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Problem with Simple Shell Example

m Shell designed to run indefinitely
= Should not accumulate unneeded resources
= Memory
= Child processes
= File descriptors

m Our example shell correctly waits for and reaps foreground
jobs

m But what about background jobs?
= Will become zombies when they terminate
= Will never be reaped because shell (typically) will not terminate
= Could run the entire computer out of memory
= More likely, run out of PIDs
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Printers Used to Catch on Fire
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Highly Exceptional Control Flow

234 | static int 1p check status (int minor)

235 | {

236 int error = 0;

237 unsigned int last = lp table[minor].last error;

238 unsigned char status = r str(minor):;

239 if ((status & LP PERRORP) && ! (LP F(minor) & LP CAREFUL))
240 /* No error. */

241 last = 0;

242 else if ((status & LP POUTPA)) {

243 if (last != LP_POUTPA) {

244 last = LP_POUTPA;

245 printk (KERN INFO "lp%d out of paper\n", minor);
246 1

247 error = —-ENOSPC;

248 } else if (! (status & LP PSELECD)) {

249 if (last != LP_PSELECD) {

250 last = LP_ PSELECD;

251 printk (KERN INFO "lp%d off-line\n", minor);
252 1

253 error = —ET10;

254 } else if (! (status & LP_PERRORP)) {

255 if (last != LP_PERRORP) {

256 last = LP_PERRORP;

257 printk (KERN INFO "lp%d on fire\n", minor):
258 }

259 error = -EIO;

260 } else {

261 last = 0; /* Come here if LP_CAREFUL is set and nc
262 errors are reported. */

263 }

264

265 lp table[minor].last error = last;

bbb

267 if (last != 0)

2 lp error(minor);

2.

2 return error;

L

} https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/char/lp.c?h=v5.0-rc3
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Control Flow

m Processors do only one thing:

" From startup to shutdown, each CPU core simply reads and executes
(interprets) a sequence of instructions, one at a time *

= This sequence is the CPU’s control flow (or flow of control)

Physical control flow

<startup>
inst,
inst,

Time )
inst;

inst,

* Externally, from an architectural
<shutdown>

viewpoint (internally, the CPU
may use parallel out-of-order
execution)
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Altering the Control Flow

m Up to now: two mechanisms for changing control flow:
= Jumps and branches
= Call and return
React to changes in program state

m Insufficient for a useful system:
Difficult to react to changes in system state

= Data arrives from a disk or a network adapter
" |nstruction divides by zero

= User hits Ctrl-C at the keyboard

= System timer expires

m System needs mechanisms for “exceptional control flow”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8



Exceptional Control Flow

m Exists at all levels of a computer system

m Low level mechanisms

= 1. Exceptions

= Change in control flow in response to a system event
(i.e., change in system state)

= Implemented using combination of hardware and OS software

m Higher level mechanisms
= 2. Process context switch
= Implemented by OS software and hardware timer
= 3.Signals
= Implemented by OS software
= 4. Nonlocal jumps: setjmp () and longjmp ()
= Implemented by C runtime library
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Exceptions

m An exception is a transfer of control to the OS kernel in response
to some event (i.e., change in processor state)
= Kernel is the memory-resident part of the OS

= Examples of events: Divide by 0, arithmetic overflow, page fault, I/0
request completes, typing Ctrl-C

User code Kernel code
Event — |_current ¥ Exception S
|_next Exception processing
by exception handler

* Return to |_current
* Return to |_next
* Abort
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Exception Tables

Exception
numbers
Code for
exception handler 0
Exception Code for
VTable .
exception handler 1
0 ¢ /
1 4 | Code for
2 o« exception handler 2
n-1 o
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Code for
exception handler n-1

Carnegie Mellon

Each type of event has a
unique exception number k

k = index into exception table
(a.k.a. interrupt vector)

Handler k is called each time
exception k occurs

12
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Taxonomy of Hardware ECF

ECF
Asynchronous Synchronous
Interrupts Traps Faults Aborts
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Asynchronous Exceptions (Interrupts)

m Caused by events external to the processor

" |ndicated by setting the processor’s interrupt pin
= Handler returns to “next” instruction

m Examples:
=" Timer interrupt
= Every few ms, an external timer chip triggers an interrupt
= Used by the kernel to take back control from user programs
= |/O interrupt from external device
= Hitting Ctrl-C at the keyboard
= Arrival of a packet from a network
= Arrival of data from a disk
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Synchronous Exceptions

m Caused by events that occur as a result of executing an
instruction:

