Carnegie Mellon

R gy

» ‘/> »
WELCOME

<0 AN i

14-513

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Concurrent Programming

15-213/14-513/15-513: Introduction to Computer Systems
22nd Lecture, April 8, 2025

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Today

m Concurrent Programming Basics

m Process-based Servers CSAPP 12.1
m Event-based Servers CSAPP 12.2
m Thread-based Servers CSAPP 12.3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Concurrent Programming is Hard!

m The human mind tends to be sequential
m The notion of time is often misleading

m Thinking about all possible sequences of events in a
computer system is at least error prone and
frequently impossible

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Concurrent Programming is Hard!

m Classical problem classes of concurrent programs:

" Races: outcome depends on arbitrary scheduling decisions
elsewhere in the system

= Deadlock: improper resource allocation prevents forward progress

= [jvelock / Starvation / Fairness: external events and/or system
scheduling decisions can prevent sub-task progress

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Data Race

®

,,,,,

/* Global shared variable */

volatile long cnt = 0; /* Counter */
void *thread(void *vargp)
{

long i, niters =
*((long *)vargp);

for (i = 0; i < niters; i++)
cnt++;

return NULL;
}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

Deadlock

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Deadlock

m Example from signal handlers.

m Why don’t we use printf in handlers?

void catch child(int signo) {

printf ("Child exited!'\n") ; // this call may reenter printf/puts! BAD! DEADLOCK!
while (waitpid(-1, NULL, WNOHANG) > 0) continue; //reap all children

} Acquire Receive
m Printf code: Lourr 4 10K signal . (Try to)
= Acquire lock T ! acquire
= Do something ~~~~~~~~ " lock
= Release lock ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Deadlock

m Example from signal handlers.

m Why don’t we use printf in handlers?

void catch child(int signo) {

printf ("Child exited!'\n") ; // this call may reenter printf/puts! BAD! DEADLOCK!
while (waitpid(-1, NULL, WNOHANG) > 0) continue; //reap all children

}
l Acquire Receive
m Printf code: Lourr v 10K signal . (Try to)
= Acquire lock next ' acquire
Y Jock

= Do something
= Release lock

m What if signal handler interrupts call to printf?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Testing Printf Deadlock

static void sigchld(int unused) {
int status;
pid _t pid;
while ((pid = waitpid(-1, &status, WNOHANG)) > 0) {
printf ("Child %d exited with status %04x\n", pid, status);
}

int main(void) {

signal (SIGCHLD, sigchld) ;

for (int i = 0; i < 1000000; i++) {
pid t pid = fork();
if (pid == 0)

_exit(0);
// in parent
printf ("Child #%d=%d started\n",
ir Pid) ’
}

return 0;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Testing Printf Deadlock

static void sigchld(int unused) {
int status;
pid _t pid;
while ((pid = waitpid(-1, &status, WNOHANG)) > 0) {
printf ("Child %d exited with status %04x\n", pid, status);
}

int main(void) { Child #0=1234 started
signal (SIGCHLD, sigchld); Child #1=1235 started
for (int 1 = 0; i < 1000000; Child #2=1236 started
pid_t pid = fork(); Child #3=1237 started

if (pid == 0) Child 1234 exited with status 0000
_exit(0); Child #4=1238 started

// in parent Child 1235 exited with status 0000

printf ("Child #%d=%d sta: Child 1236 exited with status 0000

ir Pid) ’

}

return O; .
} Child #3566=16979 started
and then, silence

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

Testing Printf Deadlock

static void sigchld(int unused) {
int status;
pid _t pid;
while ((pid = waitpid(-1, &status, WNOHANG)) > 0) {

}

}

printf ("Child %d exited with status %04x\n", pid, status);

int main(void) {

in 111 lock wait private ()
in L lock 1177 ()

in IO vfprintf internal ()
in printf (

format="Child %d exited with status %04x\n")

in sigchld ()

in IO vfprintf internal ()
in printf (

format="Child #%d=%d started\n")

