
Carnegie Mellon

1

Synchronization: Advanced

15-213/15-513: Introduction to Computer Systems
24th Lecture, April 16, 2025

Carnegie Mellon

4

Today

 Review: Races, Mutual Exclusion

 Deadlock

 Semaphores, Events, and Queues

 Reader-Writer Locks and Starvation

 Thread-Safe API Design

Carnegie Mellon

5

Races

 A race occurs when correctness of the program depends on one
thread reaching point x before another thread reaches point y

int cnt;

int main(int argc, char** argv) {

 pthread_t t1, t2;

 Pthread_create(&t1, NULL, thread, NULL);

 Pthread_create(&t2, NULL, thread, NULL);

 Pthread_join(t1, NULL);

 Pthread_join(t2, NULL);

 return (counter != 20000);

}

/* thread routine */

void *thread(void *vargp) {

 for (int i = 0; i < 10000; i++)

 cnt++;

 return NULL;

}

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

Unsafe region

unsafe

safe

Carnegie Mellon

6

Races

 Some races can be fixed with mutual exclusion

int cnt;

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

int main(int argc, char** argv) {

 pthread_t t1, t2;

 Pthread_create(&t1, NULL, thread, NULL);

 Pthread_create(&t2, NULL, thread, NULL);

 Pthread_join(t1, NULL);

 Pthread_join(t2, NULL);

 return (counter != 20000);

}

void *thread(void *vargp) {

 for (int i = 0; i < 10000; i++) {

pthread_mutex_lock(&lock);

 cnt++;

pthread_mutex_unlock(&lock);

 }

 return NULL;

}

Carnegie Mellon

7

Races

 Not all races can be addressed with mutual exclusion

int main(int argc, char** argv) {

 pthread_t tid[N];

 int i;

 for (i = 0; i < N; i++)

 Pthread_create(&tid[i], NULL, thread, &i);

 for (i = 0; i < N; i++)

 Pthread_join(tid[i], NULL);

 return 0;

}

/* thread routine */

void *thread(void *vargp) {

 int myid = *(int *)vargp;

 printf("Hello from thread %d\n", myid);

 return NULL;

}

Carnegie Mellon

8

Races

 Not all races can be addressed with mutual exclusion

int main(int argc, char** argv) {

 pthread_t tid[N];

 int i;

 for (i = 0; i < N; i++)

 Pthread_create(&tid[i], NULL, thread, &i);

 for (i = 0; i < N; i++)

 Pthread_join(tid[i], NULL);

 return 0;

}

/* thread routine */

void *thread(void *vargp) {

 int myid = *(int *)vargp;

 printf("Hello from thread %d\n", myid);

 return NULL;

}

i=0 &i PC i++

start

myid =

printf

Parent

Thread

Carnegie Mellon

9

Races

 This race can be fixed by copying data

int main(int argc, char** argv) {

 pthread_t tid[N];

 int i;

 for (i = 0; i < N; i++)

 Pthread_create(&tid[i], NULL, thread, (void *)i);

 for (i = 0; i < N; i++)

 Pthread_join(tid[i], NULL);

 return 0;

}

/* thread routine */

void *thread(void *vargp) {

 int myid = (int)vargp;

 printf("Hello from thread %d\n", myid);

 return NULL;

}

Carnegie Mellon

10

Races

 This race can also be fixed with a semaphore

sem_t sem;

int main(int argc, char** argv) {

 pthread_t tid[N];

 int i;

Sem_init(&sem, 0, 0); // initially closed

 for (i = 0; i < N; i++) {

 Pthread_create(&tid[i], NULL, thread, &i);

sem_wait(&sem);

 }

 for (i = 0; i < N; i++)

 Pthread_join(tid[i], NULL);

 return 0;

}

void *thread(void *vargp) {

 int myid = *(int *)vargp;

sem_post(&sem);

 printf("Hello from thread %d\n", myid);

 return NULL;

}

Carnegie Mellon

11

Not all races involve threads

 Time of check to time of use (TOCTOU)

 Fix: Don’t check, just use (but be ready for failure)

if (access("myfile.txt", R_OK) == 0) {

 FILE *fp = fopen("myfile.txt", "r");

 while (fgets(fp, buf, sizeof buf) != NULL)

 process_line(buf);

 fclose(fp);

