Artificial Intelligence:

Representation and Problem
Solving
|5-38|
April I0, 2007

Introduction to Learning \& Decision Trees

Learning and Decision Trees to learning

- What is learning?
- more than just memorizing facts
- learning the underlying structure of the problem or data

```
aka:
- regression
- pattern recognition
- machine learning
- data mining
```

- A fundamental aspect of learning is generalization:
- given a few examples, can you generalize to others?
- Learning is ubiquitous:
- medical diagnosis: identify new disorders from observations
- Ioan applications: predict risk of default
- prediction: (climate, stocks, etc.) predict future from current and past data
- speech/object recognition: from examples, generalize to others

Representation

- How do we model or represent the world?
- All learning requires some form of representation.
- Learning: adjust model parameters to match data

*Artificial Intelligence: Learning and Decision Trees
Michael S. Lewicki \diamond Carnegie Mellon

The complexity of learning

- Fundamental trade-off in learning:
complexity of model
vs
amount of data required to learn parameters
- The more complex the model, the more it can describe, but the more data it requires to constrain the parameters.
- Consider a hypothesis space of N models:
- How many bits would it take to identify which of the N models is 'correct'?
- $\log _{2}(\mathrm{~N})$ in the worst case
- Want simple models to explain examples and generalize to others
- Ockham's (some say Occam) razor

Complex learning example: curve fitting

$$
t=\sin (2 \pi x)+\text { noise }
$$

> How do we model the data?

Artificial Intelligence: Learning and Decision Trees $\quad 5 \quad$ Michael S. Lewicki \diamond Carnegie Mellon

Polynomial curve fitting

$$
\begin{aligned}
y(x, \mathbf{w}) & =w_{0}+w_{1} x+w_{2} x^{2}+\cdots+w_{M} x^{M}=\sum_{j=0}^{M} w_{j} x^{j} \\
E(\mathbf{w}) & =\frac{1}{2} \sum_{n=1}^{N}\left[y\left(x_{n}, \mathbf{w}\right)-t_{n}\right]^{2}
\end{aligned}
$$

More data are needed to learn correct model

This is overfitting.

Decision Trees

Decision trees: classifying from a set of attributes

Predicting credit risk

<2 years at current job?	missed payments?	defaulted?
N	N	N
Y	N	Y
N	N	N
N	N	N
N	Y	Y
Y	N	N
N	Y	N
N	Y	Y
Y	N	N
Y	N	N

- each level splits the data according to different attributes
- goal: achieve perfect classification with minimal number of decisions
- not always possible due to noise or inconsistencies in the data

Observations

- Any boolean function can be represented by a decision tree.
- not good for all functions, e.g.:
- parity function: return I iff an even number of inputs are I
- majority function: return I if more than half inputs are I
- best when a small number of attributes provide a lot of information
- Note: finding optimal tree for arbitrary data is NP-hard.

Decision trees with continuous values

Predicting credit risk

years at current job	\# missed payments	defaulted?
7	0	N
0.75	0	Y
3	0	N
9	0	N
4	2	Y
0.25	0	N
5	l	N
8	4	Y
1.0	0	N
1.75	0	N

- Now tree corresponds to order and placement of boundaries
- General case:
- arbitrary number of attributes: binary, multi-valued, or continuous
- output: binary, multi-valued (decision or axis-aligned classification trees), or continuous (regression trees)

Examples

- loan applications
- medical diagnosis
- movie preferences (Netflix contest)
- spam filters
- security screening
- many real-word systems, and AI success
- In each case, we want
- accurate classification, ie. minimize error
- efficient decision making, ie. fewest \# of decisions/tests
- decision sequence could be further complicated
- want to minimize false negatives in medical diagnosis or minimize cost of test sequence
- don't want to miss important email
*Artificial Intelligence: Learning and Decision Trees $\quad 13 \quad$ Michael S. Lewicki \diamond Carnegie Mellon

Decision Trees

- simple example of inductive learning
I. learn decision tree from training examples

2. predict classes for novel testing examples

- Generalization is how well we do on the testing examples.
- Only works if we can learn the underlying structure of the data.

