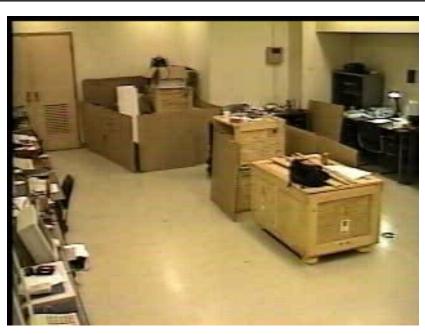
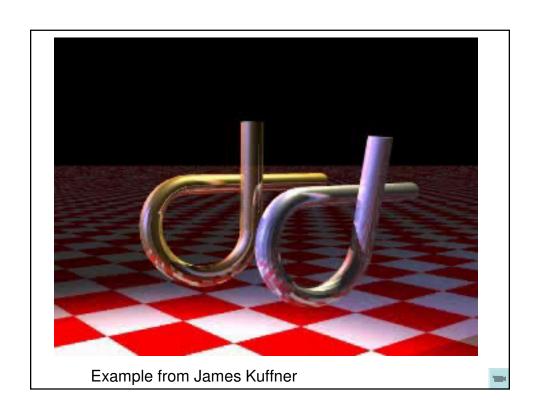
Robot Motion Planning

Movies/demos provided by James Kuffner and Howie Choset + Examples from J.C. latombe's book (references on the last page)

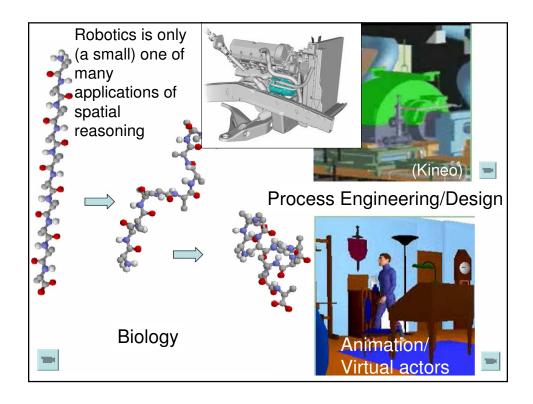


Example from Howie Choset

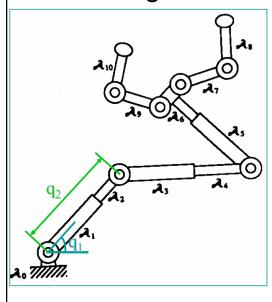


Robot Motion Planning

- Application of earlier search approaches (A*, stochastic search, etc.)
- Search in geometric structures
- Spatial reasoning
- · Challenges:
 - Continuous state space
 - Large dimensional space



Degrees of Freedom

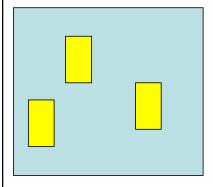


- The geometric configuration of a robot is defined by p degrees of freedom (DOF)
- Assuming *p* DOFs, the geometric configuration *A* of a robot is defined by *p* variables:

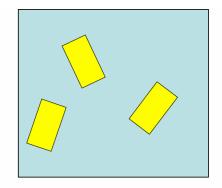
 $A(\mathbf{q})$ with $\mathbf{q} = (q_1, ..., q_p)$

- Examples:
 - ullet Prismatic (translational) DOF: $q_{\rm i}$ is the amount of translation in some direction
 - Rotational DOF: $q_{\rm i}$ is the amount of rotation about some axis

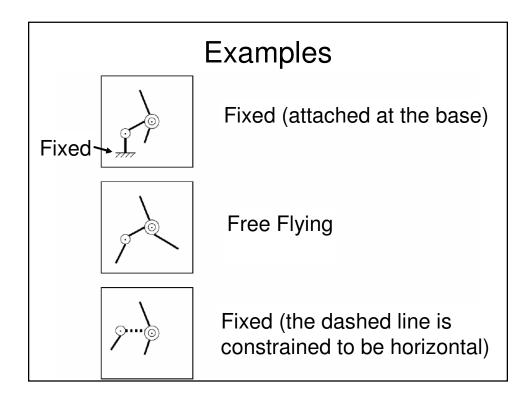
Examples

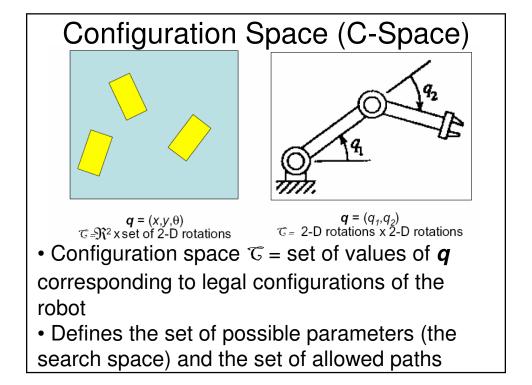


Allowed to move only in x and y: 2DOF

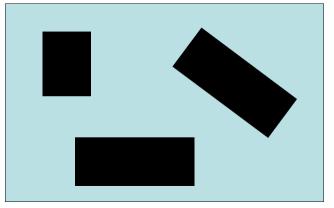


Allowed to move in x and y and to rotate: 3DOF (x,y,θ)

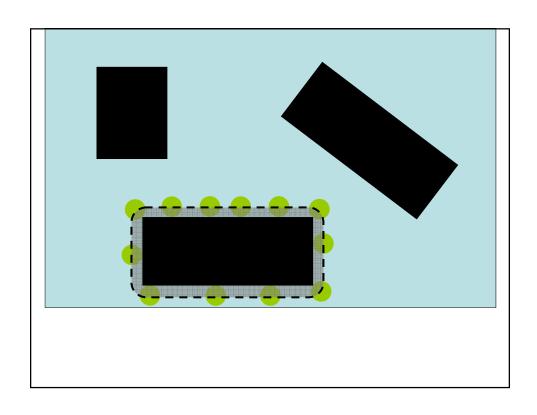




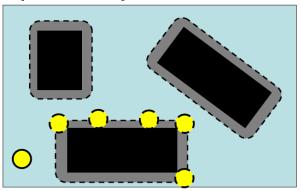
Free Space: Point Robot



- \mathcal{T}_{free} = {Set of parameters \boldsymbol{q} for which $A(\boldsymbol{q})$ does not intersect obstacles}
- For a point robot in the 2-D plane: R² minus the obstacle regions