} else {

 fprintf(stderr, "myfile.txt not found\n");

}

Check
Use

$ rm myfile.txt

FILE *fp = fopen("myfile.txt", "r");

if (fp) {

 while (fgets(fp, buf, sizeof buf) != NULL)

 process_line(buf);

 fclose(fp);

} else {

 fprintf(stderr, "myfile.txt: %s\n", strerror(errno));

}

Carnegie Mellon

12

Races involving signal handlers

 Event happens earlier than anticipated
void sigchld_handler(int unused) {

 int status;

 pid_t pid;

 while ((pid = waitpid(-1, &status, WNOHANG|WUNTRACED)) > 0)

 job_status_change(pid, status);

}

void start_fg_job(char **argv) {

 pid_t pid = fork();

 if (pid == -1) {

 perror("fork");

 return;

 } else if (pid == 0) {

 execve(argv[0], argv, environ);

 perror("execve");

 exit(127);

 } else {

 add_job(pid, argv);

 }

}

SIGCHLD delivered

Carnegie Mellon

13

Race Elimination
 Don’t share state

▪ e.g. use malloc to generate separate copy of argument for each
thread

 Don’t check before using

▪ Attempt to use, see if it failed

 Use synchronization primitives
▪ Which synchronization primitive? Depends on the situation

Carnegie Mellon

14

Today

 Review: Races, Mutual Exclusion

 Deadlock

 Semaphores, Events, and Queues

 Reader-Writer Locks and Starvation

 Thread-Safe API Design

Carnegie Mellon

15

Deadlock

 A program is deadlocked when
it is waiting for an event which
cannot ever happen
▪ Mathematical impossibility, not

just practical

 Most common form:
▪ Thread A is waiting for thread B to

do something

▪ Thread B is waiting for thread A to
do something

▪ Neither can make forward progress

Carnegie Mellon

16

Deadlock caused by wrong locking order
void *thread_1(void *arg) {

 pthread_mutex_lock(&mA);

 pthread_mutex_lock(&mB);

 // do stuff ...

 pthread_mutex_unlock(&mA);

 pthread_mutex_unlock(&mB);

}

void *thread_2(void *arg) {

 pthread_mutex_lock(&mB);

 pthread_mutex_lock(&mA);

 // do stuff ...

 pthread_mutex_unlock(&mB);

 pthread_mutex_unlock(&mA);

}

Carnegie Mellon

18

Deadlock Visualized in Progress Graph

Any trajectory that enters
the deadlock region will
eventually reach the
deadlock state where each
thread is waiting for the other
to release a lock

Other trajectories luck out and
skirt the deadlock region

Unfortunate fact: trajectory
variations may mean deadlock
bugs are nondeterministic
(don’t always manifest,
making them hard to debug)

Thread 0

Thread 1

L(b) U(b)L(a) U(a)

U(a)

L(a)

L(b)

U(b)
Forbidden region
for b

Forbidden region
for a

Deadlock state:
cannot move
up or right –
both threads
are stuck

Deadlock
region

Carnegie Mellon

19

Fix this deadlock with consistent ordering
void *thread_1(void *arg) {

 pthread_mutex_lock(&mA);

 pthread_mutex_lock(&mB);

 // do stuff ...

 pthread_mutex_unlock(&mA);

 pthread_mutex_unlock(&mB);

}

void *thread_2(void *arg) {

 pthread_mutex_lock(&mA);

 pthread_mutex_lock(&mB);

 // do stuff ...

 pthread_mutex_unlock(&mB);

 pthread_mutex_unlock(&mA);

}

L(a) U(b)L(b) U(a)

U(a)

L(a)

L(b)

U(b)
Forbid-
den
region
for b

Forbidden region
for a

Always possible to move
up or move right

Inconsistent unlock order
does not matter

Carnegie Mellon

20

Today

 Review: Races, Mutual Exclusion

 Deadlock

 Semaphores, Events, and Queues

 Reader-Writer Locks and Starvation

 Thread-Safe API Design

Carnegie Mellon

21

Recall: Semaphores

 Integer value, always >= 0

 P(s) operation (aka sem_wait)

▪ If s is zero, wait for a V operation to happen.

▪ Then subtract 1 from s and return.

