15-213 Recitation Attack Lab

Your TAs
Friday, February 7th

Reminders

- bomblab was due yesterday (February 6th)
- attacklab has been released, and is due on *Thursday*(February 13th)

Announcement

- We are now using a new queue!
 - https://213ohq.com/ohq/
- Please view the Ed post for more guidance! (#280)

Agenda

- Review: Structs and Alignment
- Stacks
- Calling Procedures, Stack Frames
- Endianness
- Intro to Attack Lab
- Activity!

Review: structs

Alignment Requirements

- Badly aligned data can harm performance:
 - May need multiple memory accesses instead of just one.
- Primitive types have pre-determined alignments:
 - char = 1 byte
 - short = 2 bytes
 - o int = 4 bytes
 - \circ long = 8 bytes
 - o double = 8 bytes
 - o pointer = 8 bytes

Alignment: Compound Types

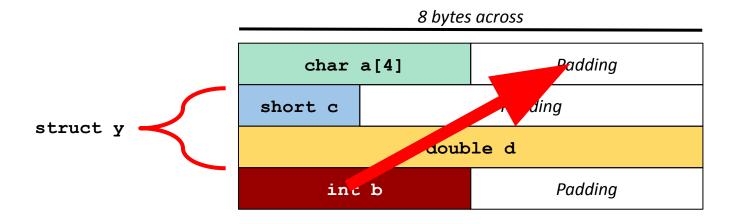
- Compound types:
 - Arrays
 - Structs
 - Unions
- Alignment rules for these types:
 - 1. Takes largest alignment requirement of its fields.
 - 2. Initial address and size must both be multiples of the alignment requirement.

double d;

- What is the alignment requirement for d?
 - Primitive: has pre-defined alignment requirement.
 - Alignment: 8
- What is its size?
 - Size: 8 bytes

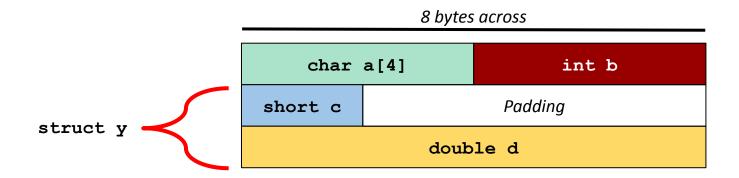
```
struct y {
  double d;
```

- What is the alignment requirement for y?
 - Rule (1): struct
 alignment = max
 alignment of fields.
 - Alignment: 8
- What is its size?
 - Size: 8 bytes


```
struct y {
  short c;
  double d;
```

- What is the alignment requirement for y?
 - Alignment: 8
- What is its size?
 - Rule (2): have to add
 padding after c so that
 d is 8-byte aligned
 - Size: 16 bytes

```
struct x {
  char a[4];
  struct {
     short c;
     double d;
  } y;
  int b;
```


- What is the alignment requirement for x?
 - Alignment: 8
- What is its size?
 - Remember, the entire struct must also follow alignment rules
 - Size: 32 bytes

structs: Reordering Fields

- struct x takes up 32 bytes to store 18 bytes of data.
- Can we reorder the fields to do better?

structs: Reordering Fields

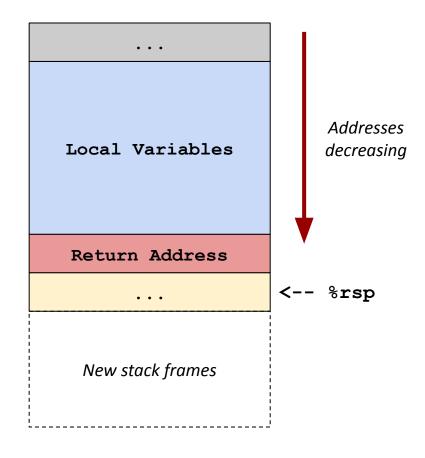
- struct x now takes up 24 bytes!
- Compiler cannot do this optimization. It's up to the programmer (you!)
- Note: Can't move field into or out of y without also changing how you access those fields in your code.

