
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

15-213 Recitation
Attack Lab

Your TAs

Friday, February 7th

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reminders
■ bomblab was due yesterday (February 6th)

■ attacklab has been released, and is due on Thursday

(February 13th)

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Announcement
■ We are now using a new queue!

○ https://213ohq.com/ohq/

■ Please view the Ed post for more guidance! (#280)

https://213ohq.com/ohq/
https://edstem.org/us/courses/72024/discussion/6120384

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Agenda
■ Review: Structs and Alignment

■ Stacks

■ Calling Procedures, Stack Frames

■ Endianness

■ Intro to Attack Lab

■ Activity!

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: structs

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Alignment Requirements
■ Badly aligned data can harm performance:

○ May need multiple memory accesses instead of just one.

■ Primitive types have pre-determined alignments:

○ char = 1 byte

○ short = 2 bytes

○ int = 4 bytes

○ long = 8 bytes

○ double = 8 bytes

○ pointer = 8 bytes

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Alignment : Compound Types
■ Compound types:

○ Arrays

○ Structs

○ Unions

■ Alignment rules for these types:

1. Takes largest alignment requirement of its fields.

2. Initial address and size must both be multiples of the

alignment requirement.

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Alignment Requirements: Example

■ What is the alignment

requirement for d?

○ Primitive: has

pre-defined alignment

requirement.

○ Alignment: 8

■ What is its size?

○ Size: 8 bytes

double d;

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Alignment Requirements: Example

■ What is the alignment

requirement for y?

○ Rule (1): struct

alignment = max

alignment of fields.

○ Alignment: 8

■ What is its size?

○ Size: 8 bytes

struct y {
double d;

}

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Alignment Requirements: Example

■ What is the alignment

requirement for y?

○ Alignment: 8

■ What is its size?

○ Rule (2): have to add

padding after c so that

d is 8-byte aligned

○ Size: 16 bytes

struct y {
short c;
double d;

}

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Alignment Requirements: Example

■ What is the alignment

requirement for x?

○ Alignment: 8

■ What is its size?

○ Remember, the entire

struct must also follow

alignment rules

○ Size: 32 bytes

struct x {
char a[4];
struct {

short c;
double d;

} y;
int b;

}

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

structs: Reordering Fields

char a[4] Padding

short c

double d

■ struct x takes up 32 bytes to store 18 bytes of data.

■ Can we reorder the fields to do better?

8 bytes across

int b Padding

Padding
struct y

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

structs: Reordering Fields

char a[4]

short c

double d

■ struct x now takes up 24 bytes!

■ Compiler cannot do this optimization. It’s up to the

programmer (you!)

■ Note: Can’t move field into or out of y without also changing

how you access those fields in your code.

8 bytes across

int b

Padding
struct y

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Stacks

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Manipulating the Stack
■ Certain instructions grow the stack, and certain instructions

shrink the stack:

Growing the stack
■ sub 0x38, %rsp
■ push %rbp
■ call

Shrinking the stack
■ add 0x38, %rsp
■ pop %rbp
■ ret

■ But what does this look like in memory?

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Which way does the stack grow?
■ We say that the stack grows

“down” because it grows

towards lower addresses:

○ e.g. sub 0x38, %rsp

■ We will draw them this way

in attacklab examples

○ But you can draw them

in any way that makes

sense to you!

Local Variables

...

Return Address

<-- %rsp...

Addresses
decreasing

New stack frames

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Drawing Memory
Conventional Memory Diagram Stack Diagram

Addresses Increasing:
■ Towards the right
■ Then downwards

Addresses Increasing:
■ Towards the left
■ Then upwards

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Calling Procedures, Stack Frames

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Calling Procedures
Procedure Call: call label

■ Push return address onto the stack (so that we can pass

control back to the caller!)

■ Jump to label

Procedure Return: ret

■ Pop address from stack

■ This is the address of the next instruction of the caller

■ Jump to that address

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example

int outer_function() {
int result = inner_function(1, 2, 3, 4, 5, 6, 7, 8, 9);

return result + 1;

}
Lots of arguments!

■ Take a look at the following code snippet:

■ What would this look like in assembly? How would

having many arguments affect the stack?

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

00000000004011ba <outer_function>:
...
4011c6: push $0x9
4011c8: push $0x8
4011ca: push $0x7

4011cc: mov $0x6,%r9d
4011d2: mov $0x5,%r8d
4011d8: mov $0x4,%ecx
4011dd: mov $0x3,%edx
4011e2: mov $0x2,%esi
4011e7: mov $0x1,%edi

4011ec: call 401136 <inner_function>
4011f1: add $0x18,%rsp
...

