
Carnegie Mellon

1

14-513 18-613

Carnegie Mellon

2

Server Response

Request From Client

Super Simple HTTP

GET / HTTP/1.0

Host: www.cmu.edu

HTTP/1.0 200 OK

Response-header: Hi

Response Body – probably some
<html>blah blah</html> content

This is a blank line!

http://www.cmu.edu/

Carnegie Mellon

3

Now you try it

 telnet moo.cmcl.cs.cmu.edu 8080

 Or nc moo.cmcl.cs.cmu.edu 8080

 If you don’t have those installed, ssh to a shark machine
and do it from there

 Then type: GET / HTTP/1.0
and hit enter twice (that blank line)

 If you’re done: telnet www.cs.cmu.edu 80

 And GET / HTTP/1.0

 Host: www.cs.cmu.edu

 See what comes back

http://www.cs.cmu.edu/
http://www.cs.cmu.edu/

Carnegie Mellon

4

Network Programming: Part II

15-213/14-513/15-513: Introduction to Computer Systems
Spring 2025

GET YOUR LAPTOPS OUT

If you don’t have “telnet” or “nc” in your local shell,
login to a shark machine!

Carnegie Mellon

5

Put your laptops away!

Carnegie Mellon

6

Web Server Basics

Web
server

HTTP request

HTTP response
(content)

 Clients and servers communicate
using the HyperText Transfer
Protocol (HTTP)

▪ Client and server establish TCP
connection

▪ Client requests content

▪ Server responds with requested
content

▪ Client and server close connection
(eventually)

 Current version is HTTP/3.0
but HTTP/1.1 widely used still

▪ RFC 2616, June, 1999.

Web
client

(browser)

http://www.w3.org/Protocols/rfc2616/rfc2616.html

IP

TCP

HTTP

Datagrams

Streams

Web content

Carnegie Mellon

7

Web Content

 Web servers return content to clients
▪ content: a sequence of bytes with an associated MIME (Multipurpose

Internet Mail Extensions) type

 Example MIME types
▪ text/html HTML document

▪ text/plain Unformatted text

▪ image/gif Binary image encoded in GIF format

▪ image/png Binary image encoded in PNG format

▪ image/jpeg Binary image encoded in JPEG format

You can find the complete list of MIME types at:
http://www.iana.org/assignments/media-types/media-types.xhtml

Carnegie Mellon

8

Static and Dynamic Content

 The content returned in HTTP responses can be static or dynamic

▪ Static content: content stored in files and retrieved in response to
 an HTTP request

▪ Examples: HTML files, images, audio clips, Javascript programs

▪ Request identifies which content file

▪ Dynamic content: content produced on-the-fly in response to
 an HTTP request

▪ Example: content produced by a program executed by the server on
behalf of the client

▪ Request identifies file containing executable code

 Web content associated with a file that is managed by the server

Carnegie Mellon

9

URLs and how clients and servers use them

 Unique name for a file: URL (Universal Resource Locator)

 Example URL: http://www.cmu.edu:80/index.html

 Clients use prefix (http://www.cmu.edu:80) to infer:

▪ What kind (protocol) of server to contact (HTTP)

▪ Where the server is (www.cmu.edu)

▪ What port it is listening on (80)

 Servers use suffix (/index.html) to:

▪ Determine if request is for static or dynamic content.

▪ No hard and fast rules for this

▪ One convention: executables reside in cgi-bin directory

▪ Find file on file system

▪ Initial “/” in suffix denotes home directory for requested content.

▪ Minimal suffix is “/”, which server expands to configured default
filename (usually, index.html)

Carnegie Mellon

10

HTTP Requests

 HTTP request is a request line,
followed by zero or more request headers

 Request line: <method> <uri> <version>
▪ <method> is one of GET, POST, OPTIONS, HEAD, PUT,
DELETE, or TRACE

▪ <uri> is typically URL for proxies, URL suffix for servers

▪ A URL is a type of URI (Uniform Resource Identifier)

▪ See http://www.ietf.org/rfc/rfc2396.txt

▪ <version> is HTTP version of request (e.g. HTTP/1.1)

 Request headers: <header name>: <header data>

▪ Provide additional information to the server
(e.g., brand name of the browser, domain name of the origin server)

http://www.ietf.org/rfc/rfc2396.txt

Carnegie Mellon

11

HTTP Responses
 HTTP response is a response line followed by zero or more

response headers, possibly followed by content, with blank line
(“\r\n”) separating headers from content.