(gdb) bt

#0 O0x00007f£f£f£f7b197fc
#1 0x00007f£f£f£f7a5b00e
#2 0x00007f£££f7a557f4
#3 O0x00007ffff7a604e9
#4 0x0000000000400678
#5 <signal handler called>
#6 0x00007f£f£f£f7a5583f
#7 O0x00007ffff7a604e9

}
#8 0x00000000004006d2

in main ()

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

12

Carnegie Mellon

Why Does Printf require Locks?

m Printf (and fprintf, sprintf) implement buffered 1/O

< Buffered Portion >

no longer in buffer already read unread unseen

J

Current File Position

m Require locks to access the shared buffers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Livelock

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Livelock

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Starvation

m Yellow must yield to
green

m Continuous stream
of green cars

Overall system
makes progress, but
some individuals
wait indefinitely

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Concurrent Programming is Hard!

m Classical problem classes of concurrent programs:
= Deadlock: improper resource allocation prevents forward progress
= Example: traffic gridlock

= [jvelock / Starvation / Fairness: external events and/or system
scheduling decisions can prevent sub-task progress

= Example: people always jump in front of you in line

" Races: outcome depends on arbitrary scheduling decisions
elsewhere in the system

= Example: who gets the last seat on the airplane?

m Many aspects of concurrent programming are beyond the
scope of our course...

" hut, not all ©
= We'll cover some of these aspects in the next few lectures.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Concurrent Programming is Hard!

It may be hard, but ...

it can be useful and more and more necessary!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Reminder: Iterative Echo Server

Client Server
[3\
socket socket
bind > open_listenfd
open_clientfd < l
listen
Connection l /
request
\ connect [T > accept <
v A 4
Client / » rio writen »rio_readlineb/«
Server . .
Sessi l l Await connection
ession rio_readlineb < rio_writen request from
next client
v v
EOF
close = [------ Q ------ >rio_readlineb
\ 4
close

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Iterative Servers

m Iterative servers process one request at a time

Client 1 Server
ConneCt .. >
accept
write f read
call read| :
ret read e anmmmnmnnmmnnen e write
read
close | g_lose
.......... N

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Iterative Servers

m Iterative servers process one request at a time

Client 1 Server Client 2
Connect .. >
accept| e connect
PRSSTSRRTELL
WELite b ffif _________________ write
call read PRSSSRRRRIIIIIE
............................... e call read
ret read [*” write ~
read
close | .(.:.':I,'ose Wait for server
------ »] . . .
accept > to finish with
Client 1
read
write
................................ _
] | | ret read

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

21

Carnegie Mellon

Where Does Second Client Block?

m Second client attemptsto = Call to connect returns

connect to iterative server = Even though connection not
yet accepted

Client _
p = Server side TCP manager
socket queues request
= Feature known as “TCP
listen backlog”
open_clientfd { m Call to rio_writen returns
Connection = Server side TCP manager
request buffers input data
connect ["TTTTTTTTooos > . .
\ I m Call torio_readlineb
. _ blocks
rio_writen >
I = Server hasn’t written
rio readlineb | anything for it to read yet.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Fundamental Flaw of Iterative Servers

Client 1 Server Client 2
Connect .. >
accept| e connect
write callread;a --------------------- irite
call read PRSSSRRRRRTIIIE
............................. conneeees call read
ret read [*” write

User goes
out to lunch

Client 1 blocks
waiting for user
to type in data

call read
Server blocks
waiting for
data from

} Client 1|

m Solution: use concurrent servers instead

= Concurrent servers use multiple concurrent flows to serve multiple
clients at the same time

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client 2 blocks
waiting to read
from server

23

Carnegie Mellon

Approaches for Writing Concurrent Servers

Allow server to handle multiple clients concurrently

1. Process-based
= Kernel automatically interleaves multiple logical flows
= Each flow has its own private address space

2. Event-based
" Programmer manually interleaves multiple logical flows
= All flows share the same address space
= Uses technique called I/O multiplexing

3. Thread-based

= Kernel automatically interleaves multiple logical flows
= Each flow shares the same address space
" Hybrid of process-based and event-based

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Approaches for Writing Concurrent Servers