" Traps
= |ntentional, set program up to “trip the trap” and do something
= Examples: system calls, gdb breakpoints
= Returns control to “next” instruction

= Faults
= Unintentional but possibly recoverable

= Examples: page faults (recoverable), protection faults
(unrecoverable), floating point exceptions

= Either re-executes faulting (“current”) instruction or aborts
= Aborts

= Unintentional and unrecoverable

= Examples: illegal instruction, parity error, machine check

= Aborts current program
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System Calls

m Each x86-64 system call has a unique ID number
m Examples:

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file
57 fork Create process

59 execve Execute a program
60 exit Terminate process

62 kill Send signal to process
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System Call Example: Opening File

m Usercalls: open (filename, options)
m Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:

e5d79: b802000000 mov SOx2,%eax # open is syscall #2

e5d7e: 0f05 syscall # Return value in %rax
e5d80: 48 3d 01 f0 ffff cmp SOxfffffffffffff001,%rax

e5dfa: c3 retq

User code Kernel code m %rax contains syscall number
m Otherargumentsin $rdi,
i Exception . $rsi, srdx, 5rl1l0, 3r8, 3r9
cm H o
p N Openfile | Return Value IN 3 rax
Returns m Negative value is an error
| corresponding to negative
errno
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System Call | Aimost like a function call

o
= User calls: open (£ Transfer of control | |
* On return, executes next instruction
* Passes arguments using calling convention
00000000000e5d70 <__op © GELS result in $rax

m Calls __open funct

e5d79: b802 0000 00

e5d7e: Of 05 sys. One Important exception!
e5d80: 483d 01fOffff c o Executed by Kernel
e5dfa: ¢3 «tq * Different set of privileges

* And other differences:
* E.g., “address” of “function” is in $rax
* Useserrno
* Etc.

syscall Except. . .

cmp g . o
Returns m Negative value is an error

| corresponding to negative
errno
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Fault Example: Page Fault

int a[1000];
m User writes to memory location ‘;‘ain ()
m That portion (page) of user’s memory a[500] = 13;
is currently on disk }
80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10
User code Kernel code

Exception: page fault

[

movl % >
\l CopypGQEfrom
Return and disk to memory

reexecute movl

A 4
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Fault Example: Invalid Memory Reference

int a[1000];
main ()

{

a[5000] = 13;

}

80483b7: c7 05 60 e3 04 08 0d movl $0xd, 0x804e360

User code Kernel code

l Exception: page fault

»
»

movl

Detect invalid address

A 4

» Signal process

m Sends SIGSEGV signal to user process
m User process exits with “segmentation fault”
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Quiz

https://canvas.cmu.edu/courses/37116/quizzes/109925
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ECF Exists at All Levels of a System

m Exceptions
= Hardware and operating system kernel software

m Process Context Switch

= Hardware timer and kernel software
m Signals
= Kernel software and application software

m Nonlocal jumps

= Application code
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Problem with Simple Shell Example

m Shell designed to run indefinitely
= Should not accumulate unneeded resources
= Memory
= Child processes
= File descriptors

m Our example shell correctly waits for and reaps foreground
jobs

m But what about background jobs?

= Will become zombies when they terminate
= Will never be reaped because shell (typically) will not terminate
= Will create a memory leak that could run the kernel out of memory
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ECF to the Rescue!

m Solution: Exceptional control flow

= The kernel will interrupt regular processing to alert us when a background
process completes

® |n Unix, the alert mechanism is called a signal
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Signals

m Asignal is a small message that notifies a process that an
event of some type has occurred in the system
= Akin to exceptions and interrupts

= Sent from the kernel (sometimes at the request of another process) to a
process

= Signal type is identified by small integer ID’s (1-30)
= Only information in a signal is its ID and the fact that it arrived

ID Name Default Action Corresponding Event

2 SIGINT Terminate User typed ctrl-c

9 SIGKILL Terminate Kill program (cannot override or ignore)
11 SIGSEGV  Terminate Segmentation violation

14 SIGALRM  Terminate Timer signal

17 SIGCHLD  Ignore Child stopped or terminated

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26



Signal Concepts: Sending a Signal

m Kernel sends a signal to a destination process by updating some
state in the context of the destination process

m Kernel sends a signal for one of the following reasons:
= Kernel has detected a system event such as divide-by-zero (SIGFPE) or
the termination of a child process (SIGCHLD)
= Another process has invoked the kill system call to explicitly request
the kernel to send a signal to the destination process
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Signal Concepts: Sending a Signal

