Carnegie Mellon

Synchronization: Advanced

15-213/15-513: Introduction to Computer Systems
24t Lecture, April 16, 2025

Carnegie Mellon

Today

Review: Races, Mutual Exclusion

Races

Carnegie Mellon

m A race occurs when correctness of the program depends on one
thread reaching point x before another thread reaches pointy

}

}

int cnt;

int main(int argc, cha

/* thread routine */
void *thread(void *var

pthread t tl1, t2;

Pthread create(&tl,
Pthread create(&t2,
Pthread join(tl, NUL
Pthread join(t2, NUL
return (counter '= 2

for (int 1 = 0; i <
cnt++;
return NULL;

Thread 2

safe

Carnegie Mellon

Races

m Some races can be fixed with mutual exclusion

int cnt;
pthread mutex t lock = PTHREAD MUTEX INITIALIZER;
int main(int argc, char** argv) {
pthread t tl1, t2;
Pthread create(&tl, NULL, thread, NULL);
Pthread create(&t2, NULL, thread, NULL);
Pthread join(tl, NULL);
Pthread join(t2, NULL);
return (counter '= 20000) ;

}

void *thread(void *vargp) ({
for (int i = 0; i < 10000; i++) {
pthread mutex lock (&lock) ;
cnt++;

pthread mutex unlock(&lock) ;

}
return NULL;

Carnegie Mellon

Races

m Not all races can be addressed with mutual exclusion

int main(int argc, char** argv) {
pthread t tid[N];
int 1i;
for (i = 0; i < N; i++)
Pthread create(&tid[i], NULL, thread, &i);
for (i = 0; i < N; i++)
Pthread join(tid[i], NULL);
return O;

}

/* thread routine */

void *thread (void *vargp) ({
int myid = *(int *)vargp;
printf ("Hello from thread %d\n", myid);
return NULL;

Carnegie Mellon

Races

m Not all races can be addressed with mutual exclusion

int main(int argc, char** argv) {
pthread t tid[N];
int 1i;
for (i = 0; i < N; i++)
Pthread create(&tid[i], NULL, thread, &i);
for (i = 0; i < N; i++)
Pthread join(tid[i], ! Thread
return O;

} O O

/* thread routine */ pnntf
void *thread(void *vargp) *——0
i | = % (3 * .
:Lni:: myid (int *)vargr myld -

printf ("Hello from thre:c
return NULL; 2 P

} start

i - > - > P - —_pO— Parent
=0 &i PC i++

Carnegie Mellon

Races

m This race can be fixed by copying data

int main(int argc, char** argv) {
pthread t tid[N];
int 1i;
for (i = 0; i < N; i++)
Pthread create(&tid[i], NULL, thread, (void *)1i);
for (i = 0; i < N; i++)
Pthread join(tid[i], NULL);
return O;

}

/* thread routine */

void *thread (void *vargp) ({
int myid = (int)wvargp,
printf ("Hello from thread %d\n", myid);
return NULL;

Carnegie Mellon

Races

m This race can also be fixed with a semaphore

sem t sem;
int main(int argc, char** argv) {
pthread t tid[N];
int 1i;
Sem init(&sem, 0, 0); // initially closed
for (i = 0; i < N; i++) {
Pthread create(&tid[i], NULL, thread, &i);
sem wait (&sem);
}
for (i = 0; i < N; i++)
Pthread join(tid[i], NULL);
return O;

}

void *thread (void *vargp) ({
int myid = *(int *)vargp;
sem post (&sem) ;
printf ("Hello from thread %d\n", myid);
return NULL;

10

Carnegie Mellon

Not all races involve threads $ rm myfile.txt

m Time of check to time of use (TOCTOU)

if (access('"myfile.txt", R OK) == 0) { <« Check
FILE *fp = fopen('"myfile.txt", "r"); < Use
while (fgets (fp, buf, sizeof buf) !'= NULL)

process_line (buf) ;
fclose (fp) ;
} else {
fprintf (stderr, "myfile.txt not found\n");