 V(s) operation (aka sem_post)

▪ Add 1 to s.

▪ If there are any threads waiting inside a P operation,
resume one of them

 Any thread may call P; any thread may call V; no ordering
requirements
▪ Key difference from mutexes

Carnegie Mellon

22

Semaphores for Events

 Remember this program?

 Let’s fix it.

 With semaphores.

#define N 4

long *pointers[N];

void *thread(void *vargp) {

 long myid = (long) vargp;

 pointers[myid] = &myid;

 sleep(2);

 return NULL;

}

int main(void) {

 long i;

 pthread_t tids[N];

 for (i = 0; i < N; i++)

 Pthread_create(&tids[i], NULL,

 thread, (void *) i);

 sleep(1);

 for (i = 0; i < N; i++)

 printf("Thread #%ld has "

 "local value %ld\n",

 i, *pointers[i]);

 for (i = 0; i < N; i++)

 Pthread_join(tids[i], NULL);

 return 0;

}

Carnegie Mellon

24

Semaphores for Events
#define N 4

long *pointers[N];

sem_t ready[N];

sem_t finish;

void *thread(void *vargp) {

 long myid = (long) vargp;

 pointers[myid] = &myid;

sem_post(&ready[myid]);

sem_wait(&finish);

 return NULL;

}

int main(void) {

 long i;

 pthread_t tids[N];

Sem_init(&finish, 0, 0);

 for (i = 0; i < N; i++) {

Sem_init(&ready[i], 0, 0);

 Pthread_create(&tids[i], NULL,

 thread, (void *) i);

 }

 for (i = 0; i < N; i++) {

sem_wait(&ready[i]);

 printf("Thread #%ld has "

 "local value %ld\n",

 i, *pointers[i]);

 }

for (i = 0; i < N; i++)

sem_post(&finish);

 for (i = 0; i < N; i++)

 Pthread_join(tids[i], NULL);

 return 0;

}

Carnegie Mellon

25

Queues, Producers, and Consumers

 Common synchronization pattern:
▪ Producer waits for empty slot, inserts item in queue, and notifies consumer

▪ Consumer waits for item, removes it from queue, and notifies producer

 Examples
▪ Multimedia processing:

▪ Producer creates video frames, consumer renders them

▪ Event-driven graphical user interfaces

▪ Producer detects mouse clicks, mouse movements, and keyboard hits
and inserts corresponding events in queue

▪ Consumer retrieves events from queue and paints the display

producer
thread

shared
queue

consumer
thread

Carnegie Mellon

26

Producer-Consumer on 1-entry Queue

 Maintain two semaphores: full + empty

empty
buffer

0

full

1

empty

full
buffer

1

full

0

empty

Carnegie Mellon

27

Why 2 Semaphores for 1-entry Queue?

 Consider multiple producers & multiple consumers

 Producers will contend with each to get empty

 Consumers will contend with each other to get full

shared
queue

P1

Pn







C1

Cm







P(&shared.full);

item = shared.buf;

V(&shared.empty);

Consumers

P(&shared.empty);

shared.buf = item;

V(&shared.full);

Producers
fullempty

Carnegie Mellon

28

Producer-Consumer on n-element Queue

 Requires a mutex and two counting semaphores:
▪ mutex: enforces mutually exclusive access to the queue’s innards

▪ slots: counts the available slots in the queue

▪ items: counts the available items in the queue

 Makes use of semaphore values > 1 (up to n)

P1

Pn







C1

Cm








Between 0 and n elements

Carnegie Mellon

29

Today

 Review: Races, Mutual Exclusion

 Deadlock

 Semaphores, Events, and Queues

 Reader-Writer Locks and Starvation

 Thread-Safe API Design

Carnegie Mellon

30

Readers-Writers Problem

 Problem statement:
▪ Reader threads only read the object

▪ Writer threads modify the object (read/write access)

▪ Writers must have exclusive access to the object

▪ Unlimited number of readers can access the object

 Occurs frequently in real systems, e.g.,
▪ Online airline reservation system

▪ Multithreaded caching Web proxy

W1

W3

W2

R1

R3

R2

Read/
Write
Access

Read-only
Access

Carnegie Mellon

31

Pthreads Reader/Writer Lock

 Data type pthread_rwlock_t

 Operations
▪ Acquire read lock

pthread_rwlock_rdlock(pthread_rwlock_t *rwlock)

▪ Acquire write lock

pthread_rwlock_wrlock(pthread_rwlock_t *rwlock)

▪ Release (either) lock

pthread_rwlock_unlock(pthread_rwlock_t *rwlock)

 Must be used correctly!