User level
Process B
Process C
kernel
Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C
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Signal Concepts: Sending a Signal

User level
Process B
Process C

(dp]
D
=
Q.
(7))
-c-;- kernel
o

Pending for A Blocked for A

X ending for B Blocked for B
Pending for C Blocked for C
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Signal Concepts: Sending a Signal

User level
Process A
Process C
kernel
Pending for A Blocked for A
Pending for B Blocked for B
1| Pending for C Blocked for C
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Signal Concepts: Sending a Signal

User level

Process B

Process A

kernel

Blocked for A
Blocked for B
ending for C Blocked for C
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Signal Concepts: Sending a Signal

User level
Process B
Process A
Process C

kernel

Pending for A Blocked for A

Pending for B Blocked for B

0| Pending for C Blocked for C
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Signal Concepts: Receiving a Signal

m A destination process receives a signal when it is forced by
the kernel to react in some way to the signal

m Some possible ways to react:
= Jgnore the signal (do nothing)
= Terminate the process (with optional core dump)
= Catch the signal by executing a user-level function called signal handler

= Akin to a hardware exception handler being called in response to an
asynchronous interrupt:

(1) Signal received (2) Control passes
by process to signal handler

Icurr 4 >
Inext (3) Signal
handler runs

(4) Signal handler
returns to
next instruction
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Signal Concepts: Pending and Blocked Signals

m A ssignal is pending if sent but not yet received
= There can be at most one pending signal of each type
= |mportant: Signals are not queued

= |f a process has a pending signal of type k, then subsequent signals of
type k that are sent to that process are discarded

m A process can block the receipt of certain signals

= Blocked signals can be sent, but will not be received until the signal is
unblocked

= Some signals cannot be blocked (SIGKILL, SIGSTOP) or can only be
blocked when sent by other processes (SIGSEGV, SIGILL, etc)

m A pending signal is received at most once
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Signal Concepts: Pending/Blocked Bits

m Kernel maintains pending and blocked bit vectors in the
context of each process
= pending: represents the set of pending signals
= Kernel sets bit k in pending when a signal of type k is sent
= Kernel clears bit k in pending when a signal of type k is received

= blocked: represents the set of blocked signals

= Can be set and cleared by using the sigprocmask function

= Also referred to as the signal mask.
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Signal Concepts: Sending a Signal

User level

Process A

Process C

o

<

o
/qs

kernel

,éndlng for A Blocked for A
nding for B Blocked for B
Pending for C Blocked for C
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Sending Signals: Process Groups

m Every process belongs to exactly one process group

pid=20

pgid=20 pi§=f0
pgid=40
Background Background
process group 32 process group 40
pid=21 pid=22 getpgrp ()
pPgid=20 Pgid=20 Return process group of current process

process group 20 Change process group of a process (see

text for details)
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Sending Signals with /bin/kill Program

m /bin/kill program
sends arbitrary signaltoa 1inux> ./forks 16

Childl: pid=24818 pgrp=24817
Process or process group Child2: pid=24819 pgrp=24817

linux> ps
m Examples PID TTY TIME CMD

- /bin/kill -9 24818 24788 Pts/Z 00:00:00 tesh

24818 pts/2 00:00:02 forks
Send SIGKILL to process 24818 24810 pts/2 00-00-02 Forks

24820 pts/2 00:00:00 ps

= /bin/kill -9 -24817 l:?.nux> /bin/kill -9 -24817
linux> ps

Send SIGKILL to every process PID TTY TIME CMD

in process group 24317 24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps
linux>
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Sending Signals from the Keyboard

m Typing ctrl-c (ctrl-z) causes the kernel to send a SIGINT (SIGTSTP) to every
job in the foreground process group

