15213 - Recitation 4 - Attack Lab
February 7th, 2025

To download the activity, enter into a Shark machine:

S wget https://www.cs.cmu.edu/~213/activities/s25-rec4.tar
§ tar -xvf s25-rec4.tar

S cd s25-rec4

$ gdb activity

Activity 1

The goal of this activity is to input a string that causes the program to call win(8x15213),
and thereby win a cookie'. Work with your group to fill in the stack diagram, and discuss:

1. Where is long before stored on the stack? What about long after?
2. How many bytes can Gets () copy before overwriting something?

3. If the user types “12345678\n", what will the resulting stack look like? (Fill in the
stack diagram on the back.) What will the corresponding value read from %rdx be?

4. How can you use GDB to check if your buffer overflow worked as intended?
Activity 2
We've upped the stakes! Can you figure out how to call win(0x18213) for two cookies?

1. Which lines of assembly correspond to win(0x15213) and win(0x18213)?

2. Which value will the retq instruction read off of the stack? Can it be overwritten?
Activity 3
If you finished the other activities early, see if you can manage to call win(8x18613)!

1. Note the suspiciously named function gadget1. Does it obey calling conventions by
preserving the stack pointer when it returns? What value will it place into %rdi?

' Actual availability of cookies is neither guaranteed or implied. However, there are always
plenty of stack cookies available for you to choose from!

https://www.cs.cmu.edu/~213/activities/rec5.tar
https://en.wikipedia.org/wiki/Buffer_overflow_protection#Canaries

Code for solve()

0x4006b5 <+0>: sub $0x38,%rsp void solve(void) {
O0x4006b9 <+4>: movq $0xb4,0x28(%rsp) long before = 0xbé4;
0x4006c2 <+13>: movq $0xaf,0x8(%rsp) char buf[16];
0x4006ch <+22>: lea 0x10(%rsp),%rdi long after = Oxaf;
0x4006d0 <+27>: callg 0x40073f <Gets>
0x4006d5 <+32>: mov 0x28(%rsp),%rdx Gets(buf);
0x4006da <+37>: movabs $0x3331323531,%rax
0x4006e4 <+47>: cmp %rax,%rdx
0x4006e7 <+50>: jne 0x4006f3<solve+62> if (before == 0x3331323531)
0x4006€9 <+52>: mov $0x15213, %ed1 win(0x15213);
0x4006ee <+57>: callqg 0x40064d <win>
0x4006f3 <+62>: mov Ox8(%rsp),%rdx if (after == 0x3331323831)
0x4006f8 <+67>: movabs $0x3331323831,%rax win(0x18213);
0x400702 <+77>: cmp %rax,%rdx
0x400705 <+80>: jne 0x400711<solve+92> }
0x400707 <+82>: mov $0x18213, %ed1
0x40070c <+87>: callg 0x40064d <win>
0x400711 <+92>: add $0x38,%rsp
0x400715 <+96>: retq
Stack diagram
7 6 5 4 3 2 1 0 Notes
0x602058 | 00 00 00 00 00 40 07 83 Return Address
0x602050
0x602048
0x602040
0x602038
0x602030
0x602028
0x602020

	Activity 1
	Activity 2
	Activity 3
	Code for solve()
	Stack diagram