▪ Up to programmer to decide what requires read access and what
requires write access

Carnegie Mellon

32

Reader/Writer Starvation

 Thread 1 has a read lock. Thread 2 is waiting for a write
lock. Thread 3 tries to take a read lock. What happens?

 Option 1: R2 gets read lock immediately
▪ Endless stream of overlapping readers → W waits forever

 Option 2: Writer always gets lock as soon as possible
▪ Endless stream of overlapping writers → readers wait forever

 (not shown)

R1

R2

W

?

R1
W

R2

R1
W

R2

Carnegie Mellon

33

Starvation

 A thread is starved when it makes no forward progress for
an unacceptably long time

▪ Unlike deadlock, it’s possible for it to get unstuck eventually

▪ “Unacceptably long” depends on the application

 Algorithms that guarantee no starvation are called fair
▪ Fair R/W locks: every waiter receives the lock in first-come first-

served order (several readers can receive the lock at the same time)

▪ Fairness is more complicated to implement

▪ Fairness can mean all threads are slower than they would be in an
unfair system (e.g. “lock convoy problem”)

R1
W

R2

Carnegie Mellon

35

Today

 Review: Races, Mutual Exclusion

 Deadlock

 Semaphores, Events, and Queues

 Reader-Writer Locks and Starvation

 Thread-Safe API Design

Carnegie Mellon

36

Thread-Safe APIs

 A function is thread-safe if it always produces correct
results when called repeatedly from multiple concurrent
threads.

 Reasons for a function not to be thread-safe:
1. Internal shared state, no locking (e.g. your malloc)

2. Internal state modified across multiple uses (e.g. rand)

3. Returns a pointer to a static variable (e.g. strtok)

4. Calls a function that does any of the above

Carnegie Mellon

37

Thread-Unsafe Functions (Class 1)

 These functions would be thread-safe if they began with
pthread_mutex_lock(&l) and ended with
pthread_mutex_unlock(&l) for some lock L

 Good example: malloc, realloc, free

▪ Your implementation will crash if called from multiple concurrent
threads

▪ The C library’s implementation won’t; it has internal locks

 Locking slows things down, of course

Carnegie Mellon

38

Thread-Unsafe Functions (Class 2)

 Relying on persistent state across multiple function invocations
▪ Example: Random number generator that relies on static state

 Difference from class 1: locking would not fix the problem
▪ 2 threads call rand() simultaneously, both get different results than if

only one made a sequence of calls to rand()

static unsigned int next = 1;

/* rand: return pseudo-random integer on 0..32767 */

int rand(void) {

 next = next*1103515245 + 12345;

 return (unsigned int)(next/65536) % 32768;

}

/* srand: set seed for rand() */

void srand(unsigned int seed) {

 next = seed;

}

Carnegie Mellon

39

Fixing Class 2 Thread-Unsafe Functions

 Pass state as part of argument
▪ and, thereby, eliminate static state

 Requires API change

 Callers responsible for allocating space for state

/* rand_r - return pseudo-random integer on 0..32767 */

int rand_r(int *nextp)

{

 *nextp = *nextp*1103515245 + 12345;

 return (unsigned int)(*nextp/65536) % 32768;

}

Carnegie Mellon

40

Thread-Unsafe Functions (Class 3)

 Returning a pointer to a
static variable

 Like class 2, locking inside
function would not help
▪ Race between use of result

and calls from another thread

 Fix: make caller supply
space for result

▪ Requires API change
(also like class 2)

▪ Can be awkward for caller:
how much space is required?