= S|GINT — default action is to terminate each process
= SIGTSTP — default action is to stop (suspend) each process

pid=20

. pid=40
pgid=20

pgid=40

Background Background
process group 32 process group 40

pid=21 pid=22
pgid=20 pgid=20
Foreground

rocess group 20
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Example of ctrl-cand ctrl-z

bluefish> ./forks 17 STAT (process state) Legend:
Child: pid=28108 pgrp=28107
Parent: pid=28107 pgrp=28107 First letter:
<types ctrl-z> S: sleeping
SR 6 T: stopped
bluefish> ps w R: running
PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28107 pts/8 T 0:01 ./forks 17 Second letter:
28108 pts/8 T 0:01 ./forks 17 s: session leader
28109 pts/8 R+ 0:00 ps w +: foreground proc group
bluefish> fg
./forks 17 See “man ps” for more
<types ctrl-c> details
bluefish> ps w
PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh

28110 pts/8 R+ 0:00 ps w
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Sending Signals with kil1l Function

void forkl2 ()
{
pid t pid[N];
int 1i;
int child status;
for (1 = 0; 1 < N; i++4)
if ((pid[i] = fork()) == 0) {
/* Child: Infinite Loop */
while (1)
}
for (1 = 0; 1 < N; i++) {
printf ("Killing process %d\n", pid[i]);
kill (pid[i], SIGINT)
}
for (i = 0; 1 < N; i++) {
pid t wpid = wait(&child status);
if (WIFEXITED(child;status))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));
else
printf ("Child %d terminated abnormally\n", wpid);
}
} forks.c
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Receiving Signals

m Suppose kernel is returning from an exception handler
and is ready to pass control to process p

Process q

user code

kernel code } context switch
Time user code
kernel code } context switch

user code
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Receiving Signals

m Suppose kernel is returning from an exception handler
and is ready to pass control to process p

m Kernel computes pnb = pending & ~blocked
= The set of pending nonblocked signals for process p

m If (pnb == 0)
= Pass control to next instruction in the logical flow for p
m Else

= Choose least nonzero bit k in pnb and force process p to receive
signal k

" The receipt of the signal triggers some action by p
= Repeat for all nonzero k in pnb
= Pass control to next instruction in logical flow for p
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Default Actions

m Each signal type has a predefined default action, which is
one of:
" The process terminates
= The process stops until restarted by a SIGCONT signal
®= The process ignores the signal
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Installing Signal Handlers

m The signal function modifies the default action associated
with the receipt of signal signum:

" handler t *signal (int signum, handler t *handler)

m Different values for handler:
= SIG_IGN: ignore signals of type signum
= SIG_DFL: revert to the default action on receipt of signals of type signum
= QOtherwise, handler is the address of a user-level signal handler
= Called when process receives signal of type signum
= Referred to as “installing” the handler
= Executing handler is called “catching” or “handling” the signal

= When the handler executes its return statement, control passes back
to instruction in the control flow of the process that was interrupted
by receipt of the signal
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Signal Handling Example

void sigint handler (int ) /* SIGINT handler */
{

printf ( ) ;
sleep(2) ;

printf ( )

fflush (stdout) ;

sleep (1) ;

printf ( ) ;

exit(0) ;

int main(int argc, char** argv)
/* Install the SIGINT handler */
if (signal (SIGINT, sigint handler) == SIG_ERR)

unix error( ) ;

/* Wait for the receipt of a signal */
pause () ;

return 0;

} sigint.c
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Signals Handlers as Concurrent Flows

m A signal handler is a separate logical flow (not process) that
runs concurrently with the main program

m But, this flow exists only until returns to main program

Process A Process A Process B

while (1) handler () {

14

}

Time
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Another View of Signal Handlers as
Concurrent Flows

I
Process A 1 Process B
I
|
. I .
Signal sent —> leure : user code (main)
I
to process A kernel code } context switch
I
: user code (main)
I .
] kernel code } context switch
Signal received —> [
I user code (handler)
by process A ! :
: kernel code
3 I
I
Inext I user code (main)
v I
I
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Nested Signal Handlers

m Handlers can be interrupted by other handlers

Main program Handler S Handler T
(2) Control passes

(1) Program Icurr to handler S
catches signal s

(4) Control passes
(3) Program to handler T

(7) Main program lnext catches signal t >
v (5) Handler T

(6) Handler S
returns to
main
program

returns to
handler S
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Blocking and Unblocking Signals

m Implicit blocking mechanism

= Kernel blocks any pending signals of type currently being handled
= e.g., a SIGINT handler can’t be interrupted by another SIGINT

m Explicit blocking and unblocking mechanism
" sigprocmask function

m Supporting functions
" sigemptyset — Create empty set
= sigfillset —Addeverysignal number to set
" sigaddset —Add signal number to set
" sigdelset —Delete sighal number from set
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Temporarily Blocking Signals

sigset t mask, prev mask;

sigemptyset (&mask) ;
sigaddset (&mask, SIGINT) ;