 Response line:

 <version> <status code> <status msg>

▪ <version> is HTTP version of the response

▪ <status code> is numeric status

▪ <status msg> is corresponding English text

▪ 200 OK Request was handled without error

▪ 301 Moved Provide alternate URL

▪ 404 Not found Server couldn’t find the file

 Response headers: <header name>: <header data>
▪ Provide additional information about response

▪ Content-Type: MIME type of content in response body

▪ Content-Length: Length of content in response body

Carnegie Mellon

12

Many more HTTP response codes

Carnegie Mellon

13

Example HTTP Transaction
whaleshark> telnet www.cmu.edu 80 Client: open connection to server

Trying 128.2.42.52... Telnet prints 3 lines to terminal

Connected to WWW-CMU-PROD-VIP.ANDREW.cmu.edu.

Escape character is '^]'.

GET / HTTP/1.1 Client: request line

Host: www.cmu.edu Client: required HTTP/1.1 header

 Client: blank line terminates headers

HTTP/1.1 301 Moved Permanently Server: response line

Date: Wed, 05 Nov 2014 17:05:11 GMT Server: followed by 5 response headers

Server: Apache/1.3.42 (Unix) Server: this is an Apache server

Location: http://www.cmu.edu/index.shtml Server: page has moved here

Transfer-Encoding: chunked Server: response body will be chunked

Content-Type: text/html; charset=... Server: expect HTML in response body

Server: empty line terminates headers

15c Server: first line in response body

<HTML><HEAD> Server: start of HTML content

…

</BODY></HTML> Server: end of HTML content

0 Server: last line in response body

Connection closed by foreign host. Server: closes connection

 HTTP standard requires that each text line end with “\r\n”

 Blank line (“\r\n”) terminates request and response headers

Carnegie Mellon

14

Example HTTP Transaction, Take 2
whaleshark> telnet www.cmu.edu 80 Client: open connection to server

Trying 128.2.42.52... Telnet prints 3 lines to terminal

Connected to WWW-CMU-PROD-VIP.ANDREW.cmu.edu.

Escape character is '^]'.

GET /index.shtml HTTP/1.1 Client: request line

Host: www.cmu.edu Client: required HTTP/1.1 header

 Client: blank line terminates headers

HTTP/1.1 200 OK Server: response line

Date: Wed, 05 Nov 2014 17:37:26 GMT Server: followed by 4 response headers

Server: Apache/1.3.42 (Unix)

Transfer-Encoding: chunked

Content-Type: text/html; charset=...

Server: empty line terminates headers

1000 Server: begin response body

<html ..> Server: first line of HTML content

…

</html>

0 Server: end response body

Connection closed by foreign host. Server: close connection

Carnegie Mellon

15

Example HTTP(S) Transaction, Take 3
whaleshark> openssl s_client www.cs.cmu.edu:443

CONNECTED(00000005)

…

Certificate chain

…

-

Server certificate

-----BEGIN CERTIFICATE-----

MIIGDjCCBPagAwIBAgIRAMiF7LBPDoySilnNoU+mp+gwDQYJKoZIhvcNAQELBQAw

djELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAk1JMRIwEAYDVQQHEwlBbm4gQXJib3Ix

EjAQBgNVBAoTCUludGVybmV0MjERMA8GA1UECxMISW5Db21tb24xHzAdBgNVBAMT

wkWkvDVBBCwKXrShVxQNsj6J

…

-----END CERTIFICATE-----

subject=/C=US/postalCode=15213/ST=PA/L=Pittsburgh/street=5000 Forbes

Ave/O=Carnegie Mellon University/OU=School of Computer

Science/CN=www.cs.cmu.edu issuer=/C=US/ST=MI/L=Ann

Arbor/O=Internet2/OU=InCommon/CN=InCommon RSA Server CA

SSL handshake has read 6274 bytes and written 483 bytes

…

>GET / HTTP/1.0

HTTP/1.1 200 OK

Date: Tue, 12 Nov 2019 04:22:15 GMT

Server: Apache/2.4.10 (Ubuntu)

Set-Cookie: SHIBLOCATION=scsweb; path=/; domain=.cs.cmu.edu

... HTML Content Continues Below ...

http://www.cs.cmu.edu:443/

Carnegie Mellon

16

Review: Sockets

 What is a socket?
▪ To the kernel, a socket is an endpoint of communication

▪ To an application, a socket is a file descriptor that lets the
application read/write from/to the network

▪ Remember: All Unix I/O devices, including networks, are
modeled as files

 Clients and servers communicate with each other by
reading from and writing to socket descriptors

 The main distinction between regular file I/O and socket
I/O is how the application “opens” the socket descriptors

