<« A it i tanis

14-513

15-213

Super Simple HTTP

GET / HTTP/1.0

Host: www.cmu.edu Request From Client
This is a blank line!

HTTP/1.0 200 OK
Response-header: Hi

Server Response

Response Body - probably some
<html>blah blah</html> content

http://www.cmu.edu/

Now you try it

m telnet moo.cmcl.cs.cmu.edu 8080
m Or nc moo.cmcl.cs.cmu.edu 8080

m If you don’t have those installed, ssh to a shark machine
and do it from there

m Then type: GET / HTTP/1.0
and hit enter twice (that blank line)

If you’re done: telnet www.cs.cmu.edu 80
And GET / HTTP/1.0
Host: www.cs.cmu.edu

See what comes back

http://www.cs.cmu.edu/
http://www.cs.cmu.edu/

Network Programming: Part Il

15-213/14-513/15-513: Introduction to Computer Systems
Spring 2025

GET YOUR LAPTOPS OUT

If you don’t have “telnet” or “nc” in your local shell,
login to a shark machine!

Put your laptops away!

Web Server Basics

m Clients and servers communicate
using the HyperText Transfer
Protocol (HTTP)

® (Client and server establish TCP
connection

= Client requests content

= Server responds with requested
content

® (Client and server close connection
(eventually)

m Current version is HTTP/3.0
but HTTP/1.1 widely used still

"= RFC 2616, June, 1999.

HTTP request

Web >
client
(browser) /<
HTTP response
(content)
HTTP Web content
TCP Streams
IP Datagrams

http://www.w3.org/Protocols/rfc2616/rfc2616.html

Web
server

Web Content

m Web servers return content to clients

= content: a sequence of bytes with an associated MIME (Multipurpose
Internet Mail Extensions) type

m Example MIME types

" text/html HTML document

" text/plain Unformatted text

" image/gif Binary image encoded in GIF format
" image/png Binary image encoded in PNG format
" image/jpeg Binary image encoded in JPEG format

You can find the complete list of MIME types at:
http://www.iana.org/assignments/media-types/media-types.xhtml

Static and Dynamic Content

The content returned in HTTP responses can be static or dynamic

= Static content: content stored in files and retrieved in response to
an HTTP request

= Examples: HTML files, images, audio clips, Javascript programs
= Request identifies which content file

= Dynamic content: content produced on-the-fly in response to
an HTTP request

= Example: content produced by a program executed by the server on
behalf of the client

= Request identifies file containing executable code

Web content associated with a file that is managed by the server

URLs and how clients and servers use them

Unique name for a file: URL (Universal Resource Locator)
Example URL: http://www.cmu.edu:80/index.html

Clients use prefix (http://www.cmu. edu: 80) to infer:
= What kind (protocol) of server to contact (HTTP)
= Where the server is (Wwww . cmu . edu)
= What port it is listening on (80)
Servers use suffix (/index .html) to:
= Determine if request is for static or dynamic content.
= No hard and fast rules for this
= One convention: executables reside in cgi-bin directory
= Find file on file system
= |nitial “/” in suffix denotes home directory for requested content.

= Minimal suffix is “/”, which server expands to configured default
filename (usually, index.html)

HTTP Requests

m HTTP request is a request line,
followed by zero or more request headers

m Request line: <method> <uri> <version>

" <method> isoneof GET, POST, OPTIONS, HEAD, PUT,
DELETE, or TRACE

= <uri>is typically URL for proxies, URL suffix for servers
= A URLis a type of URI (Uniform Resource Identifier)

= See http://www.ietf.org/rfc/rfc2396.txt
" <version>is HTTP version of request (e.g. HTTP/1.1)

m Request headers: <header name>: <header data>

" Provide additional information to the server

(e.g., brand name of the browser, domain name of the origin server)
10

http://www.ietf.org/rfc/rfc2396.txt

HTTP Responses

m HTTP response is a response line followed by zero or more
response headers, possibly followed by content, with blank line
(“\r\n”) separating headers from content.

m Response line:

<version> <status code> <status msg>
= <version>is HTTP version of the response
= <status code> is numeric status
= <status msg>is corresponding English text

= 200 OK Request was handled without error

= 301 Moved Provide alternate URL

= 404 Not found Server couldn’t find the file

m Response headers: <header name>: <header data>
= Provide additional information about response
= Content-Type: MIME type of content in response body
= Content-Length: Length of contentin response body

1

Many more HTTP response codes

Request-URI Too Long

Not Acceptable

12

Example HTTP Transaction

whaleshark> telnet www.cmu.edu 80

Trying 128.2.42.52...

Client:

Telnet

Connected to WWW-CMU-PROD-VIP.ANDREW.cmu.edu.

Escape character is '*]'.

