
Assignment 3: Middle End

15-411: Compiler Design

Due Saturday, October 12, 2019 (11:59PM)

Reminder: Assignments have to be completed individually, not in pairs. The complete
work must be your own. Hand in your solutions as a PDF file on Gradescope. Please read
the late policy for written assignments on the course web page.

Problem 1: Static Semantics, IR Translation (30 points)

In class, we’ve seen the way that typing judgments are structured. Take, for example, the
typing judgment for if statements:

Γ ` e : bool Γ ` s1 valid Γ ` s2 valid
Γ ` if(e, s1, s2) valid

Essentially, the judgment says: for a statement if(e, s1, s2), if e is of type bool in context Γ,
and s1, s2 are valid in Γ, then the whole if statement is valid in context Γ.

We also have the following rule for the ternary (?) operator:

Γ ` e1 : bool Γ ` e2 : τ Γ ` e3 : τ

Γ ` (e1 ? e2 : e3) : τ

(a) if statements and the ? operator both branch based on a boolean value. Explain why
the rule for the if statement judges the statement to be valid, while the rule for the ?

operator judges the expression to have the type τ .

(b) Suppose we want to add support for integer comparisons to our language syntax.
One way to do this is to introduce a new type cmp, which can take on the values
lt, eq, and gt. We can also introduce the expression CMP(e1, e2). The CMP operator will
take in two integers and evaluate to lt, eq, or gt depending on how the arguments
compare to each other.

Finally, we will introduce the statement casecmp(e, s1, s2, s3). The execution of
casecmp(e, s1, s2, s3) evaluates e, and then executes s1, s2, or s3 if e evaluates to lt,
eq, and gt respectively. The following rules begin to describe the statics of our new
constructs:

ASSIGNMENT 3 SATURDAY, OCTOBER 12, 2019 (11:59PM)



Middle End A3.2

Γ ` lt : cmp Γ ` eq : cmp Γ ` gt : cmp

Write down the typing judgments for CMP and casecmp.

Problem 2: Stuck in the Middle (30 points)

We generate a Collatz sequence ci, starting from some positive integer n, with the following
mathematical definition:

a0 = n

ai+1 =

{
ai/2 if ai is even
3ai + 1 otherwise

The stopping time of a Collatz sequence is the smallest index i such that ai = 1. It is currently
not known if every Collatz sequence reaches 1 (and thereby stops). The following C0
function is intended to compute the maximum number in the Collatz sequence for n before
it stops.

int collatz(int n)

//@requires n >= 1;

{

int r = n;

while (n > 1) {

if (n > r) r = n;

if (n % 2 == 0)

n = n / 2;

else

n = 3*n + 1;

}

return r;

}

The following is a valid three-address abstract assembly translation:

ASSIGNMENT 3 SATURDAY, OCTOBER 12, 2019 (11:59PM)



Middle End A3.3

collatz(n):

r <- n

goto .loop

.loop:

if (n > 1) then .body else .done

.body:

if (n > r) then .l1 else .l2

.l1:

r <- n

goto .l2

.l2:

m <- n % 2

if (m == 0) then .l3 else .l4

.l3:

n <- n / 2

goto .loop

.l4:

n <- n * 3

n <- n + 1

goto .loop

.done:

ret r

(a) Show the control flow graph of the program pictorially, carefully encapsulating each
basic block. Label each basic block with the label from the abstract assembly code.

(b) Convert the abstract assembly program from (a) into SSA.

(c) Transform your SSA code into minimal SSA.

(d) Identify the three extended basic blocks in this program, and write what they are.

ASSIGNMENT 3 SATURDAY, OCTOBER 12, 2019 (11:59PM)