Allow server to handle multiple clients concurrently

1. Process-based
= Kernel automatically interleaves multiple logical flows
= Each flow has its own private address space

2. Event-based
" Programmer manually interleaves multiple logical flows
= All flows share the same address space
= Uses technique called I/O multiplexing

3. Thread-based

= Kernel automatically interleaves multiple logical flows
" Each flow shares the same address space
" Hybrid of process-based and event-based

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Today

Concurrent Programming Basics
Process-based Servers

O
O
m Event-based Servers
O

Thread-based Servers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Approach #1: Process-based Servers

m Spawn separate process for each client

client 1 server
call connecCti...eni call accept
................. 'Y ret accept
call fgets
child1/ fork
User goes call read call accept
out to lunch
Child blocks
Client 1 waiting for
blocks data from
waiting for Client 1 |
user to type
in data

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Approach #1: Process-based Servers

m Spawn separate process for each client

client 1

call connect

call fgets

User goes
out to lunch

Client 1
blocks
waiting for
user to type
in data

A

y

call read

Child blocks
waiting for
data from
Client 1

server

Child1/

A 4

A 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

call accept

ret accept

fork

call accept
ret accept

fork wg

read

close

v

v

client 2

call connect

call fgets

write

call read

ret read
close

28

Carnegie Mellon

Iterative Echo Server

int main(int argc, char **argv)

{

int listenfd, connfd;
socklen t clientlen;
struct sockaddr storage clientaddr;

listenfd = Open_ listenfd(argv([1l]);
while (1) {
clientlen = sizeof (struct sockaddr storage);
connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
echo (connfd) ;
Close (connfd) ;

}
exit (0) ;

= Accept a connection request
"Handle echo requests until client terminates

echoserverp.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Making a Concurrent Echo Server

int main(int argc,

{

char **argv)

int listenfd, connfd;
socklen t clientlen;
struct sockaddr storage clientaddr;

listenfd = Open_ listenfd(argv([1l]);
while (1) {

clientlen = sizeof (struct sockaddr storage);

connfd = Accept(listenfd,

(SA *) &clientaddr,

&clientlen) ;

echo (connfd) ;
Close (connfd) ;

/* Child services client */
/* child closes connection with client */

exit (0) ;

echoserverp.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Making a Concurrent Echo Server

int main(int argc, char **argv)

{

int listenfd, connfd;
socklen t clientlen;
struct sockaddr storage clientaddr;

listenfd = Open_ listenfd(argv([1l]);
while (1) {

clientlen = sizeof (struct sockaddr storage);

connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);

if (Fork() == 0) {
echo (connfd) ; /* Child services client */
Close (connfd) ; /* Child closes connection with client */
exit(0) ; /* Child exits */

echoserverp.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Making a Concurrent Echo Server

int main(int argc, char **argv)

{

int listenfd, connfd;
socklen t clientlen;
struct sockaddr storage clientaddr;

listenfd = Open_ listenfd(argv([1l]);
while (1) {

clientlen = sizeof (struct sockaddr storage);

connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);

if (Fork() == 0) {
echo (connfd) ; /* Child services client */
Close (connfd) ; /* Child closes connection with client */
exit(0) ; /* Child exits */

}

Close(connfd); /* Parent closes connected socket (important!) */

echoserverp.c

Why?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

Making a Concurrent Echo Server

int main(int argc, char **argv)

{

int listenfd, connfd;
socklen t clientlen;
struct sockaddr storage clientaddr;

listenfd = Open_ listenfd(argv([1l]);
while (1) {

clientlen = sizeof (struct sockaddr storage);

connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);

if (Fork() == 0) {
Close(listenfd); /* Child closes its listening socket */
echo (connfd) ; /* Child services client */
Close (connfd) ; /* Child closes connection with client */
exit(0) ; /* Child exits */

}

Close(connfd); /* Parent closes connected socket (important!) */

echoserverp.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Process-Based Concurrent Echo Server

int main(int argc, char **argv)

{

int listenfd, connfd;
socklen t clientlen;
struct sockaddr storage clientaddr;