GET / HTTP/1.1 Client:
Host: www.cmu.edu Client:

Client:
HTTP/1.1 301 Moved Permanently Server:
Date: Wed, 05 Nov 2014 17:05:11 GMT Server:
Server: Apache/1.3.42 (Unix) Server:
Location: http://www.cmu.edu/index.shtml Server:
Transfer-Encoding: chunked Server:
Content-Type: text/html; charset=... Server:

Server:
15c Server:
<HTML><HEAD> Server:
</BODY></HTML> Server:
0 Server:
Connection closed by foreign host. Server:

open connection to server

prints 3 lines to terminal

request line

required HTTP/1.1 header
blank line terminates headers
response line

followed by 5 response headers
this is an Apache server

page has moved here

response body will be chunked
expect HTML in response body
empty line terminates headers
first line in response body
start of HTML content

end of HTML content
last line in response body
closes connection

m HTTP standard requires that each text line end with “*\r\n”

m Blankline (“\r\n”) terminates request and response headers

13

Example HTTP Transaction, Take 2

whaleshark> telnet www.cmu.edu 80 Client:

Trying 128.2.42.52... Telnet
Connected to WWW-CMU-PROD-VIP.ANDREW.cmu.edu.
Escape character is '*]'.

GET /index.shtml HTTP/1.1 Client:
Host: www.cmu.edu Client:

Client:
HTTP/1.1 200 OK Server:
Date: Wed, 05 Nov 2014 17:37:26 GMT Server:

Server: Apache/1.3.42 (Unix)
Transfer-Encoding: chunked
Content-Type: text/html; charset=...

Server:
1000 Server:
<html ..> Server:
</html>
0 Server:

Connection closed by foreign host. Server:

open connection to server
prints 3 lines to terminal

request line

required HTTP/1.1 header
blank line terminates headers
response line

followed by 4 response headers

empty line terminates headers
begin response body
first line of HTML content

end response body
close connection

14

Example HTTP(S) Transaction, Take 3

whaleshark> openssl s client www.cs.cmu.edu:443
CONNECTED (00000005)

Certificate chain

Server certificate

MIIGDjCCBPagAwIBAgIRAMiF7LBPDoySilnNoU+mp+gwDQYJKoZIhvcNAQELBQAW
djELMAkKGA1UEBhMCVVMxCzAJBgNVBAgTAk1JMRIWEAYDVQQHEwW1Bbm4gQXJib3Ix
EjAQBgNVBAOTCUludGVybmVOMjERMASGA1UECXMISW5Db21 tb24xHzAdBgNVBAMT
wkWkvDVBBCwKXrShVxQNsj6J

subject=/C=US/postalCode=15213/ST=PA/L=Pittsburgh/street=5000 Forbes
Ave/O=Carnegie Mellon University/OU=School of Computer
Science/CN=www.cs.cmu.edu issuer=/C=US/ST=MI/L=Ann
Arbor/O=Internet2/0U=InCommon/CN=InCommon RSA Server CA

SSL handshake has read 6274 bytes and written 483 bytes

>GET / HTTP/1.0

HTTP/1.1 200 OK

Date: Tue, 12 Nov 2019 04:22:15 GMT

Server: Apache/2.4.10 (Ubuntu)

Set-Cookie: SHIBLOCATION=scsweb; path=/; domain=.cs.cmu.edu
HTMIL Content Continues Relow

http://www.cs.cmu.edu:443/

Review: Sockets

m What is a socket?

= To the kernel, a socket is an endpoint of communication

= To an application, a socket is a file descriptor that lets the
application read/write from/to the network

= Remember: All Unix I/O devices, including networks, are
modeled as files

m Clients and servers communicate with each other by
reading from and writing to socket descriptors

P [
< »

clientfd serverfd

m The main distinction between regular file I/O and socket
1/0 is how the application “opens” the socket descriptors

16

/ 2. Start client \ / 1. Start server\ o
Client Server Review:

Echo
Server
+ Client

open listenfd

open clientfd

Connectian l Await connection
request request from client
--) -------- K"> accept <
4 i / v 3. Exchange\
| terminal read _ ket d e
Client / |_socket write 7| Socket read data
Server
v v
Session socket read]
) . < socket write
\\» terminal write <//

close = f---H4-—------ » socket read

5. Drop client

A\ 4

4. Disconnect client
close

17

Today

The Sockets Interface
Web Servers

The Tiny Web Server
Serving Dynamic Content
Proxy Servers

CSAPP 11.4

CSAPP 11.5.1-11.5.3
CSAPP 11.6

CSAPP 11.5.4

18

/ Start client \ / Start server \

Client Server SOCkEtS
[: :)
| getaddrinfo | | getaddrinfo | Inter ace
socket socket
l i open_listenfd
open clientfd < bind
v
listen
Connection l /
request
connect /A == accept <
4 1 N
v v
CHent/ » rio_writen »rio_readlineb«
Server il il .]
Session Await connection
rio_;eadlineb<< rio_writen requestﬁon1
next client
v v
close = f----- EQE ————— »rio_ readlineb
\ 4
close
19

