Assignment 1: Instruction Selection and Register
Allocation

15-411: Compiler Design
Seth Goldstein, Billy Zhu, Bulut Buyru, Cameron Wong, Chiara Mrose, Dan Cascaval

Due Thursday, September 12, 2018 (11:59pm)

Reminder: Assignments are individual assignments, not done in pairs. The work must be
all your own.

You should submit your assignment as a PDF on Gradescope. If this code does not
work for you, or if you have any other trouble enrolling on Gradescope, please contact the
course staff. Please read the late policy for written assignments on the course web page.

Problem 1 (20 points)

(a) Consecutive statements in a program can be represented in an AST by a seq node
that has two statements (possibly other seqs) as children. For example, the program

int x;
x =5 + 3;
return x;

could be represented in an AST as

declare(var("x"), seq(assign(var("x"),
plus(const(5), const(3))),
return(var("x"))))

The variable x is declared for only a portion of the AST. This is achieved via a declare
node, the first subtree of which is a variable, and the second a subtree which the
variable is declared for (called the scope of the variable).

Using this type of AST, write down (either as in the example or by drawing a real tree)
the AST for the following program. Declarations that simultaneously initialize the
variable should be elaborated into a simple declaration followed by an assignment,
and the available constructive nodes are declare, seq, plus, const(n), assign, mult,
negate, mod, div, and return. Be sure to parse the code according to the language’s
specified precedence rules, which are the usual mathematical order of operations.

ASSIGNMENT 1 THURSDAY, SEPTEMBER 12, 2018 (11:59PM)

Instruction Selection and Register Allocation Al1.2

(b)

(©)

int x;
x=1+2x%3+ (-9);
int y = (x + 2) / 4;
return x % y;

When we expand the capabilities of a programming language, we also need to extend
the AST to represent the new features. Write down a potential AST for the following
program, choosing a reasonable AST representation for while and != (not equal).
Assume that the variables x and y are declared elsewhere, but notice that the variable
z is only declared within the while loop.

while (x !'= 5) {
int z = x * X;

y =z
X =x + 1;
}
return y;

Now you will perform instruction selection on the AST you created in part (a) into
three-operand assembly language by using the patterns in the table below. As a
sample, the example AST from part (a) would be translated (in a simplistic fashion)
to the following program. Note that we, other than in class, assume that the return
instruction takes an operand to be returned as an argument.

t0 <- 5
tl <- 3
x <- t0 + t1
t3 <- x
ret t3

We aren’t performing register allocation yet (that’s for problem 2), so we will con-
tinue to refer to variables by their names and generate new temp variables as neces-
sary. The code generation for expressions is just as it was in lecture, and includes no
optimizations:

] e \ cogen(d, e) \ proviso ‘
const(c) d<«c
var(x) d«x

plus(eq, ez) | cogen(t1,eq),cogen(ta,e2),d « t1 + to | (t1,ta new)
times(ey, e2) | cogen(ty,e1),cogen(te, ea),d t1 xto | (t1,t2 new)
div(ey, e2) cogen(ty, e1),cogen(te, e2),d < t1/ta | (t1,t2 new)

ASSIGNMENT 1 THURSDAY, SEPTEMBER 12, 2018 (11:59PM)

Instruction Selection and Register Allocation Al13

and similarly for other expressions. For statements:

| s \ cogen(s) | proviso |
assign(z, e) cogen(z, e)
return(e) cogen(t,e), rett (t new)
seq(s1,s2) | cogen(sy),cogen(s2)

Problem 2 (25 points)

In this question you will perform the register allocation algorithm discussed in class on a
small assembly program which computes log, (62 — 2) + 1 (in the code given, the input

is hardcoded to be 42).
t0 <- 42 // "input"
tl <- 6
t2 <- t0 * t1
t3 <- 2
t4 <- t2 - t3
th <- 1
t6 <- 0
t7 <- 1
label .loop
td <- t4 >> tb

t6

<- t6 + t7

branch t4 .loop .exit

label .exit
ret t6

The target of your compilation will be a three-address machine with as many registers as
you need (though the algorithm will still be trying to use as few as possible). The registers
are named 7y, ..., r,. The language also has a right shift instruction d < s1 >> s5.

(a) Compute the live variables at each instruction in the above program.

(b) Construct the interference graph for the program. If you don’t want to actually draw
a graph, you can just list the variables that each variable interferes with. You should
also state whether the graph is chordal.

(c) Use the maximum cardinality search algorithm we described in lecture, starting from
t7, to construct a simplicial elimination ordering. Then, using this ordering, use the
greedy graph coloring described in class to assign registers ro, . .., r, to temps.

ASSIGNMENT 1 THURSDAY, SEPTEMBER 12, 2018 (11:59PM)

Instruction Selection and Register Allocation Al4

Now we will add a restriction to our three-address assembly language: the register
ro must be used as the return register (in other words, the operand of ret must be r0).
Similarly, in the shift instruction d < s; >> s9, the same register ro must be to hold s, the
magnitude of the shift.

(d) Why does this represent a problem for our sample program? Give a slightly modified
but equivalent version of the program that does not have this problem.

(e) Do the graph coloring algorithm like in 2(c) on this modified program. This time,
allocate your registers in a way such that ¢7 is assigned to the register with the highest
possible number, and explain how you did this.

Problem 3 (10 points)

Recall that a chordal graph is a graph where every cycle of length 4 or larger contains a
chord (an edge that connects to vertices on the cycle but is not part of the cycle).

(a) Write a program in three-address assembly that has a non-chordal interference graph
and uses not more than 4 temps. Draw the interference graph.

(b) Rename the temps in your program so that you get an equivalent program that as-
signs every temp at most once (the resulting program is in SSA form). Draw the
interference graph of the modified program. Is the graph chordal?

Problem 4 (5 points)

A relevant quote from Stephen Dolan:

It is well-known that the x86 instruction set is baroque, overcomplicated, and
redundantly redundant. We show just how much fluff it has by demonstrating
that it remains Turing-complete when reduced to just one instruction.

Did you know that all of instruction selection is bogus? We're going to (partially) show
that we don’t need any instructions other than mov to implement an L1 compiler.

(a) Assuming x and y are registers containing two possibly equal values, and we’d like
R to contain a 1 if they’re equal and 0 if not. Write three lines of assembly that checks
for equality using only mov instructions.

(b) So why aren’t we just doing this instead? In 1 sentence, explain why it might not
make sense to compile all code to only mov instructions.

ASSIGNMENT 1 THURSDAY, SEPTEMBER 12, 2018 (11:59PM)