Signal (SIGCHLD, sigchld handler) ;
listenfd = Open_ listenfd(argv([1l]);
while (1) {

clientlen = sizeof (struct sockaddr storage);

connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);

if (Fork() == 0) {
Close(listenfd); /* Child closes its listening socket */
echo (connfd) ; /* Child services client */
Close (connfd) ; /* Child closes connection with client */
exit(0) ; /* Child exits */

}

Close(connfd); /* Parent closes connected socket (important!) */

echoserverp.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Process-Based Concurrent Echo Server

(cont)

void sigchld handler (int sig)

{
while (waitpid(-1, 0, WNOHANG) > 0)
return;

} echoserverp.c

= Reap all zombie children

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Concurrent Server: accept lllustrated

listenfd (3)
Client l T Server
clientfd
Connection listenfd (3)
request
___________________ >
Client l T Server
clientfd
listenfd (3)

T Server

Client Server
en « . Child

clientfd connfd (4)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

1. Server blocks in accept,
waiting for connection

request on listening
descriptor 1istenfd

2. Client makes connection
request by calling connect

3. Server returns connfd from
accept. Forks child to handle

client. Connection is now
established between clientfd
and connfd

36

Carnegie Mellon

Process-based Server Execution Model

Connection requests

Client 1 data | Client1
< »| server

process

Listening
server
process

Client 2
server
process

<

Client 2 data

4

= Each client handled by independent child process

=" No shared state between them

= Both parent & child have copies of listenfd and connfd

= Parent must close connfd

» Child should close 1istenfd

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

37

Carnegie Mellon

Issues with Process-based Servers

m Listening server process must reap zombie children

® to avoid fatal memory leak

m Parent process must close its copy of connfd

= Kernel keeps reference count for each socket/open file
= After fork, refcnt (connfd) = 2
® Connection will not be closed until refent (connfd) = 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Pros and Cons of Process-based Servers

+ Handle multiple connections concurrently.

+ Clean sharing model.
" descriptors (no)
= file tables (yes)
= global variables (no)

+ Simple and straightforward.

— Additional overhead for process control.

— Nontrivial to share data between processes.
" (This example too simple to demonstrate)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Carnegie Mellon

Today

Concurrent Programming Basics

L]
m Process-based Servers
m Event-based Servers

L]

Thread-based Servers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Approach #2: Event-based Servers

m Server maintains set of active connections
= Array of connfd’s

m Repeat:

= Determine which descriptors (connfd’s or lListenfd) have pending
inputs
= e.g., using select function

= arrival of pending input is an event
= |f listenfd has input, then accept connection

= and add new connfd to array
= Service all connfd’s with pending inputs

m Details for select-based server in book

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Carnegie Mellon

/O Multiplexed Event Processing

Read and service

Active Descriptors Pending Inputs
listenfd = 3 listenfd =3 €]
connfd’s connfd’s

o| 120 |) 10

1 > Active Anything 7 |~
z j 4 happened? j

4 1 > Inactive 1

> 12) 12 |«
6 [5 (~ Active Read and 5 |
71 | service -1

8 1 -1

3 -1 Never Used -1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Pros and Cons of Event-based Servers

+ One logical control flow and address space.
+ Can single-step with a debugger.

+ No process or thread control overhead.

= Design of choice for high-performance Web servers and search engines.
e.g., Node.js, nginx, Tornado

— Significantly more complex to code than process-based
or thread-based designs.

— Hard to provide fine-grained concurrency.
= E.g., how to deal with partial HTTP request headers

— Cannot take advantage of multi-core.
= Single thread of control

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Quiz Time!

Canvas Quiz: Day 22 — Concurrent Programming

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Today

Concurrent Programming Basics
Process-based Servers

O
O
m Event-based Servers
O

Thread-based Servers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Approach #3: Thread-based Servers

m Very similar to approach #1 (process-based)

= _.but using threads instead of processes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

Traditional View of a Process

m Process = process context + code, data, and stack

- Er_ose_ss_c_ort_e)_(t _______ Code, data, and stack

Program context: sp — Stack
Data registers
Condition codes Shared libraries
Stack pointer (SP)
Program counter (PC) brk — Run-time heap