Review: Socket Address Structures

m Internet (IPv4) specific socket address:

" Must cast (struct sockaddr in *)to(struct sockaddr *)
for functions that take socket address arguments.

struct sockaddr in {

uintlé_t sin family; /* Protocol family (always AF_ INET) */
uintlé t sin port; /* Port num in network byte order */
struct in addr sin addr; /* IP addr in network byte order */

unsigned char sin zero[8]; /* Pad to sizeof(struct sockaddr) */

sin port sin_addr

AF INET o000 0]|]O0]|]O0]O

sin family

20

Review: getaddrinfo

m getaddrinfo converts string representations of hostnames,
host addresses, ports, service names to socket address structures

addrinfo structs

SA list result

Socket address structs

ai_canonname

ai_addr >

ali next

NULL
ai_addr

ai next

NULL
ai_addr
NULL

/ Start client \ / Start server \

Client Server Soc kEtS
[)))
getaddrinfo getaddrinfo I N te rrace
T sAlist SAlist |
| socket | | socket |
l s open_listenfd
open clientfd < bind
v
listen
Connection l /
request
\\ connect - 7 ------ (> accept <
v v
Client / » rio_writen »rio_readlineb«
Server il il .]
Session Await connection
rio_readlineb < rio_writen request from
next client
v v
close = f----- E —QE ————— »rio_ readlineb
\ 4
close
22

Sockets Interface: socket

m Clients and servers use the socket function to create a
socket descriptor:

int socket(int domain, int type, int protocol)

clientfd listenfd

int clientfd = socket (AF_INET, SOCK STREAM, 0);

int listenfd = socket (AF_INET, SOCK_STREAM, O0);
/ =

Indicates that we are using Indicates that the socket

32-bit IPV4 addresses will be the end point of a

reliable (TCP) connection

Best practice is to use getaddrinfo to generate the
parameters automatically, so that code is protocol independent.

23

/ Start server \

Client Server Sockets
(. _ A
getaddrinfo getaddrinfo I n te r a c e
| SA list SAlist |
socket socket
clientfd listenfd | s open_listenfd
open_clientfd< I bind I
v
listen
Connectjon l /
request
\ connect « [--------- (;:* accept <

v v
Client / » rio_writen »rio_readlinebi|e
Server ! ! . .
Session Await connection

rio_readlineb [« rio _writen request from
next client
\4 \4
close = }[----- EOF ____ »rio_ readlineb

close

24

Sockets Interface: bind

m A server uses bind to ask the kernel to associate the
server’s socket address with a socket descriptor:

int bind(int sockfd, SA *addr, socklen_ t addrlen);

Our convention: typedef struct sockaddr SA;

m Process can read bytes that arrive on the connection whose
endpoint is addr by reading from descriptor sock£fd

m Similarly, writes to sock£fd are transferred along
connection whose endpoint is addr

25

Sockets
Interface

>open_listenfd

Await connection

request from
next client

Client Server
(. _ \
getaddrinfo getaddrinfo
1 SAlist SAlist |
socket socket
clientfd listenfd !
open_clientfd< bind

listenfd <-> SA |

| listen |

Connection l /
request

\ connect [------------- q accept <
v v

Client / » rio_writen »rio_readlineb«
Server il il

Session rio_;eadlineb<< rio_writen
v v
close = f----- EQE ————— »rio_ readlineb
\ 4
close

26

Sockets Interface: 1listen

m Kernel assumes that descriptor from socket function is an
active socket that will be on the client end

m A server calls the listen function to tell the kernel that a
descriptor will be used by a server rather than a client:

int listen(int sockfd, int backlog) ;

m Converts sockfd from an active socket to a listening
socket that can accept connection requests from clients.

m backlog is ahint about the number of outstanding
connection requests that the kernel should queue up
before starting to refuse requests (128-ish by default)

listen(listenfd, LISTENQ)

27

Sockets

Client Server
(taddrinf taddrinfo | | Int f
getaddrinfo getaddrinfo n er ace
+ SAlist SA list |
socket socket
clientfd listenfd ! » open_listenfd
open_clientfd< bind
listenfd <->SA |
listen
i - T
Connection | listening listenfd
request
\ connect [~ ------- 1 accept F———————
v v
Client / » rio_writen »rio_readlinebi|e
Server
Session . - Await connection
rio_readlineb [« rio _writen request from
next client
\4 \4
EQF rio_readlineb

close ~ f-----TTo----- >

A 4

close
28

Sockets Interface: accept

m Servers wait for connection requests from clients by
calling accept:

int accept(int listenfd, SA *addr, int *addrlen) ;

m Waits for connection request to arrive on the connection
bound to 1istenfd, then fills in client’s socket address
in addr and size of the socket address in addrlen.

m Returns a connected descriptor connfd that can be used
to communicate with the client via Unix /O routines.