}

m Fix: Don’t check, just use (but be ready for failure)

FILE *fp = fopen('"myfile.txt", "r");
if (fp) {
while (fgets (fp, buf, sizeof buf) !'= NULL)

process line (buf) ;
fclose (fp) ;
} else {
fprintf (stderr, "myfile.txt: %s\n", strerror(errno)) ;

}

1

Carnegie Mellon

Races involving signal handlers

m Event happens earlier than anticipated

void sigchld handler (int unused) ({
int status;
pid t pid;
while ((pid = waitpid(-1, &status, WNOHANG|WUNTRACED)) > 0)
job_status_change (pid, status);

}

void start fg job(char **argv) {
pid t pid = fork();

if (pid == -1) {
perror ("fork") ;
return;

} else if (pid == 0) {
execve (argv[0], argv, environ);
perror ("execve') ;
exit(127);
} else {
add job(pid, argv);

SIGCHLD delivered

12

Carnegie Mellon

Race Elimination

m Don’t share state

= e.g.use malloc to generate separate copy of argument for each
thread

m Don’t check before using
= Attempt to use, see if it failed

m Use synchronization primitives
= Which synchronization primitive? Depends on the situation

13

Carnegie Mellon

Today

Deadlock

14

Deadlock

m A program is deadlocked when
it is waiting for an event which
cannot ever happen

= Mathematical impossibility, not

just practical

m Most common form:

Thread A is waiting for thread B to
do something

Thread B is waiting for thread A to
do something

Neither can make forward progress

Carnegie Mellon

15

Carnegie Mellon

Deadlock caused by wrong locking order

void *thread 1 (void *arg) { void *thread 2(void *arg) {
pthread mutex lock (&ma) ; pthread mutex lock (&mB) ;
pthread mutex lock (&mB) ; pthread mutex lock (&ma) ;
// do stuff ... // do stuff ...
pthread mutex unlock (&ma) ; pthread mutex unlock (&mB) ;
pthread mutex unlock (&mB) ; pthread mutex unlock (&ma) ;
} }

16

Carnegie Mellon

Deadlock Visualized in Progress Graph

Thread 1 Any trajectory that enters
the deadlock region will
Deadlock state: eyentually reach the
cannot move deadlock state where each
U(b) —)) up or right — thread is waiting for the other
Forbidden region both threads to release a lock
forb are stuck
U(a) — Other trajectories luck out and
skirt the deadlock region
L(b) — ° Unfortunate fact: trajectory
)) variations may mean deadlock
Deadlock Forbidden region bugs are nondeterministic
L(a) — region fora (don’t always manifest,
making them hard to debug)
| ! I ! Thread 0

L(b) L(a) U(b) U(a)

18

Carnegie Mellon

Fix this deadlock with consistent ordering

void *thread 1(void *arg) { Always possible to move
pthread mutex lock (&mA) ;)
pthread mutex lock (&mB) ; Up or move I’Ight
do stuff ... U(b) -
/Y €2 BET Forbid-
pthread mutex unlock (&mA) ; den
pthread mutex unlock (&mB) ; U(a) — region
} for b
void *thread 2 (void *arg) ({ L(b) —
pthread mutex lock (&mA) ;
pthread mutex lock (&mB) ; Forbidden region
_ fora
// do stuff ... L(a)
pthread mutex unlock (&mB) ; | [[|
pthread mutex_unlock (&mR); | nconsistent unlock order V(@)
}

does not matter

19

Carnegie Mellon

Today

Semaphores, Events, and Queues

20

Carnegie Mellon

Recall: Semaphores

m Integer value, always >=0

m P(s) operation (aka sem wait)
= |fsis zero, wait for a V operation to happen.
= Then subtract 1 from s and return.

m V(s) operation (aka sem post)
= Add1tos.