Example: outer_function()

Data for
outer_function()

Push extra arguments onto
stack (note the order!)%rip

<-- %rsp

■ Here is the assembly for outer_function:

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: outer_function()
■ Here is the assembly for outer_function:

00000000004011ba <outer_function>:
...
4011c6: push $0x9
4011c8: push $0x8
4011ca: push $0x7

4011cc: mov $0x6,%r9d
4011d2: mov $0x5,%r8d
4011d8: mov $0x4,%ecx
4011dd: mov $0x3,%edx
4011e2: mov $0x2,%esi
4011e7: mov $0x1,%edi

4011ec: call 401136 <inner_function>
4011f1: add $0x20,%rsp
...

Data for
outer_function()

Push extra arguments onto
stack (note the order!)

0x9

0x8

0x7 <-- %rsp

“Argument Build”
space

%rip

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: outer_function()
■ Here is the assembly for outer_function:

00000000004011ba <outer_function>:
...
4011c6: push $0x9
4011c8: push $0x8
4011ca: push $0x7

4011cc: mov $0x6,%r9d
4011d2: mov $0x5,%r8d
4011d8: mov $0x4,%ecx
4011dd: mov $0x3,%edx
4011e2: mov $0x2,%esi
4011e7: mov $0x1,%edi

4011ec: call 401136 <inner_function>
4011f1: add $0x20,%rsp
...

Load up first 6 arguments
into argument registers

%rip

Data for
outer_function()

0x9

0x8

0x7 <-- %rsp

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: outer_function()
■ Remember, call loads the return address onto the stack

00000000004011ba <outer_function>:
...
4011c6: push $0x9
4011c8: push $0x8
4011ca: push $0x7

4011cc: mov $0x6,%r9d
4011d2: mov $0x5,%r8d
4011d8: mov $0x4,%ecx
4011dd: mov $0x3,%edx
4011e2: mov $0x2,%esi
4011e7: mov $0x1,%edi

4011ec: call 401136 <inner_function>
4011f1: add $0x20,%rsp
...

Now we’re ready to call!

Data for
outer_function()

0x9

0x8

0x7

<-- %rsp??????

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: outer_function()
■ What is the return address we should store? Let’s inspect gdb

to find out!

(gdb) x /4gx $rsp
0x7fffffffe3c8: 0x00000000004011f1 0x0000000000000007
0x7fffffffe3d8: 0x0000000000000008 0x0000000000000009

4011ec: call 401136 <inner_function>
4011f1: add $0x20,%rsp
...

■ Where does this value come from?

■ It’s the address of the instruction we want to jump to after

completing the call to inner_function

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: outer_function()
■ State of our program before starting inner_function

00000000004011ba <outer_function>:
...
4011c6: push $0x9
4011c8: push $0x8
4011ca: push $0x7

4011cc: mov $0x6,%r9d
4011d2: mov $0x5,%r8d
4011d8: mov $0x4,%ecx
4011dd: mov $0x3,%edx
4011e2: mov $0x2,%esi
4011e7: mov $0x1,%edi

4011ec: call 401136 <inner_function>
4011f1: add $0x20,%rsp
...

Data for
outer_function()

0x9

0x8

0x7

<-- %rsp0x4011f1

Pass control to inner_function()
=> Set %rip to 0x401136

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: inner_function()
■ Here is the assembly for inner_function

0000000000401136 <inner_function>:
401136: endbr64
40113a: push %rbp
40113b: mov %rsp,%rbp
40113e: sub $0x38,%rsp

...

4011b9: add $0x38,%rsp
4011bd: pop %rbp
4011be: ret

%rip

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: inner_function()
■ Here is the assembly for inner_function

0000000000401136 <inner_function>:
401136: endbr64
40113a: push %rbp
40113b: mov %rsp,%rbp
40113e: sub $0x38,%rsp

...

4011b9: add $0x38,%rsp
4011bd: pop %rbp
4011be: ret

%rip

Function store the original
base pointer and repositions

it for this stack frame

Data for
outer_function()

0x9

0x8

0x7

0x4011f1

old %rbp <-- %rsp,%rbp

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: inner_function()
■ Here is the assembly for inner_function

0000000000401136 <inner_function>:
401136: endbr64
40113a: push %rbp
40113b: mov %rsp,%rbp
40113e: sub $0x38,%rsp

...

4011b9: add $0x38,%rsp
4011bd: pop %rbp
4011be: ret

%rip

Function allocates any space it
needs

Data for
outer_function()

0x9

0x8

0x7

0x4011f1

old %rbp <-- %rbp

Data for
inner_function()

<-- %rsp

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: inner_function()
■ Here is the assembly for inner_function

0000000000401136 <inner_function>:
401136: endbr64
40113a: push %rbp
40113b: mov %rsp,%rbp
40113e: sub $0x38,%rsp

...