Stacks

Manipulating the Stack

Certain instructions grow the stack, and certain instructions shrink the stack:

Growing the stack


- sub 0x38, %rsp
- push %rbp
- call

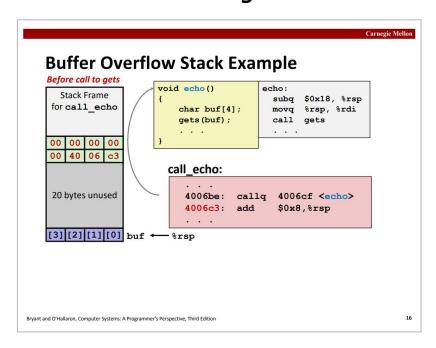
Shrinking the stack

- add 0x38, %rsp
- pop %rbp
- ret
- But what does this look like in memory?


Which way does the stack grow?

- We say that the stack grows "down" because it grows towards lower addresses:
 - e.g. **sub 0x38**, **%rsp**
- We will draw them this way in attacklab examples
 - But you can draw them in any way that makes sense to you!

Drawing Memory


Conventional Memory Diagram

Addresses Increasing:

- Towards the <u>right</u>
- **■** Then <u>downwards</u>

Stack Diagram

Addresses Increasing:

- Towards the <u>left</u>
- Then <u>upwards</u>

Calling Procedures, Stack Frames

Review: Calling Procedures

Procedure Call: call label

- Push return address onto the stack (so that we can pass control back to the caller!)
- Jump to label

Procedure Return: ret

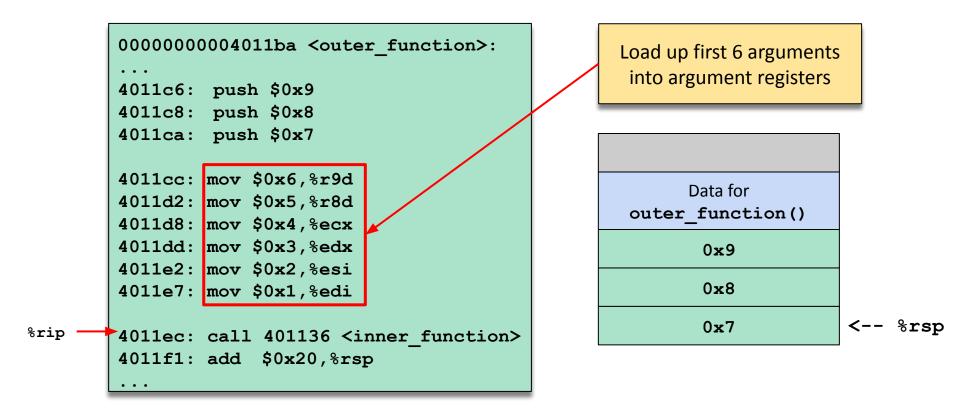
- Pop address from stack
 - This is the address of the next instruction of the *caller*
- Jump to that address

Example

Take a look at the following code snippet:

```
int outer_function() {
   int result = inner_function(1, 2, 3, 4, 5, 6, 7, 8, 9);
   return result + 1;
}
Lots of arguments!
```

What would this look like in assembly? How would having many arguments affect the stack?


Here is the assembly for outer_function:

```
00000000004011ba <outer function>:
                                                        Push extra arguments onto
                                                          stack (note the order!)
%rip
        4011c6: push $0x9
        4011c8: push $0x8
        4011ca: push $0x7
        4011cc: mov $0x6, %r9d
                                                               Data for
                                                                              <-- %rsp
        4011d2: mov $0x5,%r8d
                                                          outer function()
        4011d8: mov $0x4, %ecx
        4011dd: mov $0x3, %edx
        4011e2: mov $0x2, %esi
        4011e7: mov $0x1, %edi
        4011ec: call 401136 <inner function>
        4011f1: add $0x18, %rsp
```

Here is the assembly for outer_function:

Here is the assembly for outer_function:

Remember, call loads the return address onto the stack

```
00000000004011ba <outer function>:
                                                Now we're ready to call!
4011c6: push $0x9
4011c8: push $0x8
4011ca: push $0x7
4011cc: mov $0x6, %r9d
                                                      Data for
4011d2: mov $0x5,%r8d
                                                 outer function()
4011d8: mov $0x4, %ecx
4011dd: mov $0x3, %edx
                                                        0x9
4011e2: mov $0x2, %esi
                                                        8x0
4011e7: mov $0x1, %edi
                                                        0x7
4011ec: call 401136 <inner function>
4011f1: add $0x20, %rsp
                                                      333333
```

What is the return address we should store? Let's inspect gdb to find out!