Client Server

clientfd serverfd

Carnegie Mellon

17

5. Drop client
4. Disconnect client

3. Exchange
data

2. Start client 1. Start server

Client /
Server
Session

Review:
Echo

Server
+ Client

Structure

Client Server

socket read

socket write
socket read

terminal write

terminal read

socket write

Connection
request

socket read

close

close
EOF

accept

open_listenfd

open_clientfd

Await connection
request from client

Carnegie Mellon

18

Today

 The Sockets Interface CSAPP 11.4

 Web Servers CSAPP 11.5.1-11.5.3

 The Tiny Web Server CSAPP 11.6

 Serving Dynamic Content CSAPP 11.5.4

 Proxy Servers

Carnegie Mellon

19

Start client Start server

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

Carnegie Mellon

20

Review: Socket Address Structures

 Internet (IPv4) specific socket address:
▪ Must cast (struct sockaddr_in *) to (struct sockaddr *)

for functions that take socket address arguments.

0 0 0 0 0 0 0 0

struct sockaddr_in {

 uint16_t sin_family; /* Protocol family (always AF_INET) */

 uint16_t sin_port; /* Port num in network byte order */

 struct in_addr sin_addr; /* IP addr in network byte order */

 unsigned char sin_zero[8]; /* Pad to sizeof(struct sockaddr) */

};

sin_port

AF_INET

sin_addr

sin_family

Carnegie Mellon

21

Review: getaddrinfo

ai_canonname

result

ai_addr

ai_next

addrinfo structs

Socket address structs

NULL

ai_addr

ai_next

NULL

ai_addr

NULL

 getaddrinfo converts string representations of hostnames,
host addresses, ports, service names to socket address structures

SA list

Carnegie Mellon

22

Start client Start server

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

SA listSA list

Carnegie Mellon

23

Sockets Interface: socket

 Clients and servers use the socket function to create a
socket descriptor:

 Example:

Best practice is to use getaddrinfo to generate the
parameters automatically, so that code is protocol independent.

int socket(int domain, int type, int protocol)

int listenfd = socket(AF_INET, SOCK_STREAM, 0);

Indicates that we are using
32-bit IPV4 addresses

Indicates that the socket
will be the end point of a
reliable (TCP) connection

Client Server

clientfd listenfd

int clientfd = socket(AF_INET, SOCK_STREAM, 0);

Carnegie Mellon

24

Start server

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

listenfdclientfd

SA list SA list

Carnegie Mellon

25

Sockets Interface: bind

 A server uses bind to ask the kernel to associate the
server’s socket address with a socket descriptor:

 Our convention: typedef struct sockaddr SA;

 Process can read bytes that arrive on the connection whose
endpoint is addr by reading from descriptor sockfd

 Similarly, writes to sockfd are transferred along
connection whose endpoint is addr

int bind(int sockfd, SA *addr, socklen_t addrlen);

Carnegie Mellon

26

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

SA list

listenfd

listenfd <-> SA

SA list

clientfd

Carnegie Mellon

27

Sockets Interface: listen

 Kernel assumes that descriptor from socket function is an
active socket that will be on the client end

 A server calls the listen function to tell the kernel that a
descriptor will be used by a server rather than a client:

 Converts sockfd from an active socket to a listening
socket that can accept connection requests from clients.

 backlog is a hint about the number of outstanding
connection requests that the kernel should queue up
before starting to refuse requests (128-ish by default)

int listen(int sockfd, int backlog);

listen(listenfd, LISTENQ);

Carnegie Mellon

28

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

SA list

clientfd

SA list

listenfd

listenfd <-> SA

listening listenfd

Carnegie Mellon

29

Sockets Interface: accept

 Servers wait for connection requests from clients by
calling accept:

 Waits for connection request to arrive on the connection
bound to listenfd, then fills in client’s socket address
in addr and size of the socket address in addrlen.

 Returns a connected descriptor connfd that can be used
to communicate with the client via Unix I/O routines.

int accept(int listenfd, SA *addr, int *addrlen);

Carnegie Mellon

30

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

listening listenfd

SA list SA list

clientfd listenfd

listenfd <-> SA

Carnegie Mellon

31

Sockets Interface: connect

 A client establishes a connection with a server by calling
connect:

 Attempts to establish a connection with server at socket
address addr
▪ If successful, then clientfd is now ready for reading and writing.