29

Sockets

Interface

> open listenfd

Await connection

request from
next client

Client Server
N
getaddrinfo getaddrinfo
I sAlist SAlist |
socket socket
clientfd listenfd !
open clientfd < bind
listenfd <->SA |
listen
; - o
Connection | listening listenfd
= request
connect I ------------- q accept <
. rio writen »rio readlineb|,
Client / - - :
Server v v
Session rio_readlineb [« rio _writen
\4 \4
close = ft----- EOF ____ »rio_ readlineb

A 4

close

30

Sockets Interface: connect

m A client establishes a connection with a server by calling
connect:

int connect(int clientfd, SA *addr, socklen t addrlen);

m Attempts to establish a connection with server at socket
address addr

= |f successful, then clientfd is now ready for reading and writing.

= Resulting connection is characterized by socket pair
(x:y, addr.sin addr:addr.sin port)
= xis client address
= y is ephemeral port that uniquely identifies client process on
client host
Best practice is to use getaddrinfo to supply the
arguments addr and addrlen.

31

connect/accept lllustrated

Client i

clientfd

Connection

clientfd

Client l‘

listenfd

T Server

listenfd

| g
Server

listenfd

I Server

clientfd

connfd

1. Server blocks in accept,
waiting for connection request

on listening descriptor
listenfd

2. Client makes connection request by
calling and blocking in connect

3. Server returns connfd from
accept. Client returns from connect.

Connection is now established between
clientfd and connfd

32

Connected vs. Listening Descriptors

m Listening descriptor

= End point for client connection requests
= Created once and exists for lifetime of the server

m Connected descriptor
= End point of the connection between client and server

= A new descriptor is created each time the server accepts a
connection request from a client

= Exists only as long as it takes to service client

m Why the distinction?

= Allows for concurrent servers that can communicate over many
client connections simultaneously

= E.g., Each time we receive a new request, we fork a child to
handle the request

33

open clientfd <

Sockets

Client Server
getaddrinfo getaddrinfo) I nte rface
1 SAlist SAlist o
socket socket
clientfd listenfd | > open_listenfd
bind
listenfd <->SA |
listen
Connection | Iisteniﬁg listenfd
request
connect [------------- q accept <
connected (to SA) clientfd connected [connfd

Client /
Server
Session

rio_writen

A 4

v

rio_;eadlineb:

rio_;eadlineb

v

A

Await connection

rio writen

request from
next client

\4

close

\4

rio_;eadlineb

A 4

close

34

What happens
if socket or

connect fails?

open_clientfd<

Try again with
next on SA list
(return -1 if
all SAs fail)

Sockets
Interface

J

>open_listenfd

Client Server
getaddrinfo getaddrinfo
' SA list '
socket socket

clientfd !
bind
listen
Connection l
request
connect [~ ---ooo-- q accept
connected (to SA) clientfd

A

Client /
Server
Session

A 4

rio_writen

\ 4

v

rio_;eadlineb

rio_;eadlineb

A

v

A

rio writen

Await connection

request from
next client

\4

close

\4

rio_;eadlineb

A 4

close

35

open_clientfd<

Client

getaddrinfo

!

socket

listenfd <-> SA

SA

liste

Server

getaddrinfo

list l

socket

nfd |

bind

v

listen

Connection
request

'

accept

What happens
if socket or
bind fails?

>open_listenfd

Try again with
next on SA list
(return -1 if

all SAs fail)

A

A 4

Client /
Server
Session

v

rio_;eadlineb

A

\ 4

rio_;eadlineb

v

rio writen

A

Await connection

request from
next client

close

\4

rio_;eadlineb

close

36

Testing Servers Using telnet

m The telnet program is invaluable for testing servers
that transmit ASCII strings over Internet connections
= Qur simple echo server
= Web servers
= Mail servers

m Usage:
" linux> telnet <host> <portnumber>

= Creates a connection with a server running on <host>and
listening on port <portnumber>

37

Testing the Echo Server With telnet

whaleshark> ./echoserveri 15213

Connected to (MAKOSHARK.ICS.CS.CMU.EDU, 50280)
server received 11 bytes

server received 8 bytes

makoshark> telnet whaleshark.ics.cs.cmu.edu 15213
Trying 128.2.210.175. ..

Connected to whaleshark.ics.cs.cmu.edu (128.2.210.175).
Escape character is '*]'.

Hi there!

Hi there!

Howdy!

Howdy!