Where does this value come from?

```
4011ec: call 401136 <inner_function>
4011f1: add $0x20, %rsp
...
```

It's the address of the instruction we want to jump to after completing the call to inner function

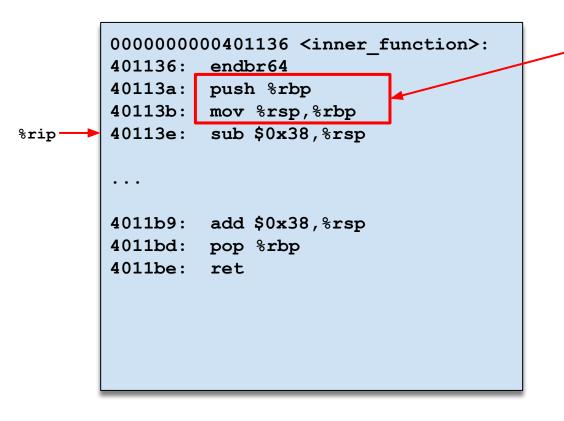
State of our program before starting inner_function

```
00000000004011ba <outer function>:
4011c6: push $0x9
4011c8: push $0x8
4011ca: push $0x7
4011cc: mov $0x6, %r9d
4011d2: mov $0x5,%r8d
4011d8: mov $0x4, %ecx
4011dd: mov $0x3, %edx
4011e2: mov $0x2, %esi
4011e7: mov $0x1, %edi
4011ec: call 401136 <inner function>
4011f1: add $0x20, %rsp
```

```
Data for outer_function()

0x9

0x8


0x7

0x4011f1 <--- %rsp
```

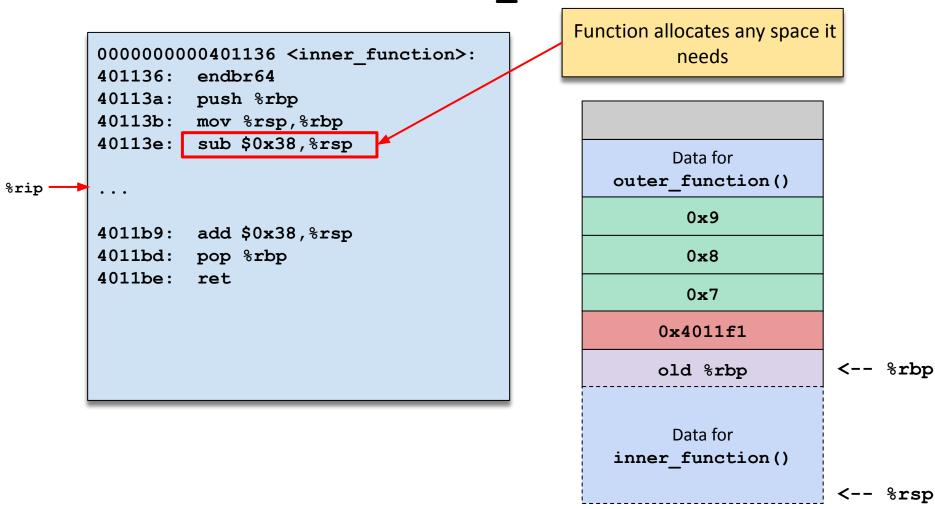
```
Pass control to inner_function()
=> Set %rip to 0x401136
```

```
000000000401136 <inner function>:
        401136:
                endbr64
%rip
        40113a: push %rbp
        40113b: mov %rsp, %rbp
        40113e: sub $0x38,%rsp
        4011b9: add $0x38, %rsp
        4011bd:
                pop %rbp
        4011be: ret
```