Choosing the attributes

- How do we find a decision tree that agrees with the training data?
- Could just choose a tree that has one path to a leaf for each example
- but this just memorizes the observations (assuming data are consistent)
- we want it to generalize to new examples
- Ideally, best attribute would partition the data into positive and negative examples
- Strategy (greedy):
- choose attributes that give the best partition first
- Want correct classification with fewest number of tests

Problems

- How do we which attribute or value to split on?
- When should we stop splitting?
- What do we do when we can't achieve perfect classification?
- What if tree is too large? Can we approximate with a smaller tree?
Predicting credit risk

<2 years at current job?	missed payments?	defaulted?
N	N	N
Y	N	Y
N	N	N
N	N	N
N	Y	Y
Y	N	N
N	Y	N
N	Y	Y
Y	N	N
Y	N	N

Basic algorithm for learning decision trees

I. starting with whole training data
2. select attribute or value along dimension that gives "best" split
3. create child nodes based on split
4. recurse on each child using child data until a stopping criterion is reached

- all examples have same class
- amount of data is too small
- tree too large
- Central problem: How do we choose the "best" attribute?

Measuring information

- A convenient measure to use is based on information theory.
- How much "information" does an attribute give us about the class?
- attributes that perfectly partition should given maximal information
- unrelated attributes should give no information
- Information of symbol w:

$$
\begin{aligned}
I(w) & \equiv-\log _{2} P(w) \\
P(w) & =1 / 2 \\
\Rightarrow I(w) & =-\log _{2} 1 / 2=1 \mathrm{bit} \\
P(w) & =1 / 4 \\
\Rightarrow I(w) & =-\log _{2} 1 / 4=2 \mathrm{bits}
\end{aligned}
$$

Information and Entropy

$$
I(w) \equiv-\log _{2} P(w)
$$

- For a random variable X with probability $P(x)$, the entropy is the average (or expected) amount of information obtained by observing x :

$$
H(X)=\sum_{x} P(x) I(x)=-\sum_{x} P(x) \log _{2} P(x)
$$

- Note: $\mathrm{H}(\mathrm{X})$ depends only on the probability, not the value.
- $H(X)$ quantifies the uncertainty in the data in terms of bits
- $H(X)$ gives a lower bound on cost (in bits) of coding (or describing) X

$$
\begin{gathered}
H(X)=-\sum_{x} P(x) \log _{2} P(x) \\
P(\text { heads })=1 / 2 \Rightarrow-\frac{1}{2} \log _{2} \frac{1}{2}-\frac{1}{2} \log _{2} \frac{1}{2}=1 \mathrm{bit} \\
P(\text { heads })=1 / 3 \Rightarrow-\frac{1}{3} \log _{2} \frac{1}{3}-\frac{2}{3} \log _{2} \frac{2}{3}=0.9183 \mathrm{bits}
\end{gathered}
$$

Entropy of a binary random variable

- Entropy is maximum at $p=0.5$
- Entropy is zero and $p=0$ or $p=1$.

English character strings revisited: $\mathrm{A}-\mathrm{Z}$ and space

Credit risk revisited

- How many bits does it take to specify the attribute of 'defaulted?'
- $P($ defaulted $=Y)=3 / 10$
- $P($ defaulted $=N)=7 / 10$

$$
\begin{aligned}
H(Y) & =-\sum_{i=\mathrm{Y}, \mathrm{~N}} P\left(Y=y_{i}\right) \log _{2} P\left(Y=y_{i}\right) \\
& =-0.3 \log _{2} 0.3-0.7 \log _{2} 0.7 \\
& =0.8813
\end{aligned}
$$

- How much can we reduce the entropy (or uncertainty) of 'defaulted' by knowing the other attributes?
- Ideally, we could reduce it to zero, in which case we classify perfectly.

Predicting credit risk		
2 years at current job?	missed payments?	defaulted?
N	N	N
Y	N	Y
N	N	N
N	N	N
N	Y	Y
Y	N	N
N	Y	N
N	Y	Y
Y	N	N
Y	N	N

Conditional entropy

- $\mathrm{H}(\mathrm{Y} \mid \mathrm{X})$ is the remaining entropy of Y given X
or
The expected (or average) entropy of $\mathrm{P}(\mathrm{y} \mid \mathrm{x})$

$$
\begin{aligned}
H(Y \mid X) & \equiv-\sum_{x} P(x) \sum_{y} P(y \mid x) \log _{2} P(y \mid x) \\
& =-\sum_{x} P(x) \sum_{y} P(Y=y \mid X=x) \log _{2} P(Y=y \mid X=x) \\
& =-\sum_{x} P(x) \sum_{y} H(Y \mid X=x)
\end{aligned}
$$

- $\mathrm{H}(\mathrm{Y} \mid \mathrm{X}=\mathrm{x})$ is the specific conditional entropy, i.e. the entropy of Y knowing the value of a specific attribute x.

