Carnegie Mellon

15-213 Recitation
Shell Lab

Your TAs
Friday, March 28th

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Reminders
m tshlab released, due on April 8th.

m Written 9 due April 2nd.
m Code Reviews:

o Watch your inbox for amalloc Final code review email!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Agenda
m Signals

m Filel/O

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Signals

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Recall: Sending and Receiving Signals

Process A

o

Process B

Process C

Carnegie Mellon

P //‘:»\‘}//r A
e“&

Blocked for A

/{dlng for B

Blocked for B

1 LIK Pending for C

Blocked for C

m Pending signals represented by a single bit, one for each kind

of signal.

m Kernel computes pnb (pending and not blocked) to

determine which signals can be delivered.

m If we don’t block them, signals can interrupt our program at

any time!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Example: “Counting” with Signals

volatile int counter = 0;

void handler (int sig) { counter++; }

int main(void) {
signal (SIGCHLD, handler);

for (int i = 0; i < 10; i++) {

if (fork() == 0) { exit(0); }
}

while (counter < 10) { // Do nothing }

printf ("Terminated :-)\n");

m What happens when we run this program? Will it terminate?

o It might not, since signals can coalesce.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

Example: “Counting” with Signals

volatile int counter = 0;

Problem:
Signals Coalesce

void handler (int sig) { counter++; }

int main(void) {
signal (SIGCHLD, handler);

for (int i = 0; i < 10; i++) {

if (fork() == 0) { exit(0); }
}
Problem:
while (counter < 10) { // Do nothing } Tight loop used to
wait for signals

printf ("Terminated :-)\n");

m What are some problems with the above code?

m How can we fix them?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Problem: Signals Coalesce
m # Times Signal Handler Called != # Times Signal was Sent

m What can we do instead?

Problem:

void handler (int sig) { counter++; } Signals Coalesce

void handler (int sig) {
pid_t pid;

while ((pid = waitpid(-1, NULL, WNOHANG)) > 0) {
counter++;

}

m counter++is not atomic. Why aren’t there race conditions?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Problem: Efficiently waiting for Signals

m Tight loop is inefficient, and is forbidden in Shell Lab.

Problem:

while (counter < 10) { // Do nothing } Tight Loop

m Use sigsuspend instead!

int sigsuspend(const sigset t *mask);

m Temporarily installs mask, then pauses until a signal is
received.
m Atomic version of:

sigprocmask (SIG_SETMASK, &mask, &prev);
pause() ;
sigprocmask (SIG_SETMASK, &prev, NULL) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

Recall: Blocking Signals Textbook p764

m Allows us to control when our program receives signals.
int sigprocmask(int how, sigset t *mask, sigset t *prev mask);

m Recommended approach:

sigset t mask, prev;

sigemptyset (&mask) ;

sigaddset (&mask, SIGINT) ;

sigprocmask (SIG_BLOCK, &mask, &prev);
/] ...

sigprocmask (SIG_SETMASK, &prev, NULL);

m Don’tuse SIG_UNBLOCK
o Don’t want to unblock a signal if it was already blocked.

o Allows procedure to be nested multiple times.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

https://man7.org/linux/man-pages/man2/sigprocmask.2.html

Carnegie Mellon

Recall: Signal Handlers

m Parent process sends SIGINT to child process. What is the
behavior of the child?
o No handler specified: default action.
o Can catch the signal with a signal handler.

void sigchld handler (int sig)

{ Save and restore
int olderrno = errno; errno
sigset t mask all, prev_all;
pid t pid;
sigfillset (&mask all);
while ((pid = waitpid(-1, NULL, 0)) > 0) { /* Reap */ Temporarily block

sigprocmask (SIG BLOCK, &mask all, &prev all); signals to protect
deletejob(pid) ; /* Delete from job list */ shared data

sigprocmask (SIG_SETMASK, &prev_all, NULL);
}

if (pid '= 0 && errno '= ECHILD) CaI{onIy
sio eprintf ("waitpid error"); async-signal-safe
errno = olderrno; functions

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

11

Carnegie Mellon

Example

int main(void) {
char *tgt = "child";
sigset_t mask, old mask;
sigemptyset (&mask) ;
sigaddset (&mask, SIGINT) ;
sigprocmask (SIG_BLOCK, &mask, &old mask); // Block
pid_t pid = fork();

if (pid == 0) {
pid = getppid(); // Get parent pid
tgt = "parent'";