= |f there are any threads waiting inside a P operation,
resume one of them

m Any thread may call P; any thread may call V; no ordering
requirements

= Key difference from mutexes

21

Semaphores for Events

m Remember this program?

#define N 4 int main(void) {
long *pointers|[N]; long 1i;

pthread t tids[N];
void *thread (void *vargp) {

long myid = (long) vargp; for (1 = 0; 1 < N; i++)
pointers[myid] = &myid; Pthread create(&tids[i], NULL,
sleep(2) ; thread, (void *) i) ;
return NULL; sleep (1) ;

} for (1 = 0; i < N; i++)

printf ("Thread #%1d has "
"local value %1d\n",
i, *pointers[i]);
for (1 = 0; i < N; i++)
Pthread join(tids[i], NULL);

m Let’s fixit. return 0;

m With semaphores.

22

Carnegie Mellon

Semaphores for Events

#define N 4 int main(void) {
long *pointers|[N]; long 1i;

sem_t ready[N]; pthread_t tids[N];

void *thread(void *vargp) { for (i = 0; 1 < N; i++) {

long myid = (long) vargp; Sem_init(sready[il, 0, 0);

pointers[myid] = &myid; Pthread create(&tids[i], NULL,

sem post (sready[myidl); thread, (void *) 1);
sem _wait(&finish);)
return NULL; \{or (1 =0; i < N; i++4) {

} sem_wait(§ready[il);

printf ("Thread #%1d has "
"local value %1d\n",
i, *pointers[i]);

}

for (i = 0; i < N; i++)
Pthread join(tids[i], NULL);
return O;

24

Carnegie Mellon

Queues, Producers, and Consumers

producer
thread

| shared [consumer
gueue thread

m Common synchronization pattern:
= Producer waits for empty slot, inserts item in queue, and notifies consumer
= Consumer waits for item, removes it from queue, and notifies producer
m Examples
= Multimedia processing:
= Producer creates video frames, consumer renders them
= Event-driven graphical user interfaces

= Producer detects mouse clicks, mouse movements, and keyboard hits
and inserts corresponding events in queue

= Consumer retrieves events from queue and paints the display

25

Carnegie Mellon

Producer-Consumer on 1-entry Queue

m Maintain two semaphores: full + empty

full
0
| empty .
empty buffer
1
full
1
N full N
empty buffer
0

26

Carnegie Mellon

Why 2 Semaphores for 1-entry Queue?
m Consider multiple producers & multiple consumers

e

e ———| shared -~

m Producers will contend with each to get empty
m Consumers will contend with each other to get full

Producers Consumers

P (&shared.empty) ; empty full P (&shared. full) ;
shared.buf = item; item = shared.buf;
V(&shared. full) ; V (&shared.empty) ;

27

Carnegie Mellon

Producer-Consumer on n-element Queue

en 0 and n elements @
° / °

e Y

m Requires a mutex and two counting semaphores:
" mutex: enforces mutually exclusive access to the queue’s innards

= slots:countsthe available slots in the queue

= jtems: counts the available items in the queue

m Makes use of semaphore values > 1 (up to n)

28

Carnegie Mellon

Today

Reader-Writer Locks and Starvation

29

Carnegie Mellon

Readers-Writers Problem

Read/ /
Write < @ > Read-only

Access @/ \ Access
. =) _

m Problem statement:
= Reader threads only read the object
= Writer threads modify the object (read/write access)

= Writers must have exclusive access to the object
= Unlimited number of readers can access the object

m Occurs frequently in real systems, e.g.,
" Online airline reservation system
= Multithreaded caching Web proxy

30

Carnegie Mellon

Pthreads Reader/Writer Lock

m Datatypepthread rwlock t
m Operations

= Acquire read lock

pthread rwlock rdlock(pthread rwlock t *rwlock)
= Acquire write lock

pthread rwlock wrlock(pthread rwlock t *rwlock)
= Release (either) lock

pthread rwlock unlock(pthread rwlock t *rwlock)

m Must be used correctly!