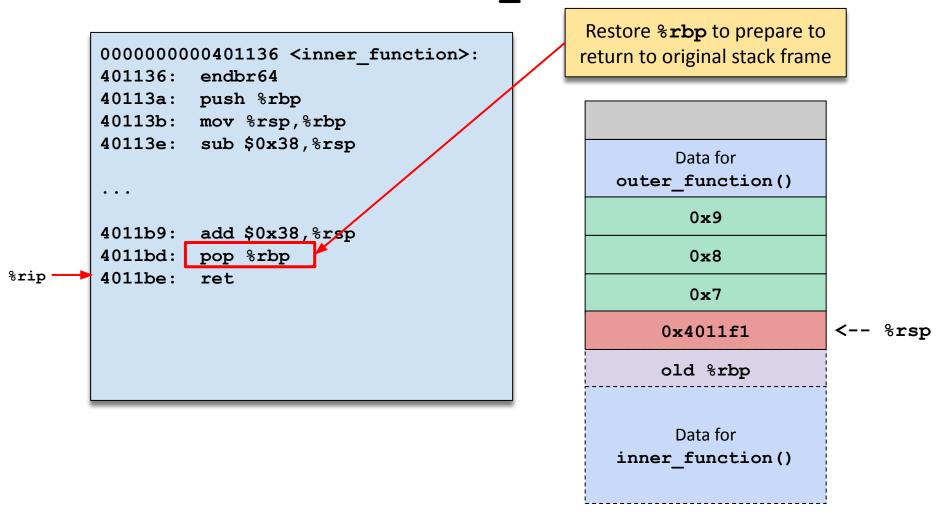
Here is the assembly for inner function

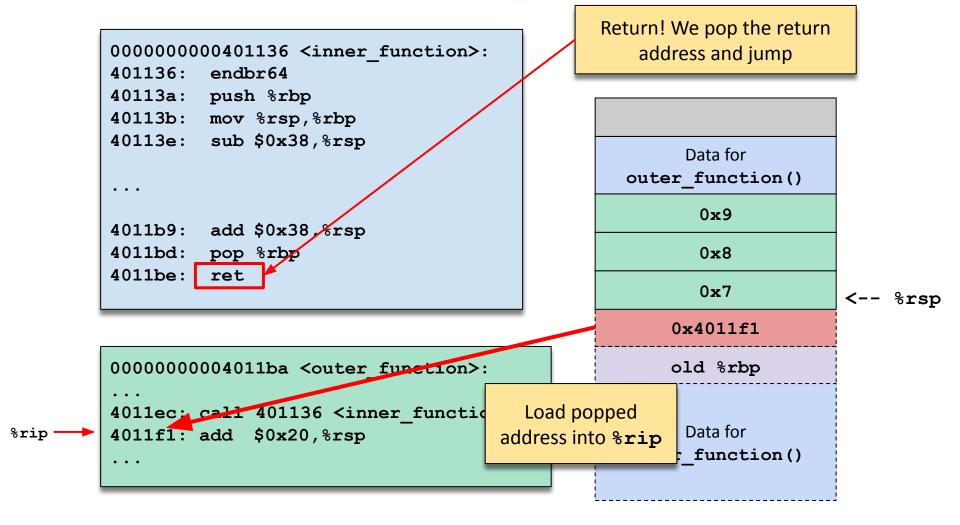
Function store the original base pointer and repositions it for this stack frame

```
Data for outer_function()


0x9

0x8


0x7


0x4011f1

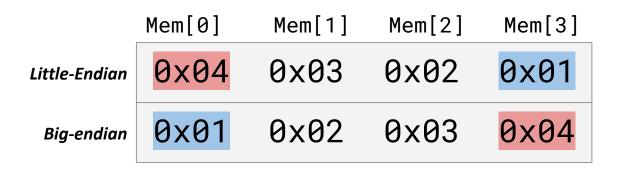
old %rbp <-- %rsp,%rbp
```


Endianness

Endianness

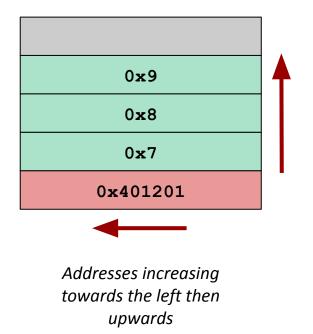
- Under the hood, we represent everything as a series of contiguous bytes.
- Endianness refers to how we order the bytes for "simple" types (integers and floats).

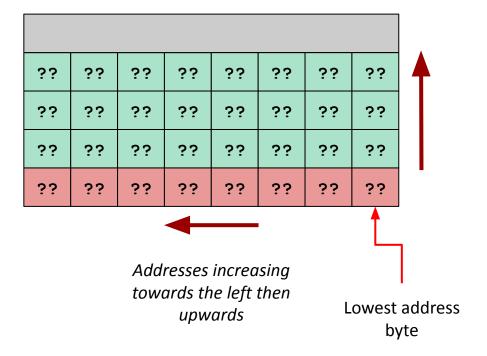
Endianness

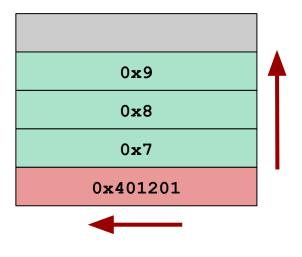

Little-Endian:

- Least significant byte is stored at the lowest address.
- Shark Machines are Little-Endian.
- Assume everything in this class is little-endian unless otherwise stated.