▪ Resulting connection is characterized by socket pair

 (x:y, addr.sin_addr:addr.sin_port)

▪ x is client address

▪ y is ephemeral port that uniquely identifies client process on
client host

Best practice is to use getaddrinfo to supply the
arguments addr and addrlen.

int connect(int clientfd, SA *addr, socklen_t addrlen);

Carnegie Mellon

32

connect/accept Illustrated
listenfd

Client
1. Server blocks in accept,
waiting for connection request
on listening descriptor
listenfd

clientfd

Server

listenfd

Client

clientfd

Server
2. Client makes connection request by
calling and blocking in connect

Connection
request

listenfd

Client

clientfd

Server
3. Server returns connfd from
accept. Client returns from connect.
Connection is now established between
clientfd and connfd

connfd

Carnegie Mellon

33

Connected vs. Listening Descriptors

 Listening descriptor
▪ End point for client connection requests

▪ Created once and exists for lifetime of the server

 Connected descriptor
▪ End point of the connection between client and server

▪ A new descriptor is created each time the server accepts a
connection request from a client

▪ Exists only as long as it takes to service client

 Why the distinction?
▪ Allows for concurrent servers that can communicate over many

client connections simultaneously

▪ E.g., Each time we receive a new request, we fork a child to
handle the request

Carnegie Mellon

34

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

listening listenfd

connected connfdconnected (to SA) clientfd

SA list SA list

clientfd listenfd

listenfd <-> SA

Carnegie Mellon

35

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

What happens
if socket or
connect fails?

SA list

clientfd

connected (to SA) clientfd

Try again with
next on SA list

(return -1 if
all SAs fail)

Carnegie Mellon

36

Client /
Server
Session

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo What happens
if socket or
bind fails?

Try again with
next on SA list

(return -1 if
all SAs fail)

SA list

listenfd

listenfd <-> SA

Carnegie Mellon

37

Testing Servers Using telnet

 The telnet program is invaluable for testing servers
that transmit ASCII strings over Internet connections

▪ Our simple echo server

▪ Web servers

▪ Mail servers

 Usage:
▪ linux> telnet <host> <portnumber>

▪ Creates a connection with a server running on <host> and
listening on port <portnumber>

Carnegie Mellon

38

Testing the Echo Server With telnet

whaleshark> ./echoserveri 15213

Connected to (MAKOSHARK.ICS.CS.CMU.EDU, 50280)

server received 11 bytes

server received 8 bytes

makoshark> telnet whaleshark.ics.cs.cmu.edu 15213

Trying 128.2.210.175...

Connected to whaleshark.ics.cs.cmu.edu (128.2.210.175).

Escape character is '^]'.

Hi there!

Hi there!

Howdy!

Howdy!

^]

telnet> quit

Connection closed.

makoshark>

Carnegie Mellon

39

Today

 The Sockets Interface

 Web Servers

 The Tiny Web Server

 Serving Dynamic Content

 Proxy Servers

Carnegie Mellon

41

Today

 The Sockets Interface

 Web Servers

 The Tiny Web Server

 Serving Dynamic Content

 Proxy Servers

Carnegie Mellon

42

Tiny Web Server

 Tiny Web server described in text

▪ Tiny is a sequential Web server

▪ Serves static and dynamic content to real browsers

▪ text files, HTML files, GIF, PNG, and JPEG images

▪ 239 lines of commented C code

▪ Not as complete or robust as a real Web server

▪ You can break it with poorly-formed HTTP requests (e.g.,
terminate lines with “\n” instead of “\r\n”)

Carnegie Mellon

43

Tiny Operation

 Accept connection from client

 Read request from client (via connected socket)

 Split into <method> <uri> <version>
▪ If method not GET, then return error

 If URI contains “cgi-bin” then serve dynamic content
▪ (Would do wrong thing if had file “abcgi-bingo.html”)

▪ Fork process to execute program

 Otherwise serve static content
▪ Copy file to output

Carnegie Mellon

44

Tiny Serving Static Content

void serve_static(int fd, char *filename, int filesize)

{

 int srcfd;

 char *srcp, filetype[MAXLINE], buf[MAXBUF];

 /* Send response headers to client */

get_filetype(filename, filetype);

 sprintf(buf, "HTTP/1.0 200 OK\r\n");

 sprintf(buf, "%sServer: Tiny Web Server\r\n", buf);

 sprintf(buf, "%sConnection: close\r\n", buf);

 sprintf(buf, "%sContent-length: %d\r\n", buf, filesize);

 sprintf(buf, "%sContent-type: %s\r\n\r\n", buf, filetype);

 Rio_writen(fd, buf, strlen(buf));

/* Send response body to client */

srcfd = Open(filename, O_RDONLY, 0);

srcp = Mmap(0, filesize, PROT_READ, MAP_PRIVATE, srcfd, 0);