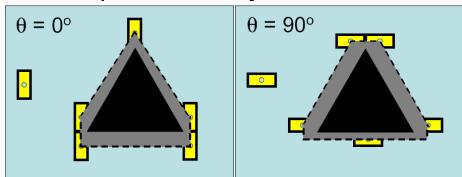


Free Space: Symmetric Robot

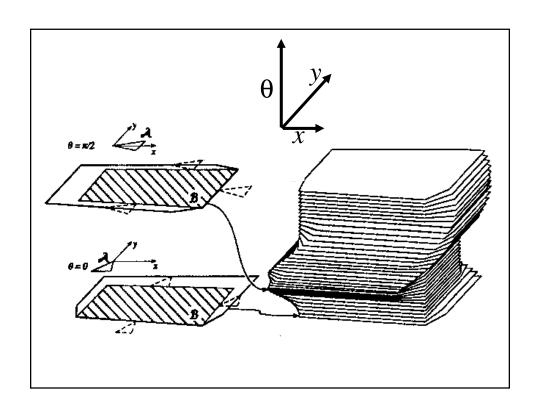


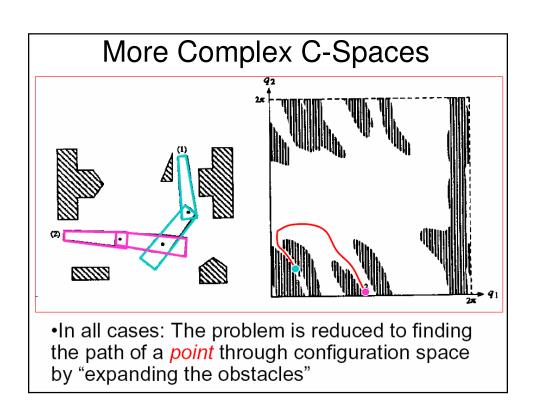
- We still have $\mathcal{T} = \mathbb{R}^2$ because orientation does not matter
- Reduce the problem to a point robot by expanding the obstacles by the radius of the robot

Free Space: Non-Symmetric Robot

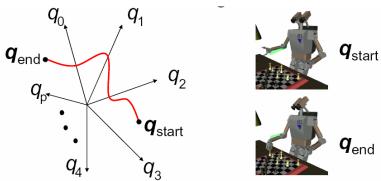


- The configuration space is now three-dimensional (x,y,θ)
- We need to apply a different obstacle expansion for each value of $\boldsymbol{\theta}$
- We still reduce the problem to a point robot by expanding the obstacles





Motion Planning Problem



- A = robot with p degrees of freedom in 2-D or 3-D
- CB = Set of obstacles
- A configuration ${\it q}$ is legal if it does not cause the robot to intersect the obstacles
- Given start and goal configurations ($q_{\rm start}$ and $q_{\rm goal}$), find a continuous sequence of legal configurations from $q_{\rm start}$ to $q_{\rm goal}$.
- Report failure if not path is found

Any Formal Guarantees? Generic Piano Movers Problem

- Formal Result (but not terribly useful for practical algorithms):
 - − p: Dimension of ℂ
 - \emph{m} : Number of polynomials describing \emph{T}_{free}
 - − d: Max degree of the polynomials
- A path (if it exists) can be found in time exponential in p and polynomial in m and d

[From J. Canny. "The Complexity of Robot Motion Planning Plans". MIT Ph.D. Dissertation. 1987]

Approaches

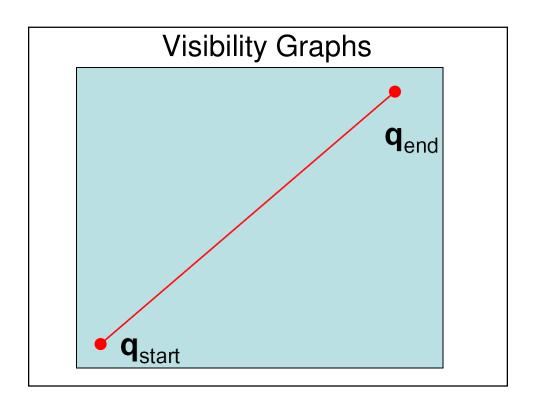
- Basic approaches:
 - -Roadmaps
 - Visibility graphs
 - Voronoi diagrams
 - Cell decomposition
 - -Potential fields
- Extensions
 - -Sampling Techniques
 - -On-line algorithms

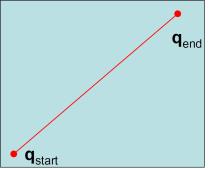
In all cases: Reduce the intractable problem in continuous C-space to a tractable problem in a discrete space → Use all of the techniques we know (A*, stochastic search, etc.)

Roadmaps

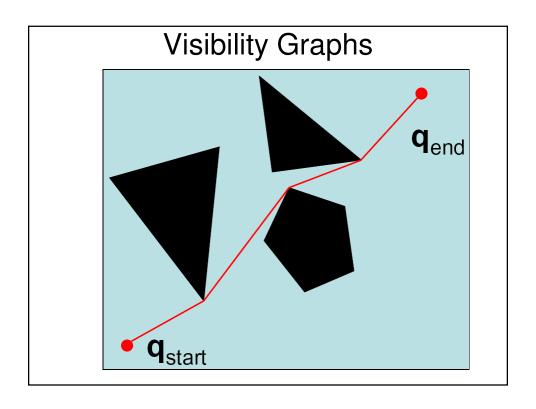


- General idea:
 - Avoid searching the entire space
 - Pre-compute a (hopefully small) graph (the roadmap) such that staying on the "roads" is guaranteed to avoid the obstacles
 - Find a path between $\mathbf{q}_{\text{start}}$ and \mathbf{q}_{goal} by using the roadmap