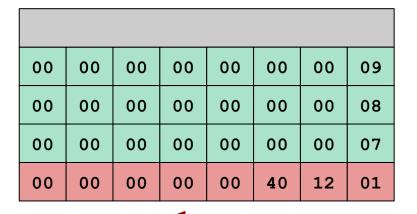
Big-Endian:


Most significant byte is stored at the lowest address.




Endianness: Example

- Suppose we draw our diagram with addresses increasing towards the left, then upwards.
- How are the bytes ordered on a little endian machine?


Endianness: Example

Addresses increasing towards the left then upwards

Endianness Example: Comparing with gdb

Addresses increasing towards the left then upwards

```
(gdb) x /32bx $rsp
0x7fffffffe3e8: 0x01 0x12 0x40 0x00 0x00 0x00 0x00 0x00
0x7fffffffe3f0: 0x07 0x00 0x00 0x00 0x00 0x00 0x00
0x7fffffffe3f8: 0x08 0x00 0x00 0x00 0x00 0x00 0x00
0x7fffffffe400: 0x09 0x00 0x00 0x00 0x00 0x00 0x00
```

Addresses increasing towards the right then downwards

- **gdb** draws its diagram with addresses increasing towards the right then downwards.
- Both diagrams are correct, and are still little-endian!

SULIA EVANS @bork

8 bytes, many meanings

The same bytes can mean many different things. Here are 8 bytes and a bunch of things they could potentially mean: Addresses increase towards the right 8 bytes → 6f 6d) 8 ASCII characters 0 109 112 117 116 101 8 8-bit integers 111 28515 28781 29813 29285 4 unsigned 16-bit integers 1919251573 2 unsigned 32-bit integers 1886220131 1 unsigned 64-bit integer 8243122740717776739 a 64-bit pointer 0x72657475706d6f63 don't worry if 2 IPv4 addresses 99.111.109.112 117.116.101.114 you don't understand all arpl WORD PTR .byte jo 0x7a je 0x6c x86 machine code this right now! [edi+0x6d],bp 0x72 We'll explain 29285 6 ASCII characters + 1 16-bit integer t everything 2 32-bit floating point numbers 2.93930e+29 4.54482e+30 1.144493e+243 1 64-bit floating point numbers rgba(99, 111, 109, 0.44) rgba(117, 116, 101, 0.45) 2 RGBA colours

Attack Lab

Attack Lab: Overview

- Exploit vulnerabilities in target programs using the techniques you learned in lecture.
- Hijack their control flow and make them do something else!
- Targets do not explode like in bomblab.
- We'll get some practice right now!

- Download this week's handout from the Schedule page.
- For now:
 - Just open up the source code under src/activity.c.
 - We'll start by walking through the code together!

```
$ wget https://www.cs.cmu.edu/~213/activities/s25-rec4.tar
$ tar -xvf s25-rec4.tar
$ cd s25-rec4
```

Activity 1: solve()

```
void solve(void) {
    long before = 0xb4;
    char buf[16];
    long after = 0xaf;

    Gets(buf);

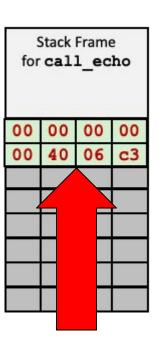
    if (before == 0x3331323531)
        win(0x15213);
    if (after == 0x3331323831)
        win(0x18213);
}
```

- Assume before and after are stored on the stack.
- Is there any way for solve() to call win()?
- Based on what you learned in lecture, are there any vulnerabilities we can exploit here?

Recall: Unsafe Functions

- C standard library functions like gets () and strcpy () write to buffers, but have no length checks!
 - Enables buffer overflow attacks.

```
int echo() {
    char buf[4];
    gets(buf);
    ...
    return ...;
}
```


```
echo:

subq $0x18, %rsp

movq %r p, %rdi

call gets
...
```

Compiler making space for buffer + a little bit of padding

Can overwrite anything before the buffer!

Activity 1: Back to solve ()

- Let's see if we can find a similar vulnerability in solve() by looking at the assembly!
- Source code and assembly code are both reproduced on the back of the handout.
- Draw a stack diagram to see if you can answer the following:
 - What does the stack frame look like?
 - Where is the saved return address?
 - Where do we store buf, before, and after in relation to each other?