= Up to programmer to decide what requires read access and what
requires write access

31

Carnegie Mellon

Reader/Writer Starvation

m Thread 1 has a read lock. Thread 2 is waiting for a write
lock. Thread 3 tries to take a read lock. What happens?

R1
1Y) S -

R2'?
m Option 1: R2 gets read lock immediately
= Endless stream of overlapping readers - W waits forever
R1

m Option 2: Writer always gets lock as soon as possible
= Endless stream of overlapping writers - readers wait forever

R1 (not shown)

W ——————————
R2 =======- _—

32

Carnegie Mellon

Starvation

m A thread is starved when it makes no forward progress for
an unacceptably long time
= Unlike deadlock, it’s possible for it to get unstuck eventually
= “Unacceptably long” depends on the application

m Algorithms that guarantee no starvation are called fair

" Fair R/W locks: every waiter receives the lock in first-come first-
served order (several readers can receive the lock at the same time)

R1 -=
W == = o o o o o

R2 =======- —_—

= Fairness is more complicated to implement

= Fairness can mean all threads are slower than they would be in an
unfair system (e.g. “lock convoy problem”)

33

Carnegie Mellon

Today

Thread-Safe API Design

35

Thread-Safe APIs

m A function is thread-safe if it always produces correct
results when called repeatedly from multiple concurrent
threads.

m Reasons for a function not to be thread-safe:

1. Internal shared state, no locking (e.g. your malloc)

2. Internal state modified across multiple uses (e.g. rand)
3. Returns a pointer to a static variable (e.g. strtok)
4

Calls a function that does any of the above

36

Carnegie Mellon

Thread-Unsafe Functions (Class 1)

m These functions would be thread-safe if they began with
pthread mutex lock (&l) and ended with
pthread mutex unlock (&1) for some lock L

m Good example:malloc, realloc, free

= Your implementation will crash if called from multiple concurrent
threads

= The C library’s implementation won’t; it has internal locks

m Locking slows things down, of course

37

Carnegie Mellon

Thread-Unsafe Functions (Class 2)

m Relying on persistent state across multiple function invocations

= Example: Random number generator that relies on static state

static unsigned int next = 1;

/* rand: return pseudo-random integer on 0..32767 */
int rand(void) {

next = next*1103515245 + 12345;

return (unsigned int) (next/65536) % 32768;
}

/* srand: set seed for rand() */
void srand(unsigned int seed) {
next = seed;

}

m Difference from class 1: locking would not fix the problem

= 2 threads call rand() simultaneously, both get different results than if

only one made a sequence of calls to rand()
38

Carnegie Mellon

Fixing Class 2 Thread-Unsafe Functions

m Pass state as part of argument
= and, thereby, eliminate static state

/* rand r - return pseudo-random integer on 0..32767 */

int rand r(int *nextp)
{
*nextp = *nextp*1103515245 + 12345;
return (unsigned int) (*nextp/65536) % 32768;

m Requires APl change
m Callers responsible for allocating space for state

39

Carnegie Mellon

Thread-Unsafe Functions (Class 3)

/* Convert integer to string */
char *itoa(int x)

m Returning a pointer toa

static variable {
. . . . static char buf[1l1];
m Like class 2, locking inside snprintf (buf, 11, "%d", x);
function would not help ARSI Rb e

= Race between use of result
and calls from another thread

m Fix: make caller supply T —————
space for result (thread-safe) */

void itoa r(int x, char *buf,
= Requires APl change size t bufsz)

(also like class 2) {
snprintf (buf, bufsz, "%d", x);
= Can be awkward for caller: }

how much space is required?