Back to the credit risk example

$$
\begin{aligned}
H(Y \mid X) \equiv & -\sum_{x} P(x) \sum_{y} P(y \mid x) \log _{2} P(y \mid x) \\
= & -\sum_{x} P(x) \sum_{y} P(Y=y \mid X=x) \log _{2} P(Y=y \mid X=x) \\
= & -\sum_{x} P(x) \sum_{y} H(Y \mid X=x) \\
H(\text { defaulted } \mid<2 \text { years }=\mathrm{N}) & =-\frac{4}{4+2} \log _{2} \frac{4}{4+2}-\frac{2}{6} \log _{2} \frac{2}{6}=0.9183 \\
H(\text { defaulted } \mid<2 \text { years }=\mathrm{Y}) & =-\frac{3}{4} \log _{2} \frac{3}{4}-\frac{1}{4} \log _{2} \frac{1}{4}=0.8133 \\
H(\text { defaulted } \mid \text { missed }) & =\frac{6}{10} 0.9183+\frac{4}{10} 0.8133=0.8763 \\
H(\text { defaulted } \mid \text { missed }=\mathrm{N}) & =-\frac{6}{7} \log _{2} \frac{6}{7}-\frac{1}{7} \log _{2} \frac{1}{7}=0.5917 \\
H(\text { defaulted } \mid \text { missed }=\mathrm{Y}) & =-\frac{1}{3} \log _{2} \frac{1}{3}-\frac{2}{3} \log _{2} \frac{2}{3}=0.9183 \\
H(\text { defaulted } \mid \text { missed }) & =\frac{7}{10} 0.5917+\frac{3}{10} 0.9183=0.6897
\end{aligned}
$$

Mutual information

- We now have the entropy - the minimal number of bits required to specify the target attribute:

$$
H(Y)=\sum_{y} P(y) \log _{2} P(y)
$$

- The conditional entropy - the remaining entropy of Y knowing X

$$
H(Y \mid X)=-\sum_{x} P(x) \sum_{y} P(y \mid x) \log _{2} P(y \mid x)
$$

- So we can now define the reduction of the entropy after learning Y .
- This is known as the mutual information between Y and X

$$
I(Y ; X)=H(Y)-H(Y \mid X)
$$

Properties of mutual information

- Mutual information is symmetric

$$
I(Y ; X)=I(X ; Y)
$$

- In terms of probability distributions, it is written as

$$
I(X ; Y)=-\sum_{x, y} P(x, y) \log _{2} \frac{P(x, y)}{P(x) P(y)}
$$

- It is zero, if Y provides no information about X :

$$
I(X ; Y)=0 \Leftrightarrow P(x) \text { and } P(y) \text { are independent }
$$

- If $Y=X$ then

$$
I(X ; X)=H(X)-H(X \mid X)=H(X)
$$

Information gain

$$
\begin{aligned}
H(\text { defaulted }) & -H(\text { defaulted } \mid<2 \text { years }) \\
0.8813 & -0.8763=0.0050 \\
\hline H(\text { defaulted }) & -H(\text { defaulted } \mid \text { missed }) \\
0.8813 & -0.6897=0.1916
\end{aligned}
$$

*Artificial Intelligence: Learning and Decision Trees $27 \quad$ Michael S. Lewicki \diamond Carnegie Mellon

Example (from Andrew Moore): Predicting miles per gallon
 http://www.autonlab.org/tutorials/dtree.html

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good	4	low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	:	.	.	
:	:	:	:	:	:	-	-
:	:	:	.	.	.	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

First step: calculate information gains

- Compute for information gain for each attribute
- In this case, cylinders provides the most gain, because it nearly partitions the data.

Information gains using the training set (40 records)
mpg values: bad good

First decision: partition on cylinders

Note the lopsided mpg class distribution.

Recurse on child nodes to expand tree

Take the
Original Dataset.

Records
in which cylinders
$=5$

Records in which cylinders $=8$
*Artificial Intelligence: Learning and Decision Trees
Michael S. Lewicki Carnegie Mellon

Expanding the tree: data is partitioned for each child

Exactly the same, but with a smaller, conditioned datasets.

Second level of decisions

*Artificial Intelligence: Learning and Decision Trees
33
Michael S. Lewicki \diamond Carnegie Mellon