Read/write data
PC —> Read-only code/data

VM structures
Descriptor table
brk pointer

I
I
I
I
I
I
I
I
I
I
: Kernel context:
I
I
I
I
I
I
I
I
I
I

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Alternate View of a Process

m Process = thread + code, data, and kernel context

Thread (main thread) Code, data, and kernel context

Shared libraries

brk >

Run-time heap
Read/write data
PC —> Read-only code/data

Thread context:
Data registers
Condition codes
Stack pointer (SP)
Program counter (PC)

Kernel context:
VM structures
Descriptor table
brk pointer

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

A Process With Multiple Threads

m Multiple threads can be associated with a process

= Each thread has its own logical control flow

= Each thread shares the same code, data, and kernel context

= Each thread has its own stack for local variables
= but not protected from other threads

= Each thread has its own thread id (TID)

Shared code and data

shared libraries

run-time heap

Thread 1 Thread 2
(main thread) (peer thread)
stack 1 stack 2

Thread 1 context: Thread 2 context:
Data registers Data registers
Condition codes Condition codes
SP, SP,

PC, PC,

read/write data

read-only code/data

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Kernel context:
VM structures
Descriptor table
brk pointer

49

Carnegie Mellon

Logical View of Threads

m Threads associated with process form a pool of peers

= Unlike processes which form a tree hierarchy

Threads associated with process foo Process hierarchy

® ¢
: (P1)

OXOX0),
_____________________ | ©
er

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

’0
.0
*

2 | shared code, data
and kernel context

Carnegie Mellon

Concurrent Threads

m Two threads are concurrent if their flows overlap in time
m Otherwise, they are sequential

m Examples:
" Concurrent: A & B, A&C
= Sequential:B&C | I _______________________________________

Thread A Thread B Thread C

Time I

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

Concurrent Thread Execution

m Single Core Processor = Multi-Core Processor

= Simulate parallelism by " Can have true
time slicing parallelism
Thread A Thread B Thread C Thread A Thread B Thread C

Run 3 threads on 2 cores

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon

Threads vs. Processes

m How threads and processes are similar
® Each has its own logical control flow
® Each can run concurrently with others (possibly on different cores)
® Each is context switched

m How threads and processes are different

" Threads share all code and data (except local stacks)

= Processes (typically) do not

®" Threads are somewhat less expensive than processes

= Process control (creating and reaping) twice as expensive as thread
control

= Linux numbers:
— ~20K cycles to create and reap a process
— ~10K cycles (or less) to create and reap a thread

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Carnegie Mellon

Threads vs. Signals

Receive

Loyrr signal

next <
|

> Handler

!

~—a

~~~~~
~~~~~
~—a

1
1
1
1
1
1
1

v

m Signal handler shares state with regular program
" |ncluding stack

m Signal handler interrupts normal program execution
= Unexpected procedure call
= Returns to regular execution stream
" Not a peer

m Limited forms of synchronization

= Main program can block / unblock signals
® Main program can pause for signal

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Posix Threads (Pthreads) Interface

m Pthreads: Standard interface for ~60 functions that
manipulate threads from C programs

Thread API Process APl analogue

Creating and reaping...

pthread create fork

pthread join waitpid
Determining your ID...

pthread self getpid
Terminating execution...

pthread exit exit

return from thread proc return from main

Synchronizing operations...
pthread mutex lock [no exact analogue]

pthread mutex unlock

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

Carnegie Mellon

The Pthreads "hello, world" Program

/%
* hello.c - Pthreads "hello, world" program
*/

#include "csapp.h" } Thread ID

void *thread(void *vargp) ;

int main(int argc, char** gv)

{

Pthread create(&tid, NULL, thread, NULL) ;
Pthread join(tid, NULL);
return 0;

} hello.c

Thread attributes
(usually NULL)

- Thread routine
pthread t tid; ‘_______,,——____———

| Thread arguments
(void *p)

void *thread(void *vargp) /* thread routine */
{

printf ("Hello, world!\n");

return NULL;
}

_ Return value
(void **p)

hello.c

ryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

56

Carnegie Mellon

Execution of Threaded “hello, world”

Main thread

callPthread create()
Pthread create()returns

callPthread join()