/* Block SIGINT and save previous blocked set */
sigprocmask (SIG_BLOCK, &mask, &prev_mask);

/* Code region that will not be interrupted by SIGINT */

/* Restore previous blocked set, unblocking SIGINT */
sigprocmask (SIG _SETMASK, &prev mask, NULL);
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Safe Signal Handling

m Handlers are tricky because they are concurrent with
main program and share the same global data structures

= Shared data structures can become corrupted.

m We'll explore concurrency issues later in the term

m For now here are some guidelines to help you avoid
trouble.
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Guidelines for Writing Safe Handlers

m GO: Keep your handlers as simple as possible
= e.g., set aglobal flag and return

m G1: Call only async-signal-safe functions in your handlers
" printf, sprintf, malloc, andexit are not safe!

m G2:Save and restore errno on entry and exit
= So that other handlers don’t overwrite your value of errno

m G3: Protect accesses to shared data structures by temporarily
blocking all signals
= To prevent possible corruption
m G4: Declare global variables as volatile
= To prevent compiler from storing them in a register
m GO5: Declare global flags as volatile sig atomic t

= flag: variable that is only read or written (e.g. flag = 1, not flag++)
= Flag declared this way does not need to be protected like other globals
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Async-Signal-Safety

m Function is async-signal-safe if either reentrant (e.g., all
variables stored on stack frame, CS:APP3e 12.7.2) or non-
interruptible by signals

m Posix guarantees 117 functions to be async-signal-safe
= Source: “man 7 signal-safety”
= Popular functions on the list:
= exlt, wrilite, walt, waltpid, sleep, kill
= Popular functions that are not on the list:
= printf, sprintf, malloc, exit

= Unfortunate fact: write is the only async-signal-safe output function
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Safe Formatted Output: Option #1

m Use the reentrant SIO (Safe I/0 library) from csapp.cin
your handlers
" ssize t sio puts(char s[]) /* Put string */
" ssize t sio putl(long V) /* Put long */

" void sio error(char s[]) /* Put msg & exit */

void sigint handler (int sig) /* Safe SIGINT handler */

{
sio puts("So you think you can stop the bomb"

" with ctrl-c, do you?\n");

sleep (2) ;

sio puts("Well...");
sleep (1) ;

sio puts("OK. :-)\n");
_exit(0);

} sigintsafe.c
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Safe Formatted Output: Option #2

m Use the new & improved reentrant sio printf!
= Handles restricted class of print f format strings
= Recognizes: 3¢ %$s %d %u %$x %%
= Size designators ‘1’ and ‘2’

void sigint handler(int sig) /* Safe SIGINT handler */
{
sio printf("So you think you can stop the bomb"
" (process %d) with ctrl-%c, do you?\n",
(int) getpid(), 'c');
sleep (2) ;
sio puts("Well...");
sleep (1) ;
sio puts("OK. :-)\n");
_exit(0);
}

sigintsafe.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56



Carnegie Mellon

volatile int ccount = 0;

void child handler(int sig) {
int olderrno errno;
pid_t pid;
if ((pid = wait(NULL)) < 0)

Sio_error("wait error");

ccount--;
sio_puts ("Handler reaped child ");
sio_putl ((long)pid) ;
sio puts (" \n");
sleep (1) ;
errno olderrno;

}

void forkl4d () {
pid_t pid|[N];
int 1i;
ccount = N; N
signal (SIGCHLD, child handler);

for (i = 0; 1 < N; i++) {
if ((pid[i] = fork()) == 0) {
sleep (1) ;
exit(0); /* Child exits */

}
}

while (ccount > 0) /* Parent spins */

.
14

This code is incorrect!

Correct Signal Handling

m Pending signals are
not queued

= For each signal type, one
bit indicates whether or
not signal is pending...

