercions from the void* type-safe is to tag pointers of type void* with
the contained data’s type. When the runtime encounters a cast from type void* to another
pointer type, the tag is checked to ensure that the cast is safe.

In the source language, we introduce new tagging and untagging constructs:

e u= ...|tag(r*,e) | untag(7*,e)
with the following typing rules
'Fe:7m+ 7% # voidx I'e:voidx

'k tag(7x,€) : voidx I' - untag(7+,€) : 7%

Tagging will never cause an error: regardless of the type of a pointer value, we can always
weaken its type to void* and create a tag. Untagging a value (as in untag(7*,v)) should
raise a runtime error if v is the result of tagging a non-null pointer with a type differing
from 7. For example, if p : intx is a non-null value, then the following is an expression
that will typecheck but whose evaluation will raise a runtime error:

untag(boolx, tag(intx,p))

Untagging the result of tagging a null pointer should succeed regardless of the type the
null pointer is tagged with. For example, the evaluation of this expression should succeed:

untag(boolx, tag(intx, NULL))

ASSIGNMENT 4 SUNDAY, NOVEMBER 3, 2019 (11:59PM)

http://www.cs.cmu.edu/~fp/courses/15122-f12/lectures/19-poly.pdf

Semantics A4.5

A Safe Implementation

In the safe implementation, a value p of type void+ will always be either null (0), or a
pointer to 16 bytes of memory on the heap. The first 8 bytes on the heap are the tag for the
type 7%, and the second 8 contain a representation for p (which is an address).

Assume we have a function tprep(7), which takes as argument a type 7 and returns an
8-byte tag w uniquely representing 7!. The default value for type voidx is null (0).

(a) Provide the evaluation rules for tag(7+,e). You will define new transition rules for
the abstract machine with state H ; S ; n - e> K as defined in the lecture on mutable
store. At least some of your transitions will involve allocation on the heap H.

You should also describe the evaluation of tag(7*, e) informally, which will help us
assign partial credit in case your rules are not entirely correct.

(b) Provide the evaluation rules for untag(7x, e). This should fail if e evaluates to a non-
null value v whose tag does not match tprep(7x), in which case you should raise a
tag exception. You should define new transition rules for the abstract machine as in
part (a), and accompany them with an informal description.

(c) Describe code generation for the tag and untag expression forms in the style we used
for arrays in the lecture on mutable store. You may use function calls

t64 < malloc(s%4)

to obtain the address ¢ of s bytes of uninitialized memory, and use the jump target
raise_tag to signal a tag exception.

An Unsafe Implementation

The unsafe implementation should forego tag checking. As a result, there is no runtime
computation performed for tagging or untagging. In other words, tags and untags are like
casts in C, which are relevant only for type-checking.

The semantics of equality is as follows: for pi,p2 : voidx, p;==py should evaluate to
true if p; and p, are the result of tagging the same memory location. (This comparison
should additionally evaluate to true if p; and p, are either NULL or the result of tagging
NULL.) Otherwise, the comparison should evaluate to false.

(d) Explain why compiling e; == ey for pointers e; and e; to a naive pointer comparison
is not always correct in safe mode. Recall that naive pointer comparisons are done by
comparing addresses.

(e) Explain how to compile e; == ey in both safe and unsafe modes so that program has
the same observable behavior for both modes (assuming that the program is indeed
safe and will not raise an exception). Code is not necessary if the implementation is
clear enough from your description.

IThis is problematic in the sense that CO allows for unboundedly many unique types to be defined, but
let’s pretend that there is a limit of 25*.

ASSIGNMENT 4 SUNDAY, NOVEMBER 3, 2019 (11:59PM)

