Carnegie Mellon

Exceptional Control Flow

15-213/15-513: Introduction to Computer Systems
18t Lecture, March 20, 2025

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Today

Exceptional Control Flow
Exceptions

H
H
m Signals
H

If we have time: Nonlocal Jumps

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Problem with Simple Shell Example

m Shell designed to run indefinitely
= Should not accumulate unneeded resources
= Memory
= Child processes
= File descriptors

m Our example shell correctly waits for and reaps foreground
jobs

m But what about background jobs?
= Will become zombies when they terminate
= Will never be reaped because shell (typically) will not terminate
= Could run the entire computer out of memory
= More likely, run out of PIDs

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Printers Used to Catch on Fire

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Highly Exceptional Control Flow

234 | static int 1p check status (int minor)

235 | {

236 int error = 0;

237 unsigned int last = lp table[minor].last error;

238 unsigned char status = r str(minor):;

239 if ((status & LP PERRORP) && ! (LP F(minor) & LP CAREFUL))
240 /* No error. */

241 last = 0;

242 else if ((status & LP POUTPA)) {

243 if (last != LP_POUTPA) {

244 last = LP_POUTPA;

245 printk (KERN INFO "lp%d out of paper\n", minor);
246 1

247 error = —-ENOSPC;

248 } else if (! (status & LP PSELECD)) {

249 if (last != LP_PSELECD) {

250 last = LP_ PSELECD;

251 printk (KERN INFO "lp%d off-line\n", minor);
252 1

253 error = —ET10;

254 } else if (! (status & LP_PERRORP)) {

255 if (last != LP_PERRORP) {

256 last = LP_PERRORP;

257 printk (KERN INFO "lp%d on fire\n", minor):
258 }

259 error = -EIO;

260 } else {

261 last = 0; /* Come here if LP_CAREFUL is set and nc
262 errors are reported. */

263 }

264

265 lp table[minor].last error = last;

bbb

267 if (last != 0)

2 lp error(minor);

2.

2 return error;

L

} https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/char/lp.c?h=v5.0-rc3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

Control Flow

m Processors do only one thing:

" From startup to shutdown, each CPU core simply reads and executes
(interprets) a sequence of instructions, one at a time *

= This sequence is the CPU’s control flow (or flow of control)

Physical control flow

<startup>
inst,
inst,

Time)
inst;

inst,

* Externally, from an architectural
<shutdown>

viewpoint (internally, the CPU
may use parallel out-of-order
execution)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Altering the Control Flow

m Up to now: two mechanisms for changing control flow:
= Jumps and branches
= Call and return
React to changes in program state

m Insufficient for a useful system:
Difficult to react to changes in system state

= Data arrives from a disk or a network adapter
" |nstruction divides by zero

= User hits Ctrl-C at the keyboard

= System timer expires

m System needs mechanisms for “exceptional control flow”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Exceptional Control Flow

m Exists at all levels of a computer system

m Low level mechanisms

= 1. Exceptions

= Change in control flow in response to a system event
(i.e., change in system state)

= Implemented using combination of hardware and OS software

m Higher level mechanisms
= 2. Process context switch
= Implemented by OS software and hardware timer
= 3.Signals
= Implemented by OS software
= 4. Nonlocal jumps: setjmp () and longjmp ()
= Implemented by C runtime library

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today

Exceptional Control Flow
Exceptions

H
H
m Signals
H

If we have time: Nonlocal Jumps

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Exceptions

m An exception is a transfer of control to the OS kernel in response
to some event (i.e., change in processor state)
= Kernel is the memory-resident part of the OS

= Examples of events: Divide by 0, arithmetic overflow, page fault, I/0
request completes, typing Ctrl-C

User code Kernel code
Event — |_current ¥ Exception S
|_next Exception processing
by exception handler