=> 0x4006b5 <+0>: sub \$0x38,%rsp

rsp return address rsp

Addresses increase towards the top of the slide

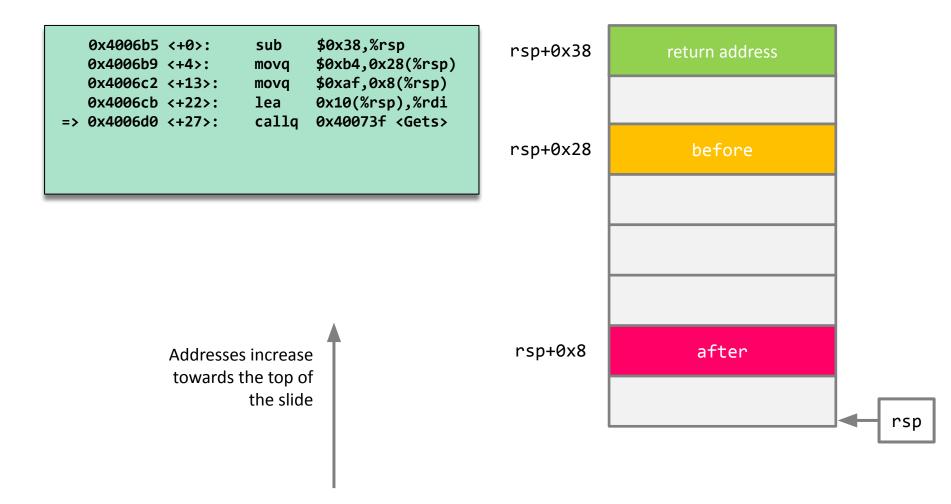
rsp+0x38 return address

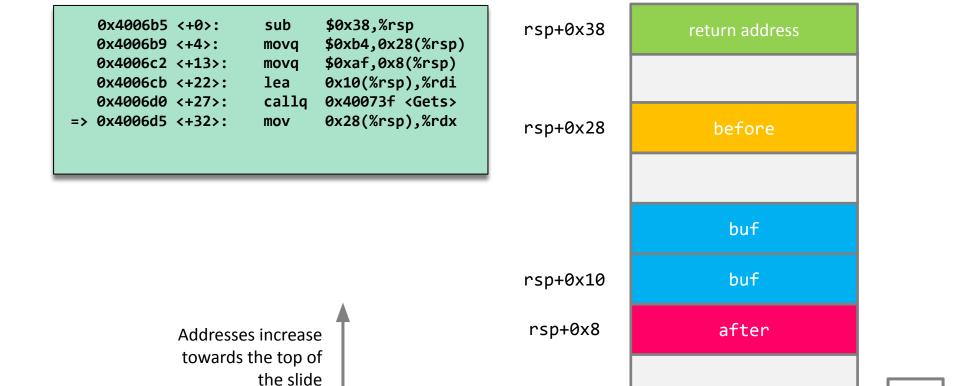
Addresses increase towards the top of the slide

rsp

0x4006b5 <+0>: sub \$0x38,%rsp 0x4006b9 <+4>: movq \$0xb4,0x28(%rsp) => 0x4006c2 <+13>: movq \$0xaf,0x8(%rsp)