Main thread waits for
peer thread to terminate

Pthread join ()returns

exit()

Terminates

main thread and
any peer threads

e
"
"

printf ()
return NULL;

............ Peer thread
............ terminates

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57

Carnegie Mellon
0 r) vee

Main thread

callPthread create()

Pthread create()returns

..................... Peer thread
call Pthread join() | printf ()
Main thread doesn’t need]
to wait for peer threadto | . :etu;:;n IZULL ’
e eer threa
terminate | @000 v
............. terminates
Pthread join ()returns FL """"""
exit ()
Terminates ¥ And many many more
main thread and possible ways for this

any peer threads

code to execute.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

Thread-Based Concurrent Echo Server

int main(int argc, char **argv)

{

int listenfd, *connfdp;
socklen t clientlen;
struct sockaddr storage clientaddr;

pthread t tid;

listenfd = Open listenfd(argv[1l]);
while (1) {
clientlen=sizeof (struct sockaddr storage);
connfdp = Malloc(sizeof (int)) ;
*connfdp = Accept(listenfd, (SA *) &clientaddr, &clientlen);
Pthread create(&tid, NULL, thread, connfdp);

}
return O; echoservert.c

= Spawn new thread for each client
= Pass it copy of connection file descriptor
= Note use ofMalloc () ! [but not Free ()]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 59

Thread-Based Concurrent Server (cont)

/* Thread routine */

void *thread(void *vargp)

{
int connfd = *((int *)vargp)
Pthread detach(pthread self());
Free (vargp) ;
echo (connfd) ;
Close (connfd) ;
return NULL;

} echoservert.c

®= Run thread in “detached” mode.
= Runs independently of other threads
= Reaped automatically (by kernel) when it terminates

" Free storage allocated to hold connfd
" Close connfd (important!)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 60

Carnegie Mellon

Thread-based Server Execution Model

Connection requests

. Client 1
Client 1 data server

»
»

peer
thread

Listening
server
main thread

Client 2
server
peer
thread

Client 2 data

= Each client handled by individual peer thread

" Threads share all process state except TID

= Each thread has a separate stack for local variables

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

61

Issues With Thread-Based Servers

m Must run “detached” to avoid memory leak
= At any pointin time, a thread is either joinable or detached

= Joinable thread can be reaped and killed by other threads
* must be reaped (with pthread join)to free memory resources

" Detached thread cannot be reaped or killed by other threads
= resources are automatically reaped on termination
= Default state is joinable
» use pthread detach(pthread self ()) to make detached
m Must be careful to avoid unintended sharing

" For example, passing pointer to main thread’s stack
= Pthread create(&tid, NULL, thread, (void *) &connfd);

m All functions called by a thread must be thread-safe
" (next lecture)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 62

Carnegie Mellon

Potential Form of Unintended Sharing

while (1) {

int connfd = Accept(listenfd, (SA ¥*)
Pthread create(&tid, NULL, thread, &connfd);

&clientaddr, &clientlen);

main thread

connfd = connfd,

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edi

tion

‘\connfd = *vargp

Main thread stack

connfd

Peer; stack

“vargp

Peer, stack

O vargp

v Why would both copies of vargp point to same location?

63

Carnegie Mellon

A Process With Multiple Threads

m Multiple threads can be associated with a process

= Each thread has its own logical control flow

= Each thread shares the same code, data, and kernel context

= Each thread has its own stack for local variables
= but not protected from other threads
= Each thread has its own thread id (TID)

Thread 1
(main thread)

Thread 2
(peer thread)

Shared code and data

stack 1

stack 2

shared libraries

run-time heap

Thread 1 context:
Data registers
Condition codes
SP,

PC,

Thread 2 context:
Data registers
Condition codes
SP,

PC,

read/write data

read-only code/data

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Kernel context:
VM structures
Descriptor table
brk pointer

64

Carnegie Mellon

But ALL memory is shared

Thread 1 context: Thread 2 context:
Data registers Data registers
Condition codes Condition codes
SP, SP,