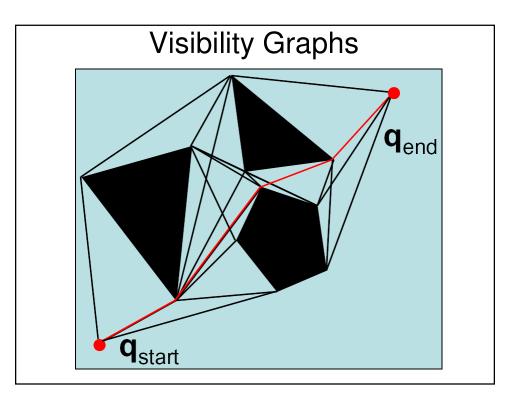
In the absence of obstacles, the best path is the straight line between $\mathbf{q}_{\text{start}}$ and \mathbf{q}_{goal}



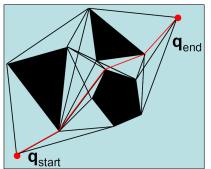
Visibility Graphs



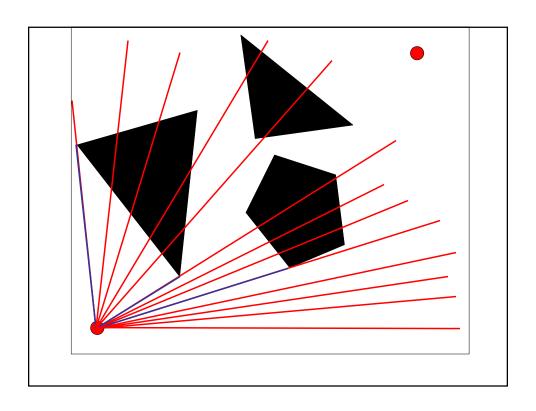
- Assuming polygonal obstacles: It looks like the shortest path is a sequence of straight lines joining the vertices of the obstacles.
- Is this always true?



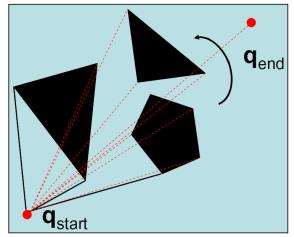
Visibility Graphs



- Visibility graph G = set of unblocked lines between vertices of the obstacles + $\mathbf{q}_{\text{start}}$ and \mathbf{q}_{goal}
- A node P is linked to a node P' if P' is visible from P
- Solution = Shortest path in the visibility graph

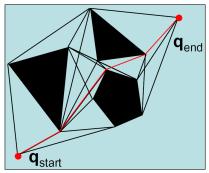


Construction: Sweep Algorithm



- Sweep a line originating at each vertex
- Record those lines that end at visible vertices

Complexity



• *N* = total number of vertices of the obstacle polygons

Naïve: O(№)

• Sweep: O(N² log N)

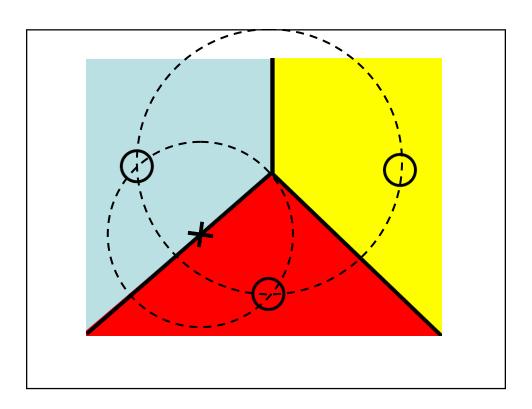
• Optimal: $O(N^2)$

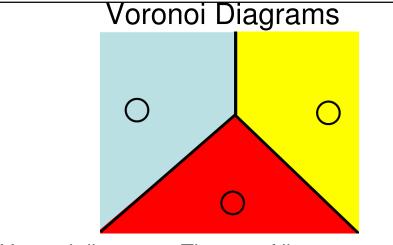
Visibility Graphs: Weaknesses

- Shortest path but:
 - Tries to stay as close as possible to obstacles
 - Any execution error will lead to a collision
 - Complicated in >> 2 dimensions
- We may not care about strict optimality so long as we find a safe path. Staying away from obstacles is more important than finding the shortest path
- Need to define other types of "roadmaps"

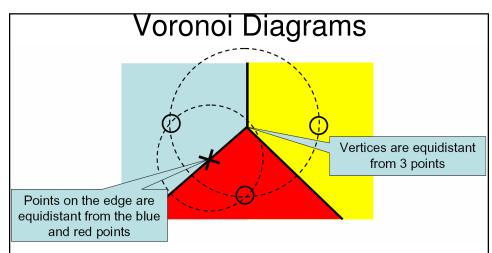
Voronoi Diagrams

- Given a set of data points in the plane:
 - Color the entire plane such that the color of any point in the plane is the same as the color of its nearest neighbor





- Voronoi diagram = The set of line segments separating the regions corresponding to different colors
 - Line segment = points equidistant from 2 data points
 - Vertices = points equidistant from > 2 data points

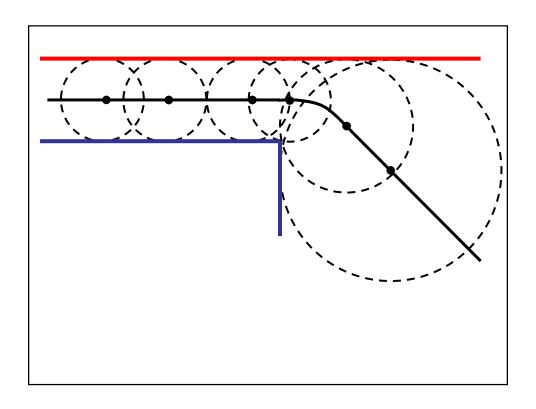


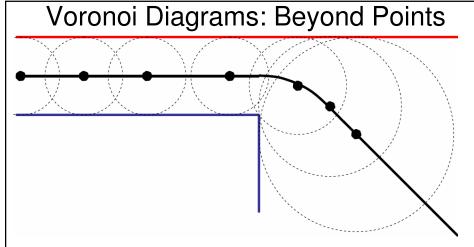
- Voronoi diagram = The set of line segments separating the regions corresponding to different colors
 - Line segment = points equidistant from 2 data points
 - Vertices = points equidistant from > 2 data points