rsp+0x38

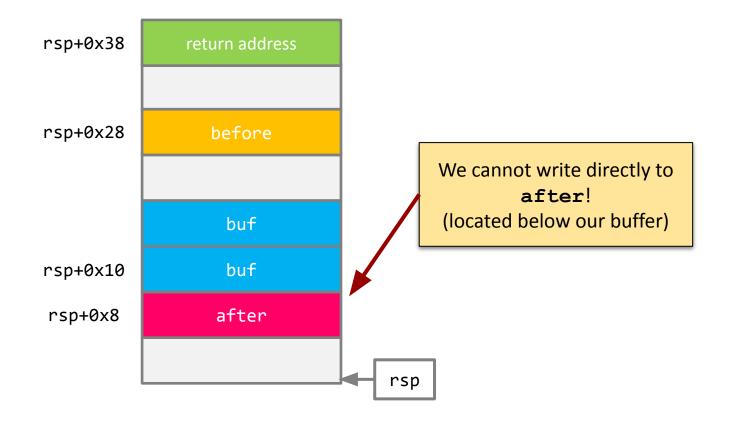

rsp+0x28


before

return address

Addresses increase towards the top of the slide

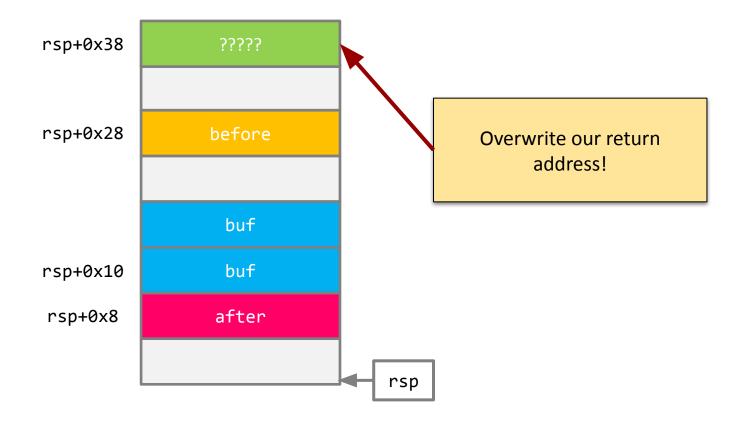
rsp



rsp

Activity 1: Exploitation

- Goal: call win (0x15213)
- Take a few minutes to craft an exploit string!
- Crafting an exploit:
 - gets() stops reading once it sees a newline.
 - Will not stop reading when it sees a null terminator.

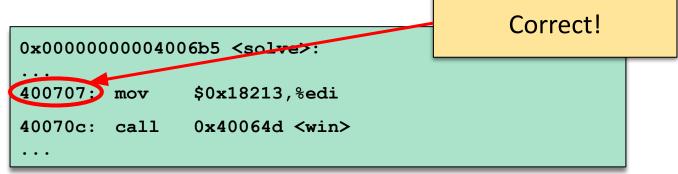

- Objective: call win (0x18213)
- How is activity 2 different from activity 1?

Activity 2: Exploitation

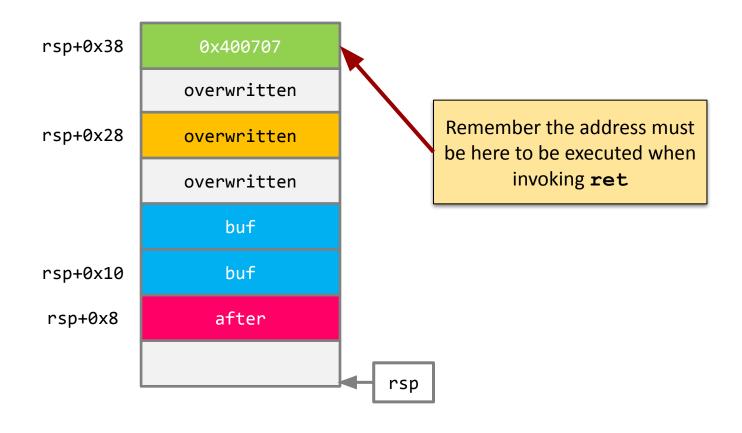
- If we cannot overwrite after in order to call win (0x18213), what is another type of attack we can perform?
- One possible solution: Instead of setting local variables that result in calling win (0x18213), we can jump to an instruction that directly calls win (0x18213)!

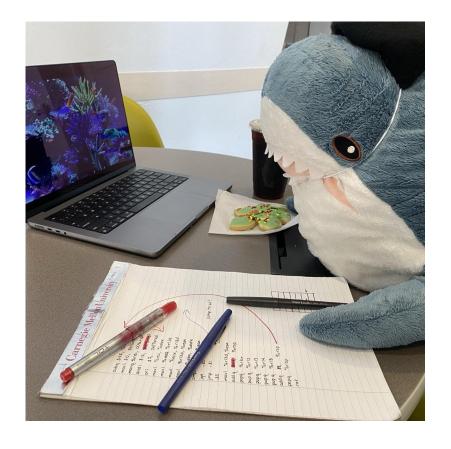
Change the return address:

Activity 2: Reflection


What address should we place in our return address?

Use gdb to find this address!


Activity 2: Reflection


- What address should we place in our return address?
- Use gdb to find this address!

Remember that we can't just call win(), we need to ensure that the first argument is set to 0x18213.

We write this address onto our stack:

The End