 Close(srcfd);

 Rio_writen(fd, srcp, filesize);

Munmap(srcp, filesize);

} tiny.c

Carnegie Mellon

45

Today

 The Sockets Interface

 Web Servers

 The Tiny Web Server

 Serving Dynamic Content

 Proxy Servers

Carnegie Mellon

46

Serving Dynamic Content

Client Server

 Client sends request to server

 If request URI contains the
string “/cgi-bin”, the Tiny

server assumes that the
request is for dynamic content

GET /cgi-bin/env.pl HTTP/1.1

Carnegie Mellon

47

Serving Dynamic Content (cont)

Client Server
 The server creates a child

process and runs the
program identified by the
URI in that process

env.pl

fork/exec

Carnegie Mellon

48

Serving Dynamic Content (cont)

Client Server The child runs and generates
the dynamic content

 The server captures the
content of the child and
forwards it without
modification to the client

env.pl

Content

Content

Carnegie Mellon

49

Issues in Serving Dynamic Content

 How does the client pass program
arguments to the server?

 How does the server pass these
arguments to the child?

 How does the server pass other info
relevant to the request to the child?

 How does the server capture the
content produced by the child?

 These issues are addressed by the
Common Gateway Interface (CGI)
specification.

Client Server

Content

Content

Request

Create

env.pl

Carnegie Mellon

50

CGI

 Because the children are written according to the CGI
spec, they are often called CGI programs.

 However, CGI really defines a simple standard for
transferring information between the client (browser),
the server, and the child process.

 CGI is the original standard for generating dynamic
content. Has been largely replaced by other, faster
techniques:
▪ E.g., fastCGI, Apache modules, Java servlets, Rails controllers

▪ Avoid having to create process on the fly (expensive and slow).

Carnegie Mellon

51

The add.com Experience

Output page

host port CGI program

arguments

Carnegie Mellon

52

Serving Dynamic Content With GET
 Question: How does the client pass arguments to the server?

 Answer: The arguments are appended to the URI

 Can be encoded directly in a URL typed to a browser or a URL
in an HTML link
▪ http://add.com/cgi-bin/adder?15213&18213

▪ adder is the CGI program on the server that will do the addition.

▪ argument list starts with “?”

▪ arguments separated by “&”

▪ spaces represented by “+” or “%20”

Carnegie Mellon

53

Serving Dynamic Content With GET

 URL suffix:
▪ cgi-bin/adder?15213&18213

 Result displayed on browser:

Welcome to add.com: THE Internet

addition portal.

The answer is: 15213 + 18213 = 33426

Thanks for visiting!

Carnegie Mellon

54

Serving Dynamic Content With GET

 Question: How does the server pass these arguments to
the child?

 Answer: In environment variable QUERY_STRING

▪ A single string containing everything after the “?”

▪ For add: QUERY_STRING = “15213&18213”

/* Extract the two arguments */

 if ((buf = getenv("QUERY_STRING")) != NULL) {

p = strchr(buf, '&');

*p = '\0';

strcpy(arg1, buf);

strcpy(arg2, p+1);

n1 = atoi(arg1);

n2 = atoi(arg2);

} adder.c

Carnegie Mellon

55

void serve_dynamic(int fd, char *filename, char *cgiargs)

{

 char buf[MAXLINE], *emptylist[] = { NULL };

 /* Return first part of HTTP response */

sprintf(buf, "HTTP/1.0 200 OK\r\n");

Rio_writen(fd, buf, strlen(buf));

sprintf(buf, "Server: Tiny Web Server\r\n");

Rio_writen(fd, buf, strlen(buf));

 if (Fork() == 0) { /* Child */

 /* Real server would set all CGI vars here */

setenv("QUERY_STRING", cgiargs, 1);

Dup2(fd, STDOUT_FILENO); /* Redirect stdout to client */

Execve(filename, emptylist, environ); /* Run CGI program */

}

Wait(NULL); /* Parent waits for and reaps child */

}

Serving Dynamic Content with GET

 Question: How does the server capture the content produced by the child?

 Answer: The child generates its output on stdout. Server uses dup2 to
redirect stdout to its connected socket.

tiny.c

Carnegie Mellon

56

Serving Dynamic Content with GET

/* Make the response body */

 sprintf(content, "Welcome to add.com: ");

 sprintf(content, "%sTHE Internet addition portal.\r\n<p>", content);

 sprintf(content, "%sThe answer is: %d + %d = %d\r\n<p>",

 content, n1, n2, n1 + n2);

 sprintf(content, "%sThanks for visiting!\r\n", content);

 /* Generate the HTTP response */

 printf("Content-length: %d\r\n", (int)strlen(content));

 printf("Content-type: text/html\r\n\r\n");

 printf("%s", content);

 fflush(stdout);

 exit(0); adder.c

 Notice that only the CGI child process knows the content
type and length, so it must generate those headers.