Voronoi Diagrams

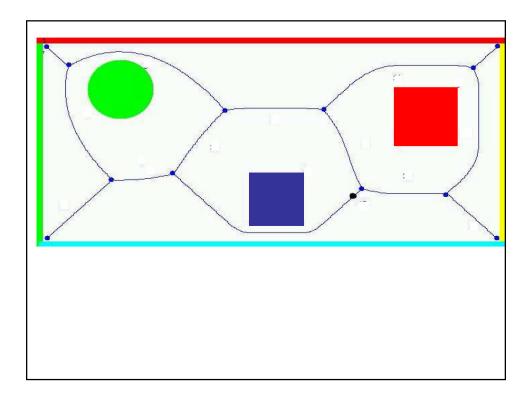
- Complexity (in the plane):
- O(N log N) time

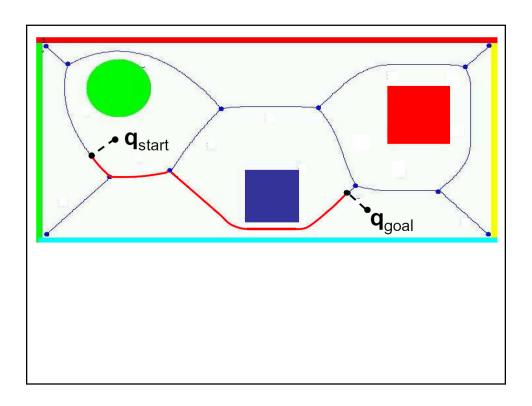
• O(N) space (See for example http://www.cs.cornell.edu/Info/People/chew/Delaunay.html for an interactive demo)



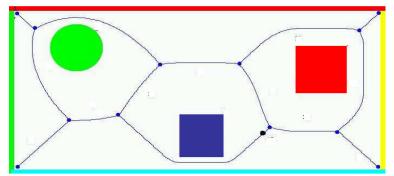


- Edges are combinations of straight line segments and segments of quadratic curves
- Straight edges: Points equidistant from 2 lines
- Curved edges: Points equidistant from one corner and one line

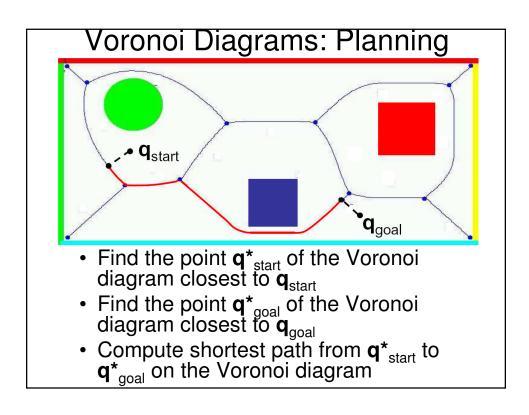


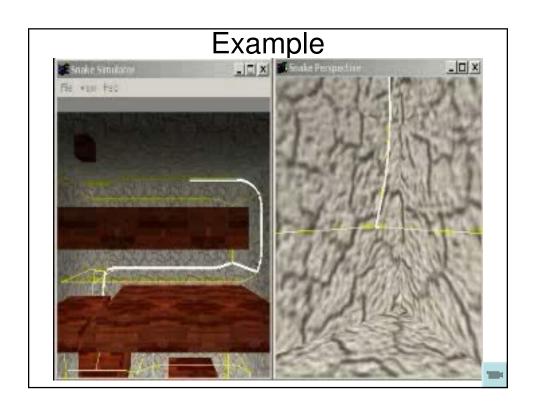


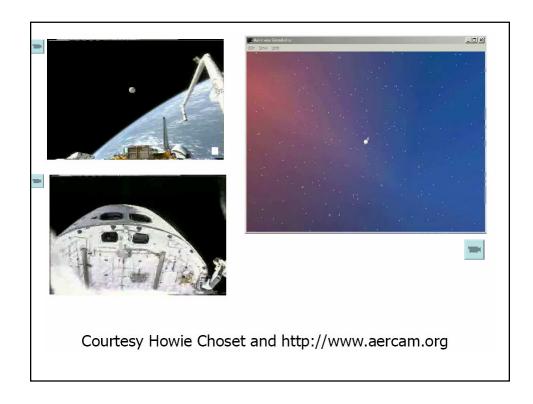
Voronoi Diagrams (Polygons)



- Key property: The points on the edges of the Voronoi diagram are the *furthest* from the obstacles
- Idea: Construct a path between $\mathbf{q}_{\text{start}}$ and \mathbf{q}_{goal} by following edges on the Voronoi diagram
- (Use the Voronoi diagram as a roadmap graph instead of the visibility graph)







Voronoi: Weaknesses

- Difficult to compute in higher dimensions or nonpolygonal worlds
- · Approximate algorithms exist
- Use of Voronoi is not necessarily the best heuristic ("stay away from obstacles") Can lead to paths that are much too conservative
- Can be unstable → Small changes in obstacle configuration can lead to large changes in the diagram

Approaches

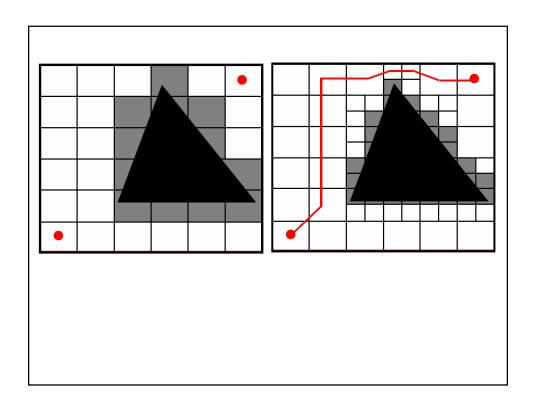
- Basic approaches:
 - -Roadmaps
 - · Visibility graphs
 - · Voronoi diagrams
 - -Cell decomposition
 - -Potential fields