}

kill (pid, SIGINT) ;

sigprocmask (SIG_SETMASK, &old mask, NULL); // Unblock
printf ("Sent SIGINT to %s:%d\n", tgt, pid);

exit (0) ;

m How many different lines could be printed?

o 0or 1line. Parent and child try to terminate each other.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

File 1/O

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

I/0 Functions: open and close Textbook: p893

int open(const char *pathname, int flags, mode t mode);

m pathname - path to file
m flags:
o File Creation: O_CREAT, O TRUNC, etc.
O Access modes: O RDONLY, O WRONLY, O RDWR
®E mode
o Specifies who else can read/write the new file.
o Unless you have reasons not to, use DEF MODE from
textbook.

int close(int £d);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Std File Descriptors

Descriptor Open file v-node
Table table table
(One per process) (Shared by all processes) (Shared by all processes)
File A (Terminal)
stdin fdO L
/’ —> i
stdout fd1 — Fllfe acc.:ess
stderr fd2 — .- File Size
refcnt =1 File type

m stdin, stdout, and stderr are set up automatically.

m Closed by normal termination orexit ().

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

File Descriptors (File A != File B)

Descriptor Open file node
Table table table
(One per process) (Shared by all processes) (Shared by all processes)
File A
fd O
fd 1 — “foo.txt” . File access
fd2 Giletios File Size
fd3 refont = 1 File type
fd4
FileB
\ V/4 / H
bar.txt FI|-e ac?ess
File Pos F.|Ie Size
refent = 1 File type

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

File Descriptors (File A == File B)

Descriptor Open file v-node
Table table table
(One per process) (Shared by all processes) (Shared by all processes)

File A
fdo
fd 1 . — “foo.txt” » File access
2 File Pos File Size
fd 3 refcnt = 1 F||e type
fd4

File B

“foo.txt”
File Pos

refent = 1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

File Descriptors: What Happens After fork () ?

Descriptor Open file -node
Table table table
(One per process) (Shared by all processes) (Shared by all processes)
File A
fdo
fd 1 “foo.txt” » File access
fd 2 File Pos File Size
fd 3 refent = 2 File type
fd 4
Parent’s Table
File B
Child’s Table “foo.txt”
fdo File Pos
fd 1 refcnt = 2
fd 2
fd 3
fd 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Example: 1/0 and fork ()

int main(int argc, char** argv)
{

int i;

for (i = 0; i < 4; i++)

{

int fd = open(“foo”, O_RDONLY) ;

pid_t pid = fork();

if (pid == 0)

{
int ofd = open(“bar”, O RDONLY) ;
execve(...);

}

}

// How many file descriptors are open in the parent?

m How many file descriptors are open in the parent process at
the indicated point?
m How many does each child have open at the call to

execve ()"?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

1/0 Redirection: dup2 () Textbook: p309
int dup2(int oldfd, int newfd) ;

m Copies descriptor table entry old£fd to descriptor table entry
newfd, overwriting existing entry for newfd.

m |fnewfdis open, itis closed.

Descriptor Descriptor
Table Table
(Before) (After)
fdo fdo
fd1 a fd1 b
fd 2 fd 2
fd 3 fd3
fd 4 b fda b

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

https://man7.org/linux/man-pages/man2/dup.2.html

Carnegie Mellon

File Descriptors after dup2 (4, 1)

Descriptor Open file v-node
Table table table
(One per process) (Shared by all processes) (Shared by all processes)
File A
fdo
fd 1 — File access
2 File Pos File Size
fd 3 refecnt = 0 F||e type
fd 4
File B
. —— Fileaccess
File Pos File Size
File type

refcnt = 2

Initial situation shown on “File A != File B” slide.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Example: Redirecting I/0O

int main(int argc, char** argv)
{

int i1, £d;

fd = open(“foo”, O WRONLY) ;

dup2 (£d, STDOUT_FILENO) ;
// Point A

close (£4d) ;
// Point B

m How many open file table entries are there at Point A?

m How many open file table entries are there at Point B?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Example: Redirecting 1/O + fork ()

int main(int argc, char** argv) {
int 1i;
for (1 = 0; i < 4; i++)
{
int fd = open(“foo”, O_RDONLY) ;
pid t pid = fork();
if (pid == 0)
{
int ofd = open(“bar”, O WRONLY) ;
dup2 (fd, STDIN FILENO) ;
dup2 (ofd, STDOUT_FILENO) g
execve(...);