Carnegie Mellon

57

bash:makoshark> telnet whaleshark.ics.cs.cmu.edu 15213

Trying 128.2.210.175...

Connected to whaleshark.ics.cs.cmu.edu (128.2.210.175).

Escape character is '^]'.

GET /cgi-bin/adder?15213&18213 HTTP/1.0

HTTP/1.0 200 OK

Server: Tiny Web Server

Connection: close

Content-length: 117

Content-type: text/html

Welcome to add.com: THE Internet addition portal.

<p>The answer is: 15213 + 18213 = 33426

<p>Thanks for visiting!

Connection closed by foreign host.

bash:makoshark>

Serving Dynamic Content With GET

HTTP request sent by client

HTTP response generated

by the server

HTTP response generated

by the CGI program

Carnegie Mellon

58

Today

 The Sockets Interface

 Web Servers

 The Tiny Web Server

 Serving Dynamic Content

 Proxy Servers

Carnegie Mellon

59

Proxies

 A proxy is an intermediary between a client and an origin server
▪ To the client, the proxy acts like a server

▪ To the server, the proxy acts like a client

Client Proxy
Origin
Server

1. Client request 2. Proxy request

3. Server response4. Proxy response

Carnegie Mellon

60

Why Proxies?

 Can perform useful functions as requests and responses pass by
▪ Examples: Caching, logging, anonymization, filtering

Client
A

Proxy
cache

Origin
Server

Request foo.html

Request foo.html

foo.html
foo.html

Client
B

Request foo.html

foo.html

Fast inexpensive

local network
Slower more expensive

global network

Carnegie Mellon

61

For More Information

 W. Richard Stevens et. al. “Unix Network Programming:
The Sockets Networking API”, Volume 1, Third Edition,
Prentice Hall, 2003
▪ THE network programming bible.

 Michael Kerrisk, “The Linux Programming Interface”, No
Starch Press, 2010
▪ THE Linux programming bible.

 Complete versions of all code in this lecture is available
from the 213 schedule page.
▪ http://www.cs.cmu.edu/~213/schedule.html

▪ csapp.{.c,h}, hostinfo.c, echoclient.c, echoserveri.c, tiny.c, adder.c

▪ You can use any of this code in your assignments.

Carnegie Mellon

62

Additional slides

Carnegie Mellon

63

Web History

 1989:

▪ Tim Berners-Lee (CERN) writes internal proposal to develop a
distributed hypertext system

▪ Connects “a web of notes with links”

▪ Intended to help CERN physicists in large projects share and
manage information

 1990:

▪ Tim BL writes a graphical browser for Next machines

Carnegie Mellon

64

Web History (cont)

 1992

▪ NCSA server released

▪ 26 WWW servers worldwide

 1993

▪ Marc Andreessen releases first version of NCSA Mosaic browser

▪ Mosaic version released for (Windows, Mac, Unix)

▪ Web (port 80) traffic at 1% of NSFNET backbone traffic

▪ Over 200 WWW servers worldwide

 1994

▪ Andreessen and colleagues leave NCSA to form “Mosaic
Communications Corp” (predecessor to Netscape)

Carnegie Mellon

65

/* From `man getaddrinfo` Error checking code omitted */

getaddrinfo(NULL, argv[1], &hints, &result);

/* getaddrinfo() returns a list of address structures

Try each address until we successfully bind()*/

for (rp = result; rp != NULL; rp = rp->ai_next) {

 sfd = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol);

 if (sfd == -1)

 continue;

 if (bind(sfd, rp->ai_addr, rp->ai_addrlen) == 0)

 break; /* Success */

}

Best practice is to use getaddrinfo to supply the arguments

addr and addrlen.

Sockets Interface: bind

int bind(int sockfd, SA *addr, socklen_t addrlen);

Carnegie Mellon

66

Sockets Helper: open_clientfd

int open_clientfd(char *hostname, char *port) {

 int clientfd;

 struct addrinfo hints, *listp, *p;

 /* Get a list of potential server addresses */

 memset(&hints, 0, sizeof(struct addrinfo));

 hints.ai_socktype = SOCK_STREAM; /* Open a connection */

 hints.ai_flags = AI_NUMERICSERV; /* …using numeric port arg. */

 hints.ai_flags |= AI_ADDRCONFIG; /* Recommended for connections */

 Getaddrinfo(hostname, port, &hints, &listp);

csapp.c

 Establish a connection with a server

AI_ADDRCONFIG – uses your system’s address type.