* Return to |_current
* Return to |_next
* Abort

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Exception Tables

Exception
numbers
Code for
exception handler 0
Exception Code for
VTable .
exception handler 1
0 ¢ /
1 4 | Code for
2 o« exception handler 2
n-1 o

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code for
exception handler n-1

Carnegie Mellon

Each type of event has a
unique exception number k

k = index into exception table
(a.k.a. interrupt vector)

Handler k is called each time
exception k occurs

12

Carnegie Mellon

Taxonomy of Hardware ECF

ECF
Asynchronous Synchronous
Interrupts Traps Faults Aborts

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Asynchronous Exceptions (Interrupts)

m Caused by events external to the processor

" |ndicated by setting the processor’s interrupt pin
= Handler returns to “next” instruction

m Examples:
=" Timer interrupt
= Every few ms, an external timer chip triggers an interrupt
= Used by the kernel to take back control from user programs
= |/O interrupt from external device
= Hitting Ctrl-C at the keyboard
= Arrival of a packet from a network
= Arrival of data from a disk

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Synchronous Exceptions

m Caused by events that occur as a result of executing an
instruction:

" Traps
= |ntentional, set program up to “trip the trap” and do something
= Examples: system calls, gdb breakpoints
= Returns control to “next” instruction

= Faults
= Unintentional but possibly recoverable

= Examples: page faults (recoverable), protection faults
(unrecoverable), floating point exceptions

= Either re-executes faulting (“current”) instruction or aborts
= Aborts

= Unintentional and unrecoverable

= Examples: illegal instruction, parity error, machine check

= Aborts current program

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

System Calls

m Each x86-64 system call has a unique ID number
m Examples:

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file
57 fork Create process

59 execve Execute a program
60 exit Terminate process

62 kill Send signal to process

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

System Call Example: Opening File

m Usercalls: open (filename, options)
m Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:

e5d79: b802000000 mov SOx2,%eax # open is syscall #2

e5d7e: 0f05 syscall # Return value in %rax
e5d80: 48 3d 01 f0 ffff cmp SOxfffffffffffff001,%rax

e5dfa: c3 retq

User code Kernel code m %rax contains syscall number
m Otherargumentsin $rdi,
i Exception . $rsi, srdx, 5rl1l0, 3r8, 3r9
cm H o
p N Openfile | Return Value IN 3 rax
Returns m Negative value is an error
| corresponding to negative
errno

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

System Call | Aimost like a function call

o
= User calls: open (£ Transfer of control | |
* On return, executes next instruction
* Passes arguments using calling convention
00000000000e5d70 <__op © GELS result in $rax

m Calls __open funct

e5d79: b802 0000 00

e5d7e: Of 05 sys. One Important exception!
e5d80: 483d 01fOffff c o Executed by Kernel
e5dfa: ¢3 «tq * Different set of privileges

* And other differences:
* E.g., “address” of “function” is in $rax
* Useserrno
* Etc.

syscall Except. . .

cmp g . o
Returns m Negative value is an error

| corresponding to negative
errno

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

<

Carnegie Mellon

Fault Example: Page Fault

int a[1000];
m User writes to memory location ‘;‘ain ()
m That portion (page) of user’s memory a[500] = 13;
is currently on disk }
80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10
User code Kernel code

Exception: page fault

[

movl % >
\l CopypGQEfrom
Return and disk to memory

reexecute movl

A 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Fault Example: Invalid Memory Reference

int a[1000];
main ()

{

a[5000] = 13;

}

80483b7: c7 05 60 e3 04 08 0d movl $0xd, 0x804e360

User code Kernel code

l Exception: page fault

»
»

movl

Detect invalid address

A 4

» Signal process

m Sends SIGSEGV signal to user process
m User process exits with “segmentation fault”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Quiz

https://canvas.cmu.edu/courses/37116/quizzes/109925

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

https://canvas.cmu.edu/courses/37116/quizzes/109925

Carnegie Mellon

Today

Exceptional Control Flow
Exceptions

H
H
m Signals
H

If we have time: Nonlocal Jumps

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

ECF Exists at All Levels of a System

m Exceptions
= Hardware and operating system kernel software

m Process Context Switch

= Hardware timer and kernel software
m Signals
= Kernel software and application software

m Nonlocal jumps

= Application code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Problem with Simple Shell Example

m Shell designed to run indefinitely
= Should not accumulate unneeded resources
= Memory
= Child processes
= File descriptors

m Our example shell correctly waits for and reaps foreground
jobs

m But what about background jobs?