Decompose the space into cells so that any path inside a cell is obstacle free

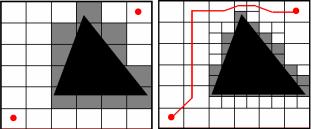
- Extensions
 - -Sampling Techniques
 - -On-line algorithms

Approximate Cell Decomposition

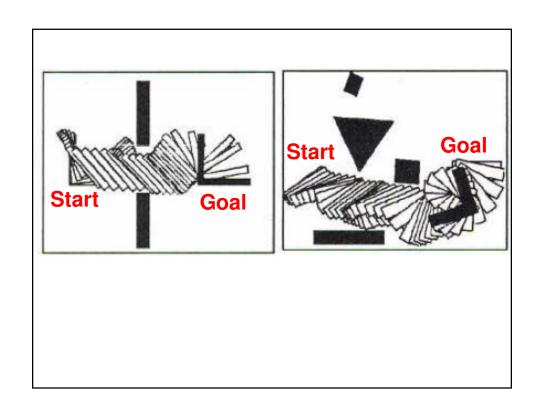
- Define a discrete grid in C-Space
- Mark any cell of the grid that intersects \mathcal{T}_{obs} as blocked
- Find path through remaining cells by using (for example) A* (e.g., use Euclidean distance as heuristic)
- Cannot be complete as described so far. Why?

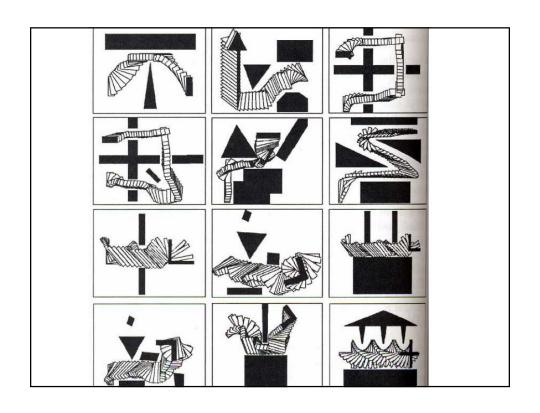


Approximate Cell Decomposition



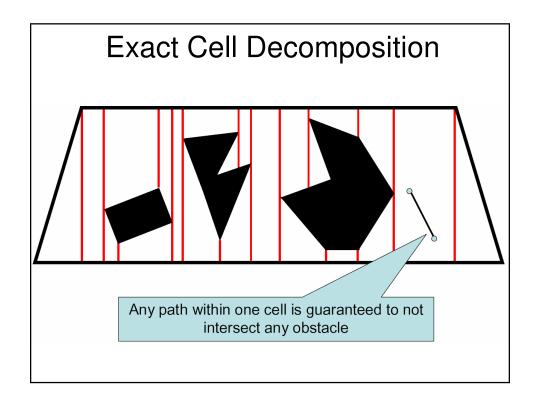
- Cannot find a path in this case even though one exists
- Solution:
- Distinguish between
 - Cells that are entirely contained in $\mathcal{T}_{obs}(\textit{FULL})$ and
 - Cells that partially intersect \mathcal{T}_{obs} (MIXED)
- Try to find a path using the current set of cells
- If no path found:
 - Subdivide the MIXED cells and try again with the new set of cells

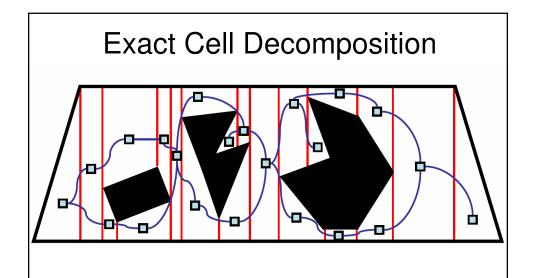




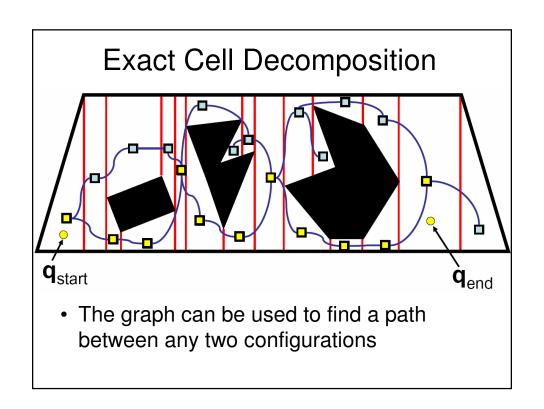
Approximate Cell Decomposition: Limitations

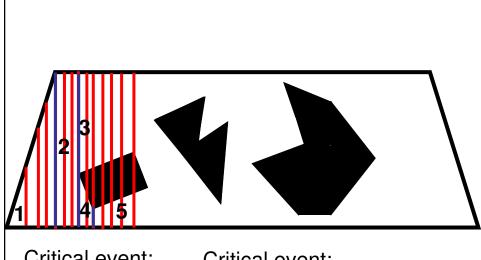
- · Good:
 - Limited assumptions on obstacle configuration
 - Approach used in practice
 - Find obvious solutions quickly
- · Bad:
 - No clear notion of optimality ("best" path)
 - Trade-off completeness/computation
 - Still difficult to use in high dimensions





The graph of cells defines a roadmap



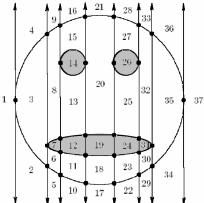


Critical event:
Create new cell

Critical event: Split cell

Plane Sweep algorithm

- · Initialize current list of cells to empty
- Order the vertices of \mathcal{T}_{obs} along the x direction
- For every vertex:
 - Construct the plane at the corresponding x location
 - Depending on the type of event:
 - Split a current cell into 2 new cells OR
 - Merge two of the current cells
 - Create a new cell
- Complexity (in 2-D):
 - Time: O(N log N)
 - Space: O(N)