You have at least one IPV4 iface? IPV4. At least one IPV6? IPV6.

Carnegie Mellon

67

getaddrinfo

ai_canonname

result

ai_addr

ai_next

addrinfo structs

Socket address structs

NULL

ai_addr

ai_next

NULL

ai_addr

NULL

 Clients: walk this list, trying each socket address in turn, until
the calls to socket and connect succeed.

 Servers: walk the list until calls to socket and bind succeed.

Carnegie Mellon

68

Sockets Helper: open_clientfd (cont)

/* Walk the list for one that we can successfully connect to */

for (p = listp; p; p = p->ai_next) {

/* Create a socket descriptor */

if ((clientfd = socket(p->ai_family, p->ai_socktype,

p->ai_protocol)) < 0)

continue; /* Socket failed, try the next */

 /* Connect to the server */

 if (connect(clientfd, p->ai_addr, p->ai_addrlen) != -1)

 break; /* Success */

 Close(clientfd); /* Connect failed, try another */

 }

 /* Clean up */

 Freeaddrinfo(listp);

 if (!p) /* All connects failed */

return -1;

 else /* The last connect succeeded */

 return clientfd;

} csapp.c

Carnegie Mellon

69

Sockets Helper: open_listenfd

int open_listenfd(char *port)

{

 struct addrinfo hints, *listp, *p;

 int listenfd, optval=1;

 /* Get a list of potential server addresses */

 memset(&hints, 0, sizeof(struct addrinfo));

 hints.ai_socktype = SOCK_STREAM; /* Accept connect. */

 hints.ai_flags = AI_PASSIVE | AI_ADDRCONFIG; /* …on any IP addr */

 hints.ai_flags |= AI_NUMERICSERV; /* …using port no. */

 Getaddrinfo(NULL, port, &hints, &listp);

csapp.c

 Create a listening descriptor that can be used to accept
connection requests from clients.

Carnegie Mellon

70

Sockets Helper: open_listenfd (cont)

/* Walk the list for one that we can bind to */

for (p = listp; p; p = p->ai_next) {

/* Create a socket descriptor */

if ((listenfd = socket(p->ai_family, p->ai_socktype,

p->ai_protocol)) < 0)

continue; /* Socket failed, try the next */

/* Eliminates "Address already in use" error from bind */

Setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR,

(const void *)&optval , sizeof(int));

/* Bind the descriptor to the address */

if (bind(listenfd, p->ai_addr, p->ai_addrlen) == 0)

 break; /* Success */

 Close(listenfd); /* Bind failed, try the next */

 } csapp.c

Carnegie Mellon

71

Sockets Helper: open_listenfd (cont)

/* Clean up */

 Freeaddrinfo(listp);

 if (!p) /* No address worked */

return -1;

 /* Make it a listening socket ready to accept conn. requests */

 if (listen(listenfd, LISTENQ) < 0) {

 Close(listenfd);

return -1;

}

 return listenfd;

} csapp.c

 Key point: open_clientfd and open_listenfd are
both independent of any particular version of IP.

Carnegie Mellon

72

HTTP Versions

 Major differences between HTTP/1.1 and HTTP/1.0
▪ HTTP/1.0 uses a new connection for each transaction

▪ HTTP/1.1 also supports persistent connections

▪ multiple transactions over the same connection

▪ Connection: Keep-Alive

▪ HTTP/1.1 requires HOST header

▪ Host: www.cmu.edu

▪ Makes it possible to host multiple websites at single Internet host

▪ HTTP/1.1 supports chunked encoding

▪ Transfer-Encoding: chunked

▪ HTTP/1.1 adds additional support for caching

Carnegie Mellon

73

GET Request to Apache Server

From Firefox Browser

GET /~bryant/test.html HTTP/1.1

Host: www.cs.cmu.edu

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US;

rv:1.9.2.11) Gecko/20101012 Firefox/3.6.11

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 115

Connection: keep-alive

CRLF (\r\n)

URI is just the suffix, not the entire URL

Carnegie Mellon

74

GET Response From Apache Server

HTTP/1.1 200 OK

Date: Fri, 29 Oct 2010 19:48:32 GMT

Server: Apache/2.2.14 (Unix) mod_ssl/2.2.14 OpenSSL/0.9.7m

mod_pubcookie/3.3.2b PHP/5.3.1

Accept-Ranges: bytes

Content-Length: 479

Keep-Alive: timeout=15, max=100

Connection: Keep-Alive

Content-Type: text/html

<html>

<head><title>Some Tests</title></head>

<body>

<h1>Some Tests</h1>

 . . .