PC, PC,
Thread 1 Thread 2
(main thread) (peer thread)

shared libraries

stack 1 stack 2

run-time heap
read/write data

read-only code/data

Kernel context:
VM structures
Descriptor table
brk pointer

65

- while (1) { !

int connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
Pthread create(&tid, NULL, thread, &connfd);

}

Thread 1 context: Thread 2 context:
Data registers Data registers
Condition codes Condition codes
SP, SP,

PC, PC,
Thread 1 Thread 2

shared libraries

run-time heap

connfd S read/write data
&connfd read-only code/data

Kernel context:
VM structures
Descriptor table
brk pointer

- while (1) { !

int connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
Pthread create(&tid, NULL, thread, &connfd);

}

Thread 1 context:
Data registers
Condition codes

Thread 2 context:
Data registers
Condition codes

Thread 3 context:
Data registers
Condition codes

SP, SP, SP,
PC, PC, PC,
Thread 1 Thread 2 Thread 3
shared libraries
run-time heap
connfd read/write data
&connfd read-only code/data
&connfd
0

Kernel context:
VM structures
Descriptor table
brk pointer

Carnegie Mellon

/* Thread routine */
1 *] *
Thread 1 context: Thread 2 context: Thread void *thread(void *vargp)
Data registers Data registers Dat {) o .l .
Condition codes Condition codes Con S (et = *((int *)vargp)
Pthread detach (pthread self (
SP, SP, SP, F — —
PC, PC, PC, ree (vargp) ;
echo (connfd) ;
Close (connfd) ;
return NULL;
Thread 1 Thread 2 TH }

shared libraries

run-time heap
read/write data

connfd

&connfd read-only code/data

&connfd

Kernel context:
VM structures
Descriptor table
brk pointer

Carnegie Mellon

Could this race occur?

Main Thread
int 1i; void *thread (void *vargp)
for (i = 0; i < 100; i++) { {

Pthread create(&tid, NULL, int 1 = *((int *)vargp);

thread, &i); Pthread detach (pthread self());
} save value (i) ;
return NULL;
}
m Race Test

" |f no race, then each thread would get different value of i

= Set of saved values would consist of one copy each of 0 through 99

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 69

Experimental Results

No Race

0 2 46 8101214161820222426283032343638404244464850525456586062646668707274767880828486889092949698

2

1
0

Single core laptop For each “0” there is some later “2” here

3

.l

1

N OO OB LR L

0 2 46 81012141618202224262830323436384042444648505254565860626466687072747678808284 8688909294 9698

1!4V|Ul|ti¢0fe server And here, values are all over the place:

Some bins get 0, some get 2 or more

12

10

SRIIE

0 2 46 81012141618202224262830323436384042444648505254565860626466687072747678 808284 8688909294 9698

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 70

Correct passing of thread arguments

/* Main routine */
int *connfdp;
connfdp = Malloc(sizeof (int)) ;
*connfdp = Accept(. . .),
Pthread create(&tid, NULL, thread, connfdp);

/* Thread routine */
void *thread(void *vargp)

{
int connfd = *((int *)vargp) ;

Free (vargp) ;

return NULL;

m Producer-Consumer Model
=" Allocate in main
" Freein thread routine

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 71

Carnegie Mellon

Pros and Cons of Thread-Based Designs

+ Easy to share data structures between threads

= e.g., logging information, file cache

+ Threads are more efficient than processes

— Unintentional sharing can introduce subtle and
hard-to-reproduce errors!
" The ease with which data can be shared is both the greatest
strength and the greatest weakness of threads
®" Hard to know which data shared & which private
®" Hard to detect by testing

= Probability of bad race outcome often very low
= But nonzero!

® Future lectures

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 72

Summary: Approaches to Concurrency

m Process-based

®" Hard to share resources: Easy to avoid unintended sharing
" High overhead in adding/removing clients

m Event-based
" Tedious and low level
" Total control over scheduling
" Very low overhead
= Cannot create as fine grained a level of concurrency
= Does not make use of multi-core

m Thread-based

" Easy to share resources: Perhaps too easy ©

®" Medium overhead

®" Not much control over scheduling policies

= Difficult to debug: Event orderings not repeatable

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 73