*]

telnet> quit

Connection closed.

makoshark>

38

Today

The Sockets Interface
Web Servers

The Tiny Web Server
Serving Dynamic Content
Proxy Servers

39

Today

The Sockets Interface
Web Servers

The Tiny Web Server
Serving Dynamic Content
Proxy Servers

41

Tiny Web Server

m Tiny Web server described in text
" Tiny is a sequential Web server

= Serves static and dynamic content to real browsers
= text files, HTML files, GIF, PNG, and JPEG images

= 239 lines of commented C code
" Not as complete or robust as a real Web server

= You can break it with poorly-formed HTTP requests (e.g.,
terminate lines with “\n” instead of “\r\n”)

42

Tiny Operation

Accept connection from client
Read request from client (via connected socket)
Split into <method> <uri> <version>
" |f method not GET, then return error
If URI contains “cgi-bin” then serve dynamic content
= (Would do wrong thing if had file “abegi-bingo.html”)
= Fork process to execute program
Otherwise serve static content
= Copy file to output

43

Tiny Serving Static Content

void serve static(int fd, char *filename, int filesize)
{

int srcfd;

char *srcp, filetype[MAXLINE], buf[MAXBUF] ;

/* Send response headers to client */

get filetype(filename, filetype)

sprintf (buf, "HTTP/1.0 200 OK\r\n");

sprintf (buf, "%sServer: Tiny Web Server\r\n", buf);
sprintf (buf, "%$sConnection: close\r\n", buf);

sprintf (buf, "%$sContent-length: %d\r\n", buf, filesize);
sprintf (buf, "%$sContent-type: %$s\r\n\r\n", buf, filetype)
Rio writen(fd, buf, strlen (buf));

/* Send response body to client */
srcfd = Open(filename, O _RDONLY, O0);
srcp = Mmap(0, filesize, PROT_READ, MAP PRIVATE, srcfd, 0);
Close (srcfd) ;
Rio writen(fd, srcp, filesize);
Munmap (srcp, filesize);
} tiny.c

Today

The Sockets Interface
Web Servers

The Tiny Web Server
Serving Dynamic Content
Proxy Servers

45

Serving Dynamic Content

m Client sends request to server

m If request URI contains the
string “/cgi-bin”, the Tiny
server assumes that the
request is for dynamic content

GET /cgi-bin/env.pl HTTP/1.1

Client > Server

46

Serving Dynamic Content (cont)

m The server creates a child
Server
process and runs the
program identified by the

URI in that process fork/exec

@

47

Serving Dynamic Content (cont)

m The child runs and generates Client J-——— server
the dynamic content k

Content
m The server captures the
content of the child and @
forwards it without

modification to the client

48

Issues in Serving Dynamic Content

m How does the client pass program Request
arguments to the server? y

Client |Content Server
4—

m How does the server pass these

arguments to the child?

. Content Create
m How does the server pass other info

relevant to the request to the child?
m How does the server capture the
content produced by the child?

m These issues are addressed by the
Common Gateway Interface (CGl)
specification.

49

CcaGl

m Because the children are written according to the CGI
spec, they are often called CGI programs.

m However, CGl really defines a simple standard for
transferring information between the client (browser),
the server, and the child process.

m CGl is the original standard for generating dynamic
content. Has been largely replaced by other, faster
techniques:

= E.g., fastCGl, Apache modules, Java servlets, Rails controllers
= Avoid having to create process on the fly (expensive and slow).

50

The add.com Experience

host port CGI program

arguments

g i A
00 i Dmﬁaleshark.ics.cs.cm]:.ed X | / !
e .

v ,
« - C f Dwhaleshark.ics.cs.cmu.edu:15213fcgi-hin,rad§er?15213&13213 @5y O Ei] @J

Welcome to add.com: THE Internet addition portal.
The answer is: 15213 + 18213 = 33426

Thanks for visiting!

Output page

Serving Dynamic Content With GET

m Question: How does the client pass arguments to the server?

m Answer: The arguments are appended to the URI

m Can be encoded directly in a URL typed to a browser or a URL
in an HTML link

http://add.com/cgi-bin/adder?15213&18213
adder is the CGl program on the server that will do the addition.
argument list starts with “?”

arguments separated by “&”

spaces represented by “+” or “%20”

52

Serving Dynamic Content With GET

m URL suffix:
" cgi-bin/adder?15213&18213

m Result displayed on browser:

Welcome to add.com: THE Internet
addition portal.

The answer is: 15213 + 18213 = 33426

Thanks for visiting!