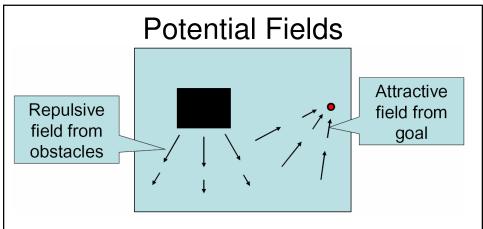


- A version of exact cell decomposition can be extended to higher dimensions and non-polygonal boundaries ("cylindrical cell decomposition")
- Provides exact solution → completeness
- Expensive and difficult to implement in higher dimensions

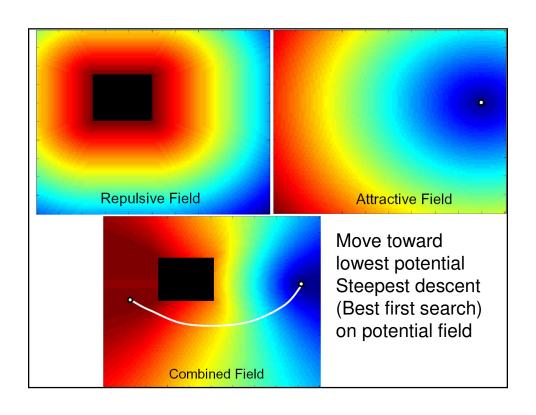
Approaches

- · Basic approaches:
 - -Roadmaps
 - Visibility graphs
 - Voronoi diagrams
 - -Cell decomposition
 - -Potential fields

- Extensions
 - -Sampling Techniques
 - -On-line algorithms

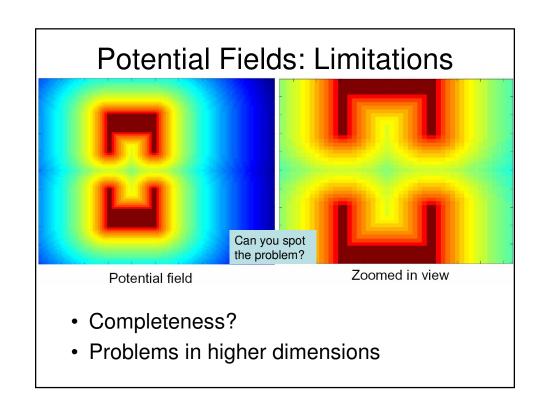


- Stay away from obstacles: Imagine that the obstacles are made of a material that generate a repulsive field
- Move closer to the goal: Imagine that the goal location is a particle that generates an attractive field

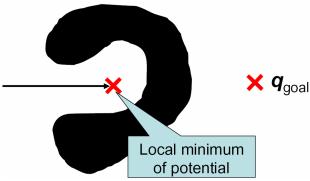


$$U_g(\mathbf{q}) = d^2(\mathbf{q}, \mathbf{q}_{goal})$$
Distance to goal state
$$U_o(\mathbf{q}) = \frac{1}{d^2(\mathbf{q}, Obstacles)}$$
Distance to nearest obstacle point.
Note: Can be computed efficiently by using the distance transform
$$U(\mathbf{q}) = U_g(\mathbf{q}) + \lambda U_o(\mathbf{q})$$

$$\lambda \text{ controls how far we stay from the obstacles}$$



Local Minimum Problem



- · Potential fields in general exhibit local minima
- Special case: Navigation function
 - $-U(\boldsymbol{q}_{\text{goal}})=0$
 - For any \boldsymbol{q} different from \boldsymbol{q}_{goal} , there exists a neighbor \boldsymbol{q} such that $U(\boldsymbol{q}) < U(\boldsymbol{q})$

Getting out of Local Minima I

- Repeat
 - $-If U(\mathbf{q}) = 0 return Success$
 - If too many iterations return Failure
 - -Else:
 - Find neighbor \mathbf{q}_n of \mathbf{q} with smallest $U(\mathbf{q}_n)$
 - If $U(\boldsymbol{q}_n) < U(\boldsymbol{q})$ OR \boldsymbol{q}_n has not yet been visited
 - -Move to \mathbf{q}_n ($\mathbf{q} \leftarrow \mathbf{q}_n$)
 - -Remember **q**_n

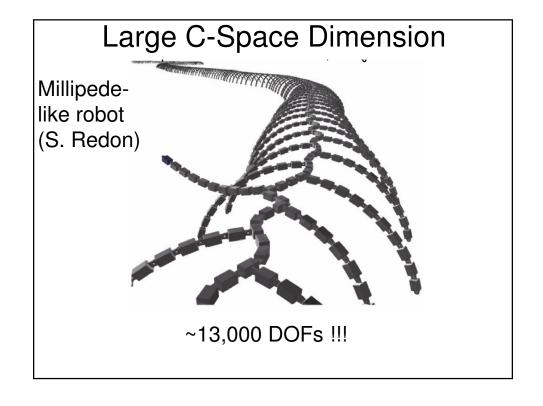
May take a long time to explore region "around" local minima

Getting out of Local Minima II

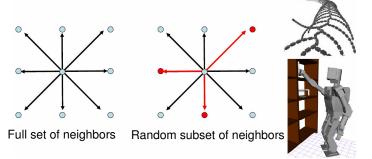
- Repeat
 - If U(q) = 0 return Success
 - If too many iterations return Failure
 - Else:
 - Find neighbor \boldsymbol{q}_{n} of \boldsymbol{q} with smallest $U(\boldsymbol{q}_{n})$
 - If $U(\boldsymbol{q}_n) < U(\boldsymbol{q})$
 - Move to \mathbf{q}_n ($\mathbf{q} \leftarrow \mathbf{q}_n$)

Similar to stochastic search and simulated annealing:
We escape local minima faster

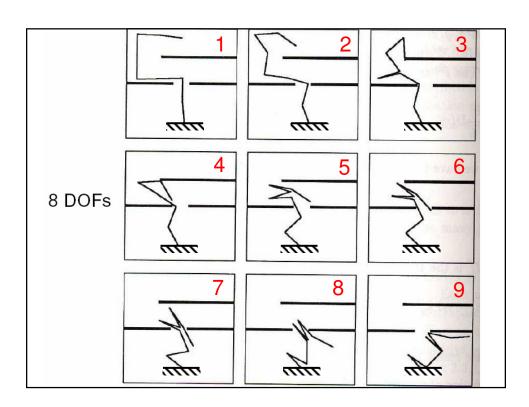
- Else
 - Take a random walk for T steps starting at \mathbf{q}_0
 - Set q to the configuration reached at the end of the random walk