= _..thus at most one
pending signal of any
particular type.
m You can’t use signals
to count events, such as

children terminating.

whaleshark> ./forks 14
Handler reaped child 23240
Handler reaped child 23241
. ..(hangs)

forks.c
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Correct Signal Handling

m Must wait for all terminated child processes
" Put wait inaloop toreap all terminated children

void child handler2 (int sigqg)
{
int olderrno = errno;
pid t pid;
while ((pid = wait(NULL)) > 0) {
ccount--;
sio puts("Handler reaped child ");
sio putl((long)pid) ;
sio puts(" \n");
}

if (errno '= ECHILD)
sio_error("wait error");
} errno = olderrno; whaleshark> ./forks 15
Handler reaped child 23246

Handler reaped child 23247
Handler reaped child 23248
Handler reaped child 23249
Handler reaped child 23250
whaleshark>
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Synchronizing Flows to Avoid Races

m SIGCHLD handler for a simple shell

= Blocks all signals while running critical code

void handler (int siq)

{

int olderrno = errno;
sigset t mask all, prev_all;
pid t pid;

sigfillset(&mask all);

while ((pid = waitpid(-1, NULL, 0)) > 0) { /* Reap child */
sigprocmask (SIG_BLOCK, &mask all, &prev_all);
deletejob(pid); /* Delete the child from the job list */

sigprocmask (SIG_SETMASK, é&prev_all, NULL);

}

if (pid !'= 0 && errno !'= ECHILD)
sio _error("waitpid error");

errno = olderrno;

} procmaskl.c
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Synchronizing Flows to Avoid Races

m Simple shell with a subtle synchronization error because it
assumes parent runs before child

int main(int argc, char **argv)

{

int pid;

sigset t mask all, prev_all;

int n=N; /*N=25 */
sigfillset(&mask all);

signal (SIGCHLD, handler);

initjobs(); /* Initialize the job list */

while (n--) {
if ((pid = fork()) == 0) { /* Child */
execve ("/bin/date", argv, NULL);
}
sigprocmask (SIG BLOCK, &mask all, &prev all); /* Parent */
addjob(pid); /* Add the child to the job list */
sigprocmask (SIG_SETMASK, &prev_all, NULL);

}
exit(0) ;

} procmaskl.c
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Corrected Shell Program Without Race

int main(int argc, char **argv)
{
int pid;
sigset t mask all, mask one, prev_one;
int n = N; /* N=5 */
sigfillset (&mask all);
sigemptyset (&mask one) ;
sigaddset (&mask one, SIGCHLD) ;
signal (SIGCHLD, handler) ;
initjobs(); /* Initialize the job list */

while (n--) {
sigprocmask (SIG_BLOCK, &mask one, &prev one); /* Block SIGCHLD */
if ((pid = fork()) == 0) { /* Child process */
sigprocmask (SIG_SETMASK, &prev one, NULL); /* Unblock SIGCHLD */
execve ("/bin/date", argv, NULL) ;
}
sigprocmask (SIG BLOCK, &mask all, NULL); /* Parent process */
addjob(pid); /* Add the child to the job list */
sigprocmask (SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */
}
exit(0) ;

} procmask2.c




Explicitly Waiting for Signals

m Handlers for program explicitly waiting for SIGCHLD to arrive

volatile sig atomic_t pid;

void sigchld handler (int s)

{
int olderrno = errno;
pid = waitpid(-1l, NULL, 0); /* Main is waiting for nonzero pid */
errno = olderrno;

}

void sigint handler (int s)

{

}

waitforsignal.c
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Explicitly Waiting for Signals

int main(int argc, char **argv) ({
sigset t mask, prev; Similar to a shell waiting
int n = N; /* N = 10 */ for a foreground job to
signal (SIGCHLD, sigchld handler) ; terminate.
signal (SIGINT, sigint handler) ;
sigemptyset (&mask) ;

sigaddset (&mask, SIGCHLD) ;

while (n--) {
sigprocmask (SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */
if (fork() == 0) /* Child */
exit (0) ;
/* Parent */
pid = 0;
sigprocmask (SIG _SETMASK, &prev, NULL); /* Unblock SIGCHLD */

/* Wait for SIGCHILD to be received (wasteful!) */
while (!'pid)
/* Do some work after receiving SIGCHLD */
printf(".");

}

printf ("\n") ;

exit (0); waitforsignal.c
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Explicitly Waiting for Signals

while ('pid)