4011b9: add $0x38,%rsp
4011bd: pop %rbp
4011be: ret

%rip

De-allocate any stack space
used by the function

Data for
outer_function()

0x9

0x8

0x7

0x4011f1

Data for
inner_function()

old %rbp <-- %rsp,%rbp

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: inner_function()
■ Here is the assembly for inner_function

0000000000401136 <inner_function>:
401136: endbr64
40113a: push %rbp
40113b: mov %rsp,%rbp
40113e: sub $0x38,%rsp

...

4011b9: add $0x38,%rsp
4011bd: pop %rbp
4011be: ret%rip

Restore %rbp to prepare to
return to original stack frame

Data for
outer_function()

0x9

0x8

0x7

old %rbp

Data for
inner_function()

<-- %rsp0x4011f1

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: inner_function()
■ Here is the assembly for inner_function

0000000000401136 <inner_function>:
401136: endbr64
40113a: push %rbp
40113b: mov %rsp,%rbp
40113e: sub $0x38,%rsp

...

4011b9: add $0x38,%rsp
4011bd: pop %rbp
4011be: ret

%rip

Return! We pop the return
address and jump

Data for
outer_function()

0x9

0x8

old %rbp

Data for
inner_function()

<-- %rsp

0x4011f1

00000000004011ba <outer_function>:
...
4011ec: call 401136 <inner_function>
4011f1: add $0x20,%rsp
...

Load popped
address into %rip

0x7

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Endianness

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Endianness
■ Under the hood, we represent everything as a series of

contiguous bytes.

■ Endianness refers to how we order the bytes for “simple”

types (integers and floats).

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Endianness
■ Little-Endian:

○ Least significant byte is stored at the lowest address.

○ Shark Machines are Little-Endian.

○ Assume everything in this class is little-endian unless

otherwise stated.

■ Big-Endian:

○ Most significant byte is stored at the lowest address.

0x01020304
32-bit integer

"Big end" "Little end"

0x04 0x03 0x02 0x01
Mem[0] Mem[1] Mem[2] Mem[3]

0x01 0x02 0x03 0x04

Little-Endian

Big-endian

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Endianness: Example

0x9

0x8

0x7

0x401201

?? ?? ?? ?? ?? ?? ?? ??

?? ?? ?? ?? ?? ?? ?? ??

?? ?? ?? ?? ?? ?? ?? ??

?? ?? ?? ?? ?? ?? ?? ??

Addresses increasing
towards the left then

upwards

■ Suppose we draw our diagram with addresses increasing

towards the left, then upwards.

■ How are the bytes ordered on a little endian machine?

Addresses increasing
towards the left then

upwards Lowest address
byte

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Endianness: Example

0x9

0x8

0x7

0x401201

Addresses increasing
towards the left then

upwards

Addresses increasing
towards the left then

upwards Lowest address
byte

?? ?? ?? ?? ?? ?? ?? ??

?? ?? ?? ?? ?? ?? ?? ??

?? ?? ?? ?? ?? ?? ?? ??

?? ?? ?? ?? ?? ?? ?? ??

00 00 00 00 00 00 00 09

00 00 00 00 00 00 00 08

00 00 00 00 00 00 00 07

00 00 00 00 00 40 12 01

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

00 00 00 00 00 00 00 09

00 00 00 00 00 00 00 08

00 00 00 00 00 00 00 07

Endianness Example: Comparing with gdb

00 00 00 00 00 40 12 01

Addresses increasing
towards the left then
upwards

(gdb) x /32bx $rsp
0x7fffffffe3e8: 0x01 0x12 0x40 0x00 0x00 0x00 0x00 0x00
0x7fffffffe3f0: 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x7fffffffe3f8: 0x08 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x7fffffffe400: 0x09 0x00 0x00 0x00 0x00 0x00 0x00 0x00

Addresses increasing
towards the right then

downwards

■ gdb draws its diagram with addresses increasing towards the

right then downwards.

■ Both diagrams are correct, and are still little-endian!

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Addresses increase
towards the right

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Attack Lab

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Attack Lab: Overview
■ Exploit vulnerabilities in target programs using the techniques

you learned in lecture.

■ Hijack their control flow and make them do something else!

■ Targets do not explode like in bomblab.

■ We’ll get some practice right now!

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity 1
■ Download this week’s handout from the Schedule page.

■ For now:

○ Just open up the source code under src/activity.c.

○ We’ll start by walking through the code together!

$ wget https://www.cs.cmu.edu/~213/activities/s25-rec4.tar
$ tar -xvf s25-rec4.tar
$ cd s25-rec4

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity 1: solve()

■ Assume before and after are stored on the stack.

■ Is there any way for solve() to call win()?