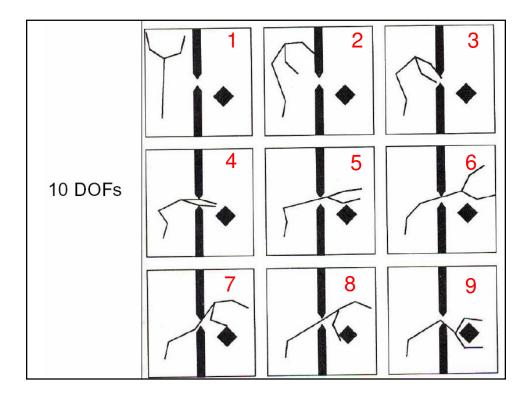


Dealing with C-Space Dimension



- We should evaluate all the neighbors of the current state, but:
- Size of neighborhood grows exponentially with dimension
- Very expensive in high dimension Solution:
- Evaluate only a random subset of K of the neighbors
- · Move to the lowest potential neighbor





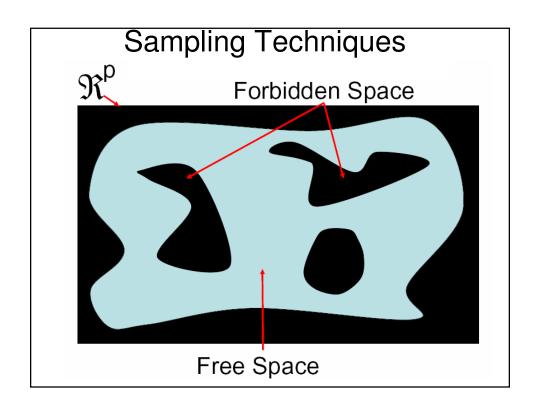
Approaches

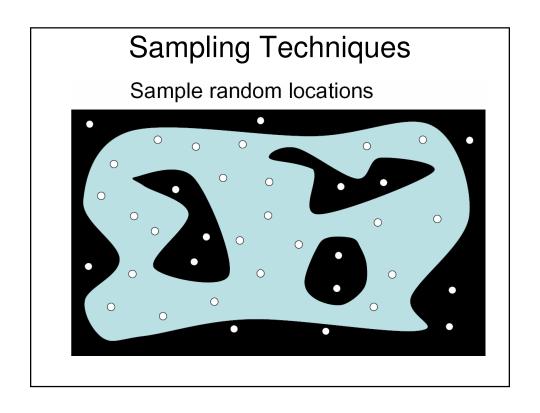
- Basic approaches:
 - -Roadmaps
 - Visibility graphs
 - Voronoi diagrams
 - -Cell decomposition
 - -Potential fields
- Extensions
 - -Sampling Techniques
 - -On-line algorithms

Completely describing and optimally exploring the C-space is too hard in high dimension + it is not necessary

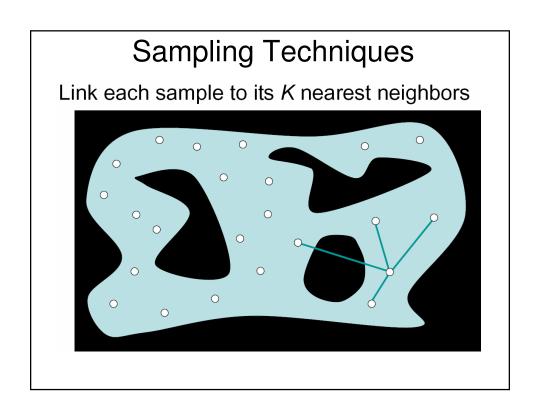
Limit ourselves to finding

a "good" sampling of the C-space

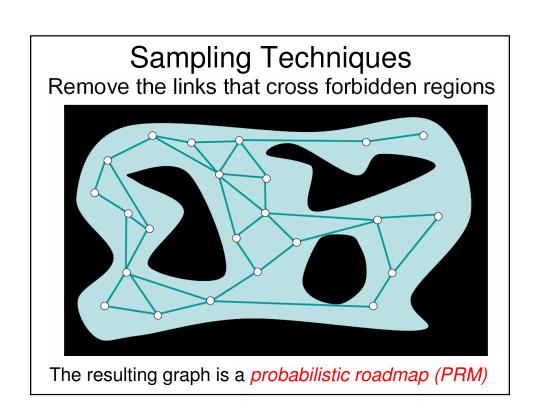




Sampling Techniques Remove the samples in the forbidden regions

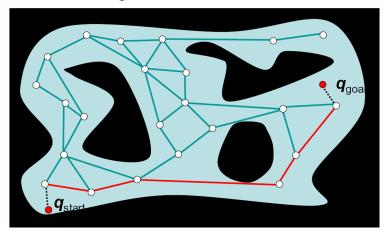


Sampling Techniques Remove the links that cross forbidden regions



Sampling Techniques

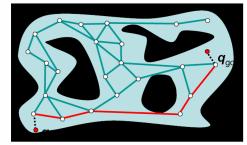
Link the start and goal to the PRM and search using A*