40

Carnegie Mellon

Thread-Unsafe Functions (Class 4)

m Calling thread-unsafe functions

= Any function that uses a class 1, 2, or 3 function internally is just as
thread-unsafe as that function itself

= This applies transitively

m Only fix is to modify the function to use only thread-safe
functions
= This may or may not involve APl changes

41

Carnegie Mellon

Thread-Safe Library Functions

m Most ISO Clibrary functions are thread-safe
= Examples:malloc, free, printf, scanf
= Exceptions: strtok, rand, asctime, ...

m Many older Unix C library functions are unsafe
"= There is usually a safe replacement

Thread-unsafe function Class Reentrant version
asctime 3 strftime
ctime 3 strftime
localtime 3 strftime
gethostbyname 3 getaddrinfo
gethostbyaddr 3 getnameinfo
inet ntoa 3 getnameinfo
rand 2 rand r¥*

* The C library’s random number generators are all old
and not very “strong”. Use a modern CSPRNG instead.

Carnegie Mellon

Reentrant Functions

m Def: A function is reentrant if it accesses no shared
variables when called by multiple threads.
= |mportant subset of thread-safe functions
= Require no synchronization operations

= Only way to make a Class 2 function thread-safe is to make it
reentrant (e.g., rand r)

All functions

Thread-safe
functions

Thread-unsafe

Reentrant functions

functions

43

Carnegie Mellon

Threads / Signals Interactions

fprintf.lock() l Receive

signal , Handler

-
~=a
-
~=a
~—-a
-
-
-
-

m Many library functions use lock-and-copy for thread safety
= malloc
= Free lists
= fprintf, printf, puts
= So that outputs from multiple threads don’t interleave
= snprintf
= Calls malloc internally for scratch space
m OKto interrupt them with locks held
= ..as long as the handler doesn’t use them itself!

44

Carnegie Mellon

Bad Thread / Signal Interactions

fprintf.lock() l Receive

signal , Handler

* fprintf.lock()

-
~=a
-
~=a
~—-a
-
-
-
-

m What if:

= Signal received while library function holds lock

= Handler calls same (or related) library function
m Deadlock!

= Signal handler cannot proceed until it gets lock

= Main program cannot proceed until handler completes
m Key Point

= Threads employ symmetric concurrency

= Signal handling is asymmetric
45

	Slide 1: Synchronization: Advanced 15-213/15-513: Introduction to Computer Systems 24th Lecture, April 16, 2025
	Slide 4: Today
	Slide 5: Races
	Slide 6: Races
	Slide 7: Races
	Slide 8: Races
	Slide 9: Races
	Slide 10: Races
	Slide 11: Not all races involve threads
	Slide 12: Races involving signal handlers
	Slide 13: Race Elimination
	Slide 14: Today
	Slide 15: Deadlock
	Slide 16: Deadlock caused by wrong locking order
	Slide 18: Deadlock Visualized in Progress Graph
	Slide 19: Fix this deadlock with consistent ordering
	Slide 20: Today
	Slide 21: Recall: Semaphores
	Slide 22: Semaphores for Events
	Slide 24: Semaphores for Events
	Slide 25: Queues, Producers, and Consumers
	Slide 26: Producer-Consumer on 1-entry Queue
	Slide 27: Why 2 Semaphores for 1-entry Queue?
	Slide 28: Producer-Consumer on n-element Queue
	Slide 29: Today
	Slide 30: Readers-Writers Problem
	Slide 31: Pthreads Reader/Writer Lock
	Slide 32: Reader/Writer Starvation
	Slide 33: Starvation
	Slide 35: Today
	Slide 36: Thread-Safe APIs
	Slide 37: Thread-Unsafe Functions (Class 1)
	Slide 38: Thread-Unsafe Functions (Class 2)
	Slide 39: Fixing Class 2 Thread-Unsafe Functions
	Slide 40: Thread-Unsafe Functions (Class 3)
	Slide 41: Thread-Unsafe Functions (Class 4)
	Slide 42: Thread-Safe Library Functions
	Slide 43: Reentrant Functions
	Slide 44: Threads / Signals Interactions
	Slide 45: Bad Thread / Signal Interactions