■ Based on what you learned in lecture, are there any

vulnerabilities we can exploit here?

void solve(void) {
long before = 0xb4;
char buf[16];
long after = 0xaf;

Gets(buf);

if (before == 0x3331323531)
win(0x15213);

if (after == 0x3331323831)
win(0x18213);

}

src/activity.c

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recall: Unsafe Functions
■ C standard library functions like gets() and strcpy()

write to buffers, but have no length checks!

○ Enables buffer overflow attacks.

int echo() {
char buf[4];
gets(buf);
...
return ...;

}

echo:
 subq $0x18, %rsp
 movq %rsp, %rdi
 call gets
 . . .

Compiler making space
for buffer +

a little bit of padding
Can overwrite anything

before the buffer!

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity 1: Back to solve()
■ Let’s see if we can find a similar vulnerability in solve() by

looking at the assembly!

■ Source code and assembly code are both reproduced on the

back of the handout.

■ Draw a stack diagram to see if you can answer the following:

○ What does the stack frame look like?

○ Where is the saved return address?

○ Where do we store buf, before, and after in relation

to each other?

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity 1: Stack diagram

return addressrsp

rsp

Addresses increase
towards the top of

the slide

=> 0x4006b5 <+0>: sub $0x38,%rsp

8 bytes across

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity 1: Stack diagram

Addresses increase
towards the top of

the slide

 0x4006b5 <+0>: sub $0x38,%rsp
=> 0x4006b9 <+4>: movq $0xb4,0x28(%rsp)

return addressrsp+0x38

rsp

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity 1: Stack diagram

Addresses increase
towards the top of

the slide

 0x4006b5 <+0>: sub $0x38,%rsp
 0x4006b9 <+4>: movq $0xb4,0x28(%rsp)
=> 0x4006c2 <+13>: movq $0xaf,0x8(%rsp)

before

return addressrsp+0x38

rsp+0x28

rsp

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity 1: Stack diagram

Addresses increase
towards the top of

the slide

 0x4006b5 <+0>: sub $0x38,%rsp
 0x4006b9 <+4>: movq $0xb4,0x28(%rsp)
 0x4006c2 <+13>: movq $0xaf,0x8(%rsp)
 0x4006cb <+22>: lea 0x10(%rsp),%rdi
=> 0x4006d0 <+27>: callq 0x40073f <Gets>

after

before

return addressrsp+0x38

rsp+0x28

rsp+0x8

rsp

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity 1: Stack diagram

Addresses increase
towards the top of

the slide

 0x4006b5 <+0>: sub $0x38,%rsp
 0x4006b9 <+4>: movq $0xb4,0x28(%rsp)
 0x4006c2 <+13>: movq $0xaf,0x8(%rsp)
 0x4006cb <+22>: lea 0x10(%rsp),%rdi
 0x4006d0 <+27>: callq 0x40073f <Gets>
=> 0x4006d5 <+32>: mov 0x28(%rsp),%rdx

after

buf

buf

before

return addressrsp+0x38

rsp+0x28

rsp+0x8

rsp+0x10

rsp

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity 1: Exploitation
■ Goal: call win(0x15213)

■ Take a few minutes to craft an exploit string!

■ Crafting an exploit:

○ gets() stops reading once it sees a newline.

○ Will not stop reading when it sees a null terminator.

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity 2
■ Objective: call win(0x18213)

■ How is activity 2 different from activity 1?

after

buf

buf

before

return addressrsp+0x38

rsp+0x28

rsp+0x8

rsp+0x10

rsp

We cannot write directly to
after!

(located below our buffer)

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity 2: Exploitation
■ If we cannot overwrite after in order to call

win(0x18213), what is another type of attack we can

perform?

■ One possible solution: Instead of setting local variables that

result in calling win(0x18213), we can jump to an

instruction that directly calls win(0x18213)!

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity 2
■ Change the return address:

after

buf

buf

before

?????rsp+0x38

rsp+0x28

rsp+0x8

rsp+0x10

rsp

Overwrite our return
address!

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity 2: Reflection
■ What address should we place in our return address?

■ Use gdb to find this address!

0x00000000004006b5 <solve>:
...
400707: mov $0x18213,%edi

40070c: call 0x40064d <win>
...

Which one?

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity 2: Reflection
■ What address should we place in our return address?

■ Use gdb to find this address!

0x00000000004006b5 <solve>:
...
400707: mov $0x18213,%edi

40070c: call 0x40064d <win>
...

■ Remember that we can’t just call win(), we need to ensure

that the first argument is set to 0x18213.

Correct!

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity 2
■ We write this address onto our stack:

overwritten

after

buf

buf

overwritten

overwritten

0x400707rsp+0x38

rsp+0x28

rsp+0x8

rsp+0x10

rsp

Remember the address must
be here to be executed when

invoking ret

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The End