Sampling Techniques

Continuous Space

Discretization

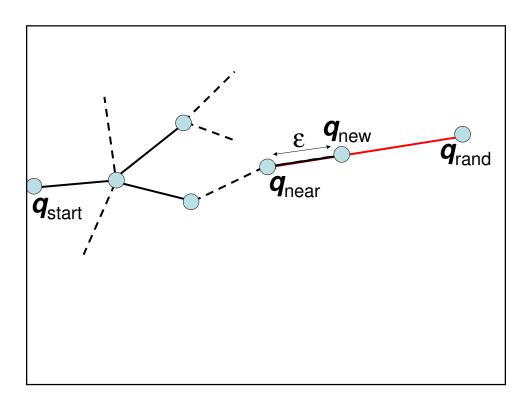


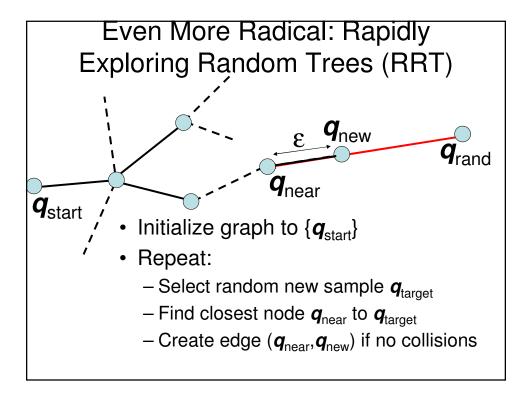
A* Search

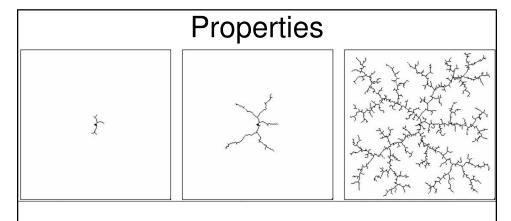
- "Good" sampling strategies are important:
 - Uniform sampling
 - Sample more near points with few neighbors
 - Sample more close to the obstacles
 - Use pre-computed sequence of samples

Sampling Techniques

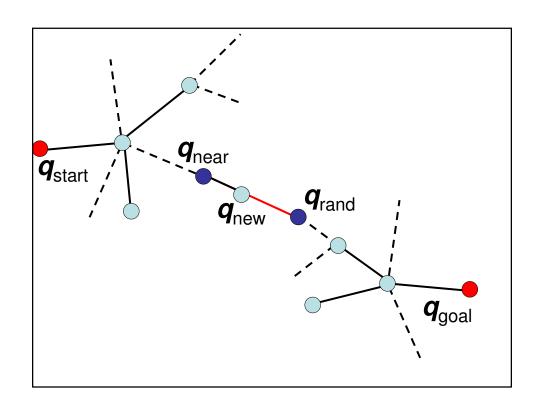
- Remarkably, we can find a solution by using relatively few randomly sampled points.
- In most problems, a relatively small number of samples is sufficient to cover most of the feasible space with probability 1
- For a large class of problems:
 - Prob(finding a path) → 1 exponentially with the number of samples
- But, cannot detect that a path does not exist

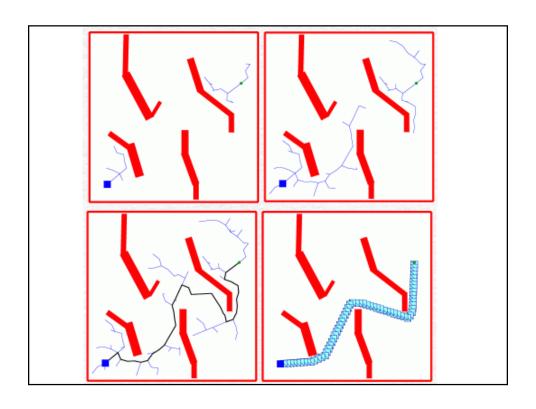


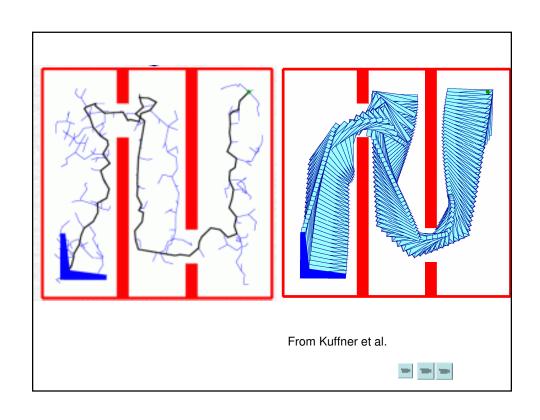


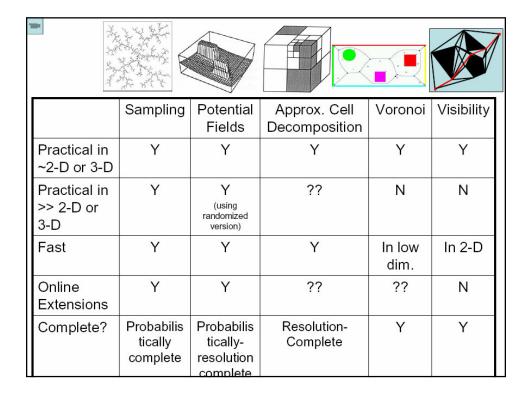


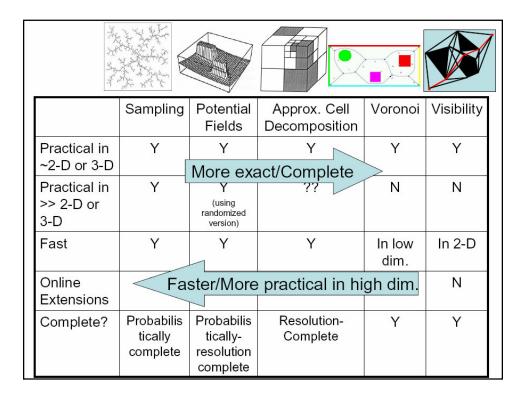
- Tends to explore the space rapidly in all directions
- Does not require extensive pre-processing
- Single query/multiple query problems
- Needs only collision detection test → No need to represent/pre-compute the entire C-space











- (Limited) background in Russell&Norvig Chapter 25
- Two main books:
 - J-C. Latombe. Robot Motion Planning. Kluwer. 1991.
 - S. Lavalle. Planning Algorithms. 2006. http://msl.cs.uiuc.edu/planning/
 - H. Choset et al., Principles of Robot Motion:
 Theory, Algorithms, and Implementations. 2006.
- Other demos/examples:
 - http://voronoi.sbp.ri.cmu.edu/~choset/
 - http://www.kuffner.org/james/research.html
 - <u>http://msl.cs.uiuc.edu/rrt/</u>