’

m Program is correct, but very wasteful

" Program in busy-wait loop

while ('pid) /* Race! */
pause () ;

m Possible race condition
= Between checking pid and starting pause, might receive signal

while ('pid) /* Too slow! */
sleep (1) ;

m Safe, but slow

= Will take up to one second to respond
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Waiting for Signals with sigsuspend

m int sigsuspend(const sigset t *mask)

m Equivalent to atomic (uninterruptable) version of:

sigprocmask (SIG_SETMASK, &mask, &prev);
pause () ;

sigprocmask (SIG_SETMASK, é&prev, NULL) ;
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Waiting for Signals with sigsuspend

int main(int argc, char **argv) ({
sigset t mask, prev;
int n = N; /* N =10 */
signal (SIGCHLD, sigchld handler) ;
signal (SIGINT, sigint handler) ;
sigemptyset (&mask) ;
sigaddset (&mask, SIGCHLD) ;
while (n--) {
sigprocmask (SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */
if (fork() == 0) /* Child */
exit (0) ;

/* Wait for SIGCHLD to be received */
pid = O;
while (!'pid)
sigsuspend (&prev) ;

/* Optionally unblock SIGCHLD */
sigprocmask (SIG_SETMASK, &prev, NULL) ;
/* Do some work after receiving SIGCHLD */
printf(".");

}

printf ("\n") ;

exit (0) ;

sigsuspend.c
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Today

Exceptional Control Flow
Exceptions

H
H
m Signals
H

If we have time: Nonlocal Jumps
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Nonlocal Jumps: setjmp/longjmp

m Powerful (but dangerous) user-level mechanism for
transferring control to an arbitrary location

= Controlled to way to break the procedure call / return discipline
= Useful for error recovery and signal handling

m int setjmp (jmp buf j)
"= Must be called before longjmp
= |dentifies a return site for a subsequent longjmp
" (Called once, returns one or more times

m Implementation:

= Remember where you are by storing the current register context,
stack pointer, and PCvalue in jmp buf

" Return O
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setjmp/longjmp (cont)

m void longjmp (jmp buf j, int i)
= Meaning:
= return from the setjmp remembered by jump buffer j again ...
= ...this time returning i instead of O
= Called after setjmp
= (Called once, but never returns

m longjmp Implementation:

= Restore register context (stack pointer, base pointer, PC value) from
jump buffer 5

= Set %$eax (the return value) to i
= Jump to the location indicated by the PC stored in jump buf 5
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setjmp/longjmp Example

m Goal: return directly to original caller from a deeply-
nested function

/* Deeply nested function foo */
void foo (void)

{
if (errorl)
longjmp (buf, 1);
bar () ;
}

void bar (void)
{
if (error2)
longjmp (buf, 2);
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jmp buf buf;

setjmp/longjmp
Example (cont)

int errorl = 0;
int error2 = 1;

void foo(void), bar(void);

int main{()
{
switch (setjmp (buf)) ({
case O:
foo();
break;
case 1:
printf ("Detected an errorl condition in foo\n");
break;
case 2:
printf ("Detected an error2 condition in foo\n");
break;
default:
printf ("Unknown error condition in foo\n");

}
exit(0) ;
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Limitations of Nonlocal Jumps

m Works within stack discipline

= Can only long jump to environment of function that has been called
but not yet completed

Before longjmp  After longjmp

jmp buf env; env
......... > Pl Pl
P1 ()
{
if (setjmp(env)) { P2
/* Long Jump to here */
} else {
P2(); P2
}
} P2
P2 ()
{ . . . P2(); . . . P3(); } P3
P3()
{
longjmp (env, 1);
}
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Limitations of Long Jumps (cont.)

m Works within stack discipline

= Can only long jump to environment of function that has been called
but not yet completed

jmp buf env; Pl
PO J P2
{ env
}
P2 () Pl
{

if (setjmp(env)) ({ env

/* Long Jump to here */ | P2

}
} P2 returns P1
P3() env
{ ....x...p P3

longjmp (env, 1);
} At longjmp
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Putting It All Together: A Program
That Restarts Itself When ctrl-c'd

#include "csapp.h"

sigjmp buf buf;
greatwhite> ./restart

void handler (int sig) starting
{ processing. ..
siglongjmp (buf, 1); processing. ..
} processing. ..
int main() restarting Ctrl-c
{ processing. *
if (!sigsetjmp (buf, 1)) { processing. ..
Signal (SIGINT, handler); restarting
Sio puts ("starting\n") ; processing. Ctrl-c
} processing. ..
D processing. ..

Sio_puts ("restarting\n");

while(1l) {

Sleep(1) ;

Sio_puts ("processing...\n");
}

exit(0); /* Control never reaches here */

} restart.c
Bryant , i i 74
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