53

Serving Dynamic Content With GET

m Question: How does the server pass these arguments to
the child?
m Answer: In environment variable QUERY_STRING

= A single string containing everything after the “?”
" For add: QUERY STRING=“15213&18213"

/* Extract the two arguments */

if ((buf = getenv("QUERY STRING")) != NULL) ({
p = strchr(buf, '&');
*p = '\0';

strcpy(argl, buf);
strcpy (arg2, p+l);
nl atoi (argl) ;
n2 atoi (arg2?) ;
} adder.c

Serving Dynamic Content with GET

m Question: How does the server capture the content produced by the child?

m Answer: The child generates its output on stdout. Server uses dup2 to
redirect stdout to its connected socket.

void serve dynamic(int fd, char *filename, char *cgiargs)

{

char buf [MAXLINE], *emptylist[] = { NULL };

/* Return first part of HTTP response */
sprintf (buf, "HTTP/1.0 200 OK\r\n");

Rio writen(fd, buf, strlen(buf));

sprintf (buf, "Server: Tiny Web Server\r\n");
Rio writen(fd, buf, strlen(buf));

if (Fork() == 0) { /* Child */
/* Real server would set all CGI vars here */
setenv ("QUERY STRING", cgiargs, 1);
Dup2 (fd, STDOUT_ FILENO) ; /* Redirect stdout to client */
Execve (filename, emptylist, environ); /* Run CGI program */
}
Wait (NULL) ; /* Parent waits for and reaps child */
tiny.c

Serving Dynamic Content with GET

m Notice that only the CGI child process knows the content
type and length, so it must generate those headers.

/* Make the response body */
sprintf (content, "Welcome to add.com: ") ;
sprintf (content, "$sTHE Internet addition portal.\r\n<p>", content);
sprintf (content, "%$sThe answer is: %d + %d = %d\r\n<p>",
content, nl, n2, nl + n2);
sprintf (content, "%$sThanks for visiting!\r\n", content);

/* Generate the HTTP response */

printf ("Content-length: %d\r\n", (int)strlen(content));
printf ("Content-type: text/html\r\n\r\n");

printf ("%$s", content);

fflush (stdout) ;

exit(0) ; adder.c

56

Serving Dynamic Content With GET

bash:makoshark> telnet whaleshark.ics.cs.cmu.edu 15213
Trying 128.2.210.175...

Connected to whaleshark.ics.cs.cmu.edu (128.2.210.175).
Escape character is '*]'.

Server: Tiny Web Server HTTP response generated
Connection: close by the server

Content-length: 117
Content-type: text/html

HTTP response generated
Welcome to add.com: THE Internet addition portal. py the CGlprogram
<p>The answer is: 15213 + 18213 = 33426
<p>Thanks for visiting!

Connection closed by foreign host.
bash:makoshark>

57

Today

The Sockets Interface
Web Servers

The Tiny Web Server
Serving Dynamic Content
Proxy Servers

58

Proxies

m A proxyis an intermediary between a client and an origin server
= To the client, the proxy acts like a server
= To the server, the proxy acts like a client

1. Client request 2. Proxy request
> g

Origin
Server

4. Proxy response 3. Server response

59

Why Proxies?

m Can perform useful functions as requests and responses pass by
= Examples: Caching, logging, anonymization, filtering

Request foo.html

\

foo.html Proxy

Request foo.html

Origin
Server

foo.html \

Request foo.html

foo.html

Fast inexpensive Slower more expensive
local network global network

60

For More Information

m W. Richard Stevens et. al. “Unix Network Programming:
The Sockets Networking API1”, Volume 1, Third Edition,
Prentice Hall, 2003

= THE network programming bible.
m Michael Kerrisk, “The Linux Programming Interface”, No

Starch Press, 2010
= THE Linux programming bible.

m Complete versions of all code in this lecture is available
from the 213 schedule page.
" http://www.cs.cmu.edu/~213/schedule.html
= csapp.{.c,h}, hostinfo.c, echoclient.c, echoserveri.c, tiny.c, adder.c
"= You can use any of this code in your assignments.

61

Additional slides

Web History

m 1989:
" Tim Berners-Lee (CERN) writes internal proposal to develop a
distributed hypertext system
= Connects “a web of notes with links”

= Intended to help CERN physicists in large projects share and
manage information

m 1990:
" Tim BL writes a graphical browser for Next machines

63

Web History (cont)

m 1992
= NCSA server released

= 26 WWW servers worldwide

m 1993
= Marc Andreessen releases first version of NCSA Mosaic browser

" Mosaic version released for (Windows, Mac, Unix)
= Web (port 80) traffic at 1% of NSFNET backbone traffic
= Over 200 WWW servers worldwide

m 1994

" Andreessen and colleagues leave NCSA to form “Mosaic
Communications Corp” (predecessor to Netscape)

64

Sockets Interface: bind

int bind(int sockfd, SA *addr, socklen_ t addrlen);

/* From “man getaddrinfo® Error checking code omitted */
getaddrinfo (NULL, argv[l], &hints, &result);

/* getaddrinfo() returns a list of address structures
Try each address until we successfully bind() */

for (rp = result; rp != NULL; rp = rp->ai next) {
sfd = socket(rp->ai_ family, rp->ai_socktype, rp->ai protocol) ;

if (sfd == -1)
continue;

if (bind(sfd, rp->ai_addr, rp->ai_addrlen) == 0)
break; /* Success */

}

Best practice is to use getaddrinfo to supply the arguments
addr and addrlen.