}

// How many file descriptors are open in the parent?

m How many file descriptors are open in the parent?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Activity: File 1/0O

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Activity: File 1/0

int main(int argc, char *argv[]) { void read and print one(int £d) {
int fdl = open("foo.txt", O _RDONLY) ; char c;
int £fd2 = open("foo.txt", O _RDONLY) ; read(fd, &c, 1);
read and print one(fdl); printf ("%c", c);
read and print one (£d2) ; fflush (stdout) ;
}
if('fork()) {

read;and;print_one(de);

read _and print_one (£d2) ; m Suppose the contents of
close (£d2) ;

fd2 = dup(£dl) ; W .
read and print one(£d2); fOO.tXt are ABCDEFG .
} else {

wait (NULL) ; m Whatis the output of this

read and print one(fdl);
read and print one (£d2) ; p rog ram ?
printf ("\n") ;
}
close(fdl) ;
close (£d2) ;
return O;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Activity: File 1/0

int fdl = open("foo.txt", O _RDONLY) ;
int £d2 = open("foo.txt", O_RDONLY) ; look like at this point?
—+ ° o o
Descriptor Open file v-node
Table table table

0 ANY ”

1 foo.txt » File access

2 File Pos =0 File size
£41 3 refcnt = 1 File type
£d2 4

Parent’s Table

“foo.txt”
File Pos=0

refcnt = 1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Activity: File 1/0

m What has been printed so

read and print one(fdl);

read and print one(£d2); fa r?
m AA
__> if('fork()) {
Descriptor Open file v-node
Table table table
0 \\ ”
. foo. txt » File access
5 File Pos =1 File size
fa1 3 refcnt = 2 File type
£fd2 4
Parent’s Table
“foo.txt”
0 File Pos =1
1 refent = 2
2
fdl 3
fd2 4

Child’s Table

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Activity: File 1/0

if(1fork()) m What has been printed so

read and print_one (£d42) ;

read and print one(£d2); fa r‘?
close (£d2) ;
£d2 = dup (£dl); m AABCB

==l read_and_print_one (£d2);

Descriptor Open file v-node
Table table table
0 \\ ”
. foo. txt » File access
5 File Pos =2 File size
fa1 3 refcnt = 3 File type
£fd2 4
Parent’s Table
“foo.txt”
0 File Pos = 3
1 refent = 1
2
fdl 3
fd2 4

Child’s Table

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Activity: File 1/0

wait (NULL) ;
: : far?
read and print one(£fdl); H

——Jp read_and print_one (£d42) ; B AARCRBRCD

Descriptor Open file
Table table

v-node
table

0 “foo.txt”
1 File Pos = 3
2 refcent = 1
fd1l 3
£d2 4

Parent’s Table

“foo.txt”
File Pos =4

refcnt = 1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File access

File size

File type

Carnegie Mellon

else { m What has been printed so

29

Carnegie Mellon

Wrapping Up
m tshlabis due on April 8th.
m Written 9 is due on April 2nd.
m Code Reviews:
o Watch your inbox for amalloc Final code review email!
m Getting Started:
o Lecture Slides
o Textbook (Chapter 8)

O man pages

o Develop Incrementally: see roadmap in write-up.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

https://man7.org/linux/man-pages/man2/

Carnegie Mellon

The End

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Page numbers

Shell Lab Reference Sheet s
Loading Programs Sending Signals

m execve ()[p750] m kill () [p761]

Waiting and Reaping /O

m waitpid() [p743] m open(),close () [p893]

m sigsuspend() [p781] m dup2 () [p909]

m Exit status macros

(WIFEXITED, etc.) [p745]

Blocking/Unblocking Signals

m sigprocmask () [p764]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

https://man7.org/linux/man-pages/man2/execve.2.html
https://man7.org/linux/man-pages/man2/waitpid.2.html
https://man7.org/linux/man-pages/man2/sigsuspend.2.html
https://man7.org/linux/man-pages/man2/waitpid.2.html
https://man7.org/linux/man-pages/man2/sigprocmask.2.html
https://man7.org/linux/man-pages/man2/kill.2.html
https://man7.org/linux/man-pages/man2/open.2.html
https://man7.org/linux/man-pages/man2/close.2.html
https://man7.org/linux/man-pages/man2/dup2.2.html