/* Convert integer to string */

char *itoa(int x)

{

 static char buf[11];

 snprintf(buf, 11, "%d", x);

 return buf;

}

/* Convert integer to string

 (thread-safe) */

void itoa_r(int x, char *buf,

 size_t bufsz)

{

 snprintf(buf, bufsz, "%d", x);

}

Carnegie Mellon

41

Thread-Unsafe Functions (Class 4)

 Calling thread-unsafe functions

▪ Any function that uses a class 1, 2, or 3 function internally is just as
thread-unsafe as that function itself

▪ This applies transitively

 Only fix is to modify the function to use only thread-safe
functions
▪ This may or may not involve API changes

Carnegie Mellon

42

Thread-Safe Library Functions

 Most ISO C library functions are thread-safe
▪ Examples: malloc, free, printf, scanf

▪ Exceptions: strtok, rand, asctime, …

 Many older Unix C library functions are unsafe
▪ There is usually a safe replacement

Thread-unsafe function Class Reentrant version

asctime 3 strftime

ctime 3 strftime

localtime 3 strftime

gethostbyname 3 getaddrinfo

gethostbyaddr 3 getnameinfo

inet_ntoa 3 getnameinfo

rand 2 rand_r*

* The C library’s random number generators are all old
and not very “strong”. Use a modern CSPRNG instead.

Carnegie Mellon

43

Reentrant Functions

 Def: A function is reentrant if it accesses no shared
variables when called by multiple threads.

▪ Important subset of thread-safe functions

▪ Require no synchronization operations

▪ Only way to make a Class 2 function thread-safe is to make it
reentrant (e.g., rand_r)

Reentrant
functions

All functions

Thread-unsafe
functions

Thread-safe
functions

Carnegie Mellon

44

Threads / Signals Interactions

 Many library functions use lock-and-copy for thread safety
▪ malloc

▪ Free lists

▪ fprintf, printf, puts

▪ So that outputs from multiple threads don’t interleave

▪ snprintf

▪ Calls malloc internally for scratch space

 OK to interrupt them with locks held
▪ … as long as the handler doesn’t use them itself!

Icurr

Inext

Handler

Receive
signal

fprintf.lock()

fprintf.unlock()

Carnegie Mellon

45

Bad Thread / Signal Interactions

 What if:

▪ Signal received while library function holds lock

▪ Handler calls same (or related) library function

 Deadlock!
▪ Signal handler cannot proceed until it gets lock

▪ Main program cannot proceed until handler completes

 Key Point
▪ Threads employ symmetric concurrency

▪ Signal handling is asymmetric

Icurr

Inext

Handler

Receive
signal

fprintf.lock()

fprintf.unlock()

fprintf.lock()
fprintf.unlock()

	Slide 1: Synchronization: Advanced 15-213/15-513: Introduction to Computer Systems 24th Lecture, April 16, 2025
	Slide 4: Today
	Slide 5: Races
	Slide 6: Races
	Slide 7: Races
	Slide 8: Races
	Slide 9: Races
	Slide 10: Races
	Slide 11: Not all races involve threads
	Slide 12: Races involving signal handlers
	Slide 13: Race Elimination
	Slide 14: Today
	Slide 15: Deadlock
	Slide 16: Deadlock caused by wrong locking order
	Slide 18: Deadlock Visualized in Progress Graph
	Slide 19: Fix this deadlock with consistent ordering
	Slide 20: Today
	Slide 21: Recall: Semaphores
	Slide 22: Semaphores for Events
	Slide 24: Semaphores for Events
	Slide 25: Queues, Producers, and Consumers
	Slide 26: Producer-Consumer on 1-entry Queue
	Slide 27: Why 2 Semaphores for 1-entry Queue?
	Slide 28: Producer-Consumer on n-element Queue
	Slide 29: Today
	Slide 30: Readers-Writers Problem
	Slide 31: Pthreads Reader/Writer Lock
	Slide 32: Reader/Writer Starvation
	Slide 33: Starvation
	Slide 35: Today
	Slide 36: Thread-Safe APIs
	Slide 37: Thread-Unsafe Functions (Class 1)
	Slide 38: Thread-Unsafe Functions (Class 2)
	Slide 39: Fixing Class 2 Thread-Unsafe Functions
	Slide 40: Thread-Unsafe Functions (Class 3)
	Slide 41: Thread-Unsafe Functions (Class 4)
	Slide 42: Thread-Safe Library Functions
	Slide 43: Reentrant Functions
	Slide 44: Threads / Signals Interactions
	Slide 45: Bad Thread / Signal Interactions