65

Sockets Helper: open clientfd

m Establish a connection with a server

int open clientfd(char *hostname, char *port) ({
int clientfd;
struct addrinfo hints, *listp, *p;

/* Get a list of potential server addresses */
memset (&hints, 0, sizeof (struct addrinfo));
hints.ai socktype = SOCK STREAM; /* Open a connection */

hints.ai flags = AI NUMERICSERV; /* ._using numeric port arg. */
hints.ai flags |= AI_ADDRCONFIG; /* Recommended for connections */

Getaddrinfo (hostname, port, &hints, &listp)

csapp.c

AI ADDRCONFIG - uses your system’s address type.
You have at least one IPV4 iface? IPV4. At least one IPV67? IPV6.

66

getaddrinfo

addrinfo structs

result

Socket address structs

ai_canonname

ai_addr

ai next

NULL
ai_addr >

ai next

NULL
ai_addr >
NULL

m Clients: walk this list, trying each socket address in turn, until
the calls to socket and connect succeed.

m Servers: walk the list until calls to socket and bind succeed.

Sockets Helper: open client£fd (cont)

/* Walk the list for one that we can successfully connect to */
for (p = listp; p; p = p->ai_next) ({

/* Create a socket descriptor */

if ((clientfd = socket (p->ai_ family, p->ai_ socktype,

}

p->ai_protocol)) < 0)

continue; /* Socket failed, try the next */

/* Connect to the server */

if (connect(clientfd, p->ai addr, p->ai addrlen) != -1)
break; /* Success */

Close(clientfd); /* Connect failed, try another */

/* Clean up */
Freeaddrinfo (listp) ;

if |

else

'p) /*
return
/*

return

All connects failed */
The last connect succeeded */
clientfd;

csapp.c

68

Sockets Helper: open listenfd

m Create a listening descriptor that can be used to accept
connection requests from clients.

{

int open listenfd(char *port)

struct addrinfo hints, *listp, *p;
int listenfd, optval=1l;

/* Get a list of potential server addresses */
memset (&hints, 0, sizeof (struct addrinfo)) ;

hints.ai_ socktype = SOCK_STREAM; /* Accept connect.

*/

hints.ai flags = AI PASSIVE | AI ADDRCONFIG; /* .on any IP addr */

hints.ai flags |= AI_ NUMERICSERV; /* .using port no.

Getaddrinfo (NULL, port, &hints, &listp);

csapp.c

*/

69

Sockets Helper: open listenfd (cont)

/* Walk the list for one that we can bind to */
for (p = listp; p; p = p->ai_next) ({
/* Create a socket descriptor */
if ((listenfd = socket(p->ai_family, p->ai_socktype,
p->ai_protocol)) < 0)
continue; /* Socket failed, try the next */

/* Eliminates "Address already in use" error from bind */
Setsockopt(listenfd, SOL SOCKET, SO REUSEADDR,
(const void *) &optval , sizeof (int));

/* Bind the descriptor to the address */

if (bind(listenfd, p->ai_addr, p->ai_addrlen) == 0)
break; /* Success */

Close(listenfd); /* Bind failed, try the next */

} csapp.c

Sockets Helper: open listenfd (cont)

/* Clean up */

Freeaddrinfo (listp) ;

if (!'p) /* No address worked */
return -1;

/* Make it a listening socket ready to accept conn. requests */
if (listen(listenfd, LISTENQ) < 0) {
Close(listenfd) ;
return -1;
}
return listenfd;
csapp.c

m Keypoint: open clientfd and open listenfdare
both independent of any particular version of IP.

7

HTTP Versions

m Major differences between HTTP/1.1 and HTTP/1.0

= HTTP/1.0 uses a nhew connection for each transaction

HTTP/1.1 also supports persistent connections
= multiple transactions over the same connection
= Connection: Keep-Alive

HTTP/1.1 requires HOST header

» Host: www.cmu.edu

= Makes it possible to host multiple websites at single Internet host

HTTP/1.1 supports chunked encoding
» Transfer-Encoding: chunked
HTTP/1.1 adds additional support for caching

72

GET Request to Apache Server
From Firefox Browser

URI is just the suffix, not the entire URL

GET |/~bryant/test.html |HTTP/1.1

Host: www.cs.cmu.edu

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US;
rv:1.9.2.11) Gecko/20101012 Firefox/3.6.11

Accept:

text/html, application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-us,en;g=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;9=0.7,*;9=0.7

Keep-Alive: 115

Connection: keep-alive

CRLF (\r\n)