</body>

</html>

Carnegie Mellon

75

Data Transfer Mechanisms

 Standard
▪ Specify total length with content-length

▪ Requires that program buffer entire message

 Chunked
▪ Break into blocks

▪ Prefix each block with number of bytes (Hex coded)

Carnegie Mellon

76

Chunked Encoding Example
HTTP/1.1 200 OK\n

Date: Sun, 31 Oct 2010 20:47:48 GMT\n

Server: Apache/1.3.41 (Unix)\n

Keep-Alive: timeout=15, max=100\n

Connection: Keep-Alive\n

Transfer-Encoding: chunked\n

Content-Type: text/html\n

\r\n

d75\r\n

<html>

<head>

.<link href="http://www.cs.cmu.edu/style/calendar.css" rel="stylesheet"

type="text/css">

</head>

<body id="calendar_body">

<div id='calendar'><table width='100%' border='0' cellpadding='0'

cellspacing='1' id='cal'>

 . . .

</body>

</html>

\r\n

0\r\n

\r\n

First Chunk: 0xd75 = 3445 bytes

Second Chunk: 0 bytes (indicates last chunk)

	Slide 1
	Slide 2: Super Simple HTTP
	Slide 3: Now you try it
	Slide 4: Network Programming: Part II 15-213/14-513/15-513: Introduction to Computer Systems Spring 2025
	Slide 5
	Slide 6: Web Server Basics
	Slide 7: Web Content
	Slide 8: Static and Dynamic Content
	Slide 9: URLs and how clients and servers use them
	Slide 10: HTTP Requests
	Slide 11: HTTP Responses
	Slide 12: Many more HTTP response codes
	Slide 13: Example HTTP Transaction
	Slide 14: Example HTTP Transaction, Take 2
	Slide 15: Example HTTP(S) Transaction, Take 3
	Slide 16: Review: Sockets
	Slide 17: Review: Echo Server + Client Structure
	Slide 18: Today
	Slide 19: Sockets Interface
	Slide 20: Review: Socket Address Structures
	Slide 21: Review: getaddrinfo
	Slide 22: Sockets Interface
	Slide 23: Sockets Interface: socket
	Slide 24: Sockets Interface
	Slide 25: Sockets Interface: bind
	Slide 26: Sockets Interface
	Slide 27: Sockets Interface: listen
	Slide 28: Sockets Interface
	Slide 29: Sockets Interface: accept
	Slide 30: Sockets Interface
	Slide 31: Sockets Interface: connect
	Slide 32: connect/accept Illustrated
	Slide 33: Connected vs. Listening Descriptors
	Slide 34: Sockets Interface
	Slide 35: Sockets Interface
	Slide 36
	Slide 37: Testing Servers Using telnet
	Slide 38: Testing the Echo Server With telnet
	Slide 39: Today
	Slide 41: Today
	Slide 42: Tiny Web Server
	Slide 43: Tiny Operation
	Slide 44: Tiny Serving Static Content
	Slide 45: Today
	Slide 46: Serving Dynamic Content
	Slide 47: Serving Dynamic Content (cont)
	Slide 48: Serving Dynamic Content (cont)
	Slide 49: Issues in Serving Dynamic Content
	Slide 50: CGI
	Slide 51: The add.com Experience
	Slide 52: Serving Dynamic Content With GET
	Slide 53: Serving Dynamic Content With GET
	Slide 54: Serving Dynamic Content With GET
	Slide 55: Serving Dynamic Content with GET
	Slide 56: Serving Dynamic Content with GET
	Slide 57: Serving Dynamic Content With GET
	Slide 58: Today
	Slide 59: Proxies
	Slide 60: Why Proxies?
	Slide 61: For More Information
	Slide 62: Additional slides
	Slide 63: Web History
	Slide 64: Web History (cont)
	Slide 65: Sockets Interface: bind
	Slide 66: Sockets Helper: open_clientfd
	Slide 67: getaddrinfo
	Slide 68: Sockets Helper: open_clientfd (cont)
	Slide 69: Sockets Helper: open_listenfd
	Slide 70: Sockets Helper: open_listenfd (cont)
	Slide 71: Sockets Helper: open_listenfd (cont)
	Slide 72: HTTP Versions
	Slide 73: GET Request to Apache Server From Firefox Browser
	Slide 74: GET Response From Apache Server
	Slide 75: Data Transfer Mechanisms
	Slide 76: Chunked Encoding Example