73

GET Response From Apache Server

HTTP/1.1 200 OK

Date: Fri, 29 Oct 2010 19:48:32 GMT
Server: Apache/2.2.14 (Unix) mod ssl/2.2.14 OpenSSL/0.9.7m
mod pubcookie/3.3.2b PHP/5.3.1
Accept-Ranges: bytes

Content-Length: 479

Keep-Alive: timeout=15, max=100
Connection: Keep-Alive

Content-Type: text/html

<html>

<head><title>Some Tests</title></head>

<body>
<hl>Some Tests</hl>
</body>
</html>

74

Data Transfer Mechanisms

m Standard

= Specify total length with content-length
= Requires that program buffer entire message

m Chunked

= Break into blocks
= Prefix each block with number of bytes (Hex coded)

75

Chunked Encoding Example

HTTP/1.1 200 OK\n

Date: Sun, 31 Oct 2010 20:47:48 GMT\n

Server: Apache/1.3.41 (Unix)\n

Keep-Alive: timeout=15, max=100\n

Connection: Keep-Alive\n

Transfer-Encoding: chunked\n

Content-Type: text/html\n

\r\n

EaSalll| First Chunk: 0xd75 = 3445 bytes
L7

[<head>

.<1link href="http://www.cs.cmu.edu/style/calendar.css" rel="stylesheet"

type="text/css">

</head>

<body id="calendar body">

<div id='calendar'><table width='100%' border='0' cellpadding='0"'
cellspacing='1l' id='cal'>

</body>
</html>
\r\n
O\r\n
AT :

Second Chunk: 0 bytes (indicates last chunk)

76

	Slide 1
	Slide 2: Super Simple HTTP
	Slide 3: Now you try it
	Slide 4: Network Programming: Part II 15-213/14-513/15-513: Introduction to Computer Systems Spring 2025
	Slide 5
	Slide 6: Web Server Basics
	Slide 7: Web Content
	Slide 8: Static and Dynamic Content
	Slide 9: URLs and how clients and servers use them
	Slide 10: HTTP Requests
	Slide 11: HTTP Responses
	Slide 12: Many more HTTP response codes
	Slide 13: Example HTTP Transaction
	Slide 14: Example HTTP Transaction, Take 2
	Slide 15: Example HTTP(S) Transaction, Take 3
	Slide 16: Review: Sockets
	Slide 17: Review: Echo Server + Client Structure
	Slide 18: Today
	Slide 19: Sockets Interface
	Slide 20: Review: Socket Address Structures
	Slide 21: Review: getaddrinfo
	Slide 22: Sockets Interface
	Slide 23: Sockets Interface: socket
	Slide 24: Sockets Interface
	Slide 25: Sockets Interface: bind
	Slide 26: Sockets Interface
	Slide 27: Sockets Interface: listen
	Slide 28: Sockets Interface
	Slide 29: Sockets Interface: accept
	Slide 30: Sockets Interface
	Slide 31: Sockets Interface: connect
	Slide 32: connect/accept Illustrated
	Slide 33: Connected vs. Listening Descriptors
	Slide 34: Sockets Interface
	Slide 35: Sockets Interface
	Slide 36
	Slide 37: Testing Servers Using telnet
	Slide 38: Testing the Echo Server With telnet
	Slide 39: Today
	Slide 41: Today
	Slide 42: Tiny Web Server
	Slide 43: Tiny Operation
	Slide 44: Tiny Serving Static Content
	Slide 45: Today
	Slide 46: Serving Dynamic Content
	Slide 47: Serving Dynamic Content (cont)
	Slide 48: Serving Dynamic Content (cont)
	Slide 49: Issues in Serving Dynamic Content
	Slide 50: CGI
	Slide 51: The add.com Experience
	Slide 52: Serving Dynamic Content With GET
	Slide 53: Serving Dynamic Content With GET
	Slide 54: Serving Dynamic Content With GET
	Slide 55: Serving Dynamic Content with GET
	Slide 56: Serving Dynamic Content with GET
	Slide 57: Serving Dynamic Content With GET
	Slide 58: Today
	Slide 59: Proxies
	Slide 60: Why Proxies?
	Slide 61: For More Information
	Slide 62: Additional slides
	Slide 63: Web History
	Slide 64: Web History (cont)
	Slide 65: Sockets Interface: bind
	Slide 66: Sockets Helper: open_clientfd
	Slide 67: getaddrinfo
	Slide 68: Sockets Helper: open_clientfd (cont)
	Slide 69: Sockets Helper: open_listenfd
	Slide 70: Sockets Helper: open_listenfd (cont)
	Slide 71: Sockets Helper: open_listenfd (cont)
	Slide 72: HTTP Versions
	Slide 73: GET Request to Apache Server From Firefox Browser
	Slide 74: GET Response From Apache Server
	Slide 75: Data Transfer Mechanisms
	Slide 76: Chunked Encoding Example