= Will become zombies when they terminate
= Will never be reaped because shell (typically) will not terminate
= Will create a memory leak that could run the kernel out of memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

ECF to the Rescue!

m Solution: Exceptional control flow

= The kernel will interrupt regular processing to alert us when a background
process completes

® |n Unix, the alert mechanism is called a signal

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Signals

m Asignal is a small message that notifies a process that an
event of some type has occurred in the system
= Akin to exceptions and interrupts

= Sent from the kernel (sometimes at the request of another process) to a
process

= Signal type is identified by small integer ID’s (1-30)
= Only information in a signal is its ID and the fact that it arrived

ID Name Default Action Corresponding Event

2 SIGINT Terminate User typed ctrl-c

9 SIGKILL Terminate Kill program (cannot override or ignore)
11 SIGSEGV Terminate Segmentation violation

14 SIGALRM Terminate Timer signal

17 SIGCHLD Ignore Child stopped or terminated

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Signal Concepts: Sending a Signal

m Kernel sends a signal to a destination process by updating some
state in the context of the destination process

m Kernel sends a signal for one of the following reasons:
= Kernel has detected a system event such as divide-by-zero (SIGFPE) or
the termination of a child process (SIGCHLD)
= Another process has invoked the kill system call to explicitly request
the kernel to send a signal to the destination process

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Signal Concepts: Sending a Signal

User level
Process B
Process C
kernel
Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C

Carnegie Mellon

Signal Concepts: Sending a Signal

User level
Process B
Process C

(dp]
D
=
Q.
(7))
-c-;- kernel
o

Pending for A Blocked for A

X ending for B Blocked for B
Pending for C Blocked for C

Carnegie Mellon

Signal Concepts: Sending a Signal

User level
Process A
Process C
kernel
Pending for A Blocked for A
Pending for B Blocked for B
1| Pending for C Blocked for C

Carnegie Mellon

Signal Concepts: Sending a Signal

User level

Process B

Process A

kernel

Blocked for A
Blocked for B
ending for C Blocked for C

Carnegie Mellon

Signal Concepts: Sending a Signal

User level
Process B
Process A
Process C

kernel

Pending for A Blocked for A

Pending for B Blocked for B

0| Pending for C Blocked for C

Carnegie Mellon

Signal Concepts: Receiving a Signal

m A destination process receives a signal when it is forced by
the kernel to react in some way to the signal

m Some possible ways to react:
= Jgnore the signal (do nothing)
= Terminate the process (with optional core dump)
= Catch the signal by executing a user-level function called signal handler

= Akin to a hardware exception handler being called in response to an
asynchronous interrupt:

(1) Signal received (2) Control passes
by process to signal handler

Icurr 4 >
Inext (3) Signal
handler runs

(4) Signal handler
returns to
next instruction

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

v

Carnegie Mellon

Signal Concepts: Pending and Blocked Signals

m A ssignal is pending if sent but not yet received
= There can be at most one pending signal of each type
= |mportant: Signals are not queued

= |f a process has a pending signal of type k, then subsequent signals of
type k that are sent to that process are discarded

m A process can block the receipt of certain signals

= Blocked signals can be sent, but will not be received until the signal is
unblocked

= Some signals cannot be blocked (SIGKILL, SIGSTOP) or can only be
blocked when sent by other processes (SIGSEGV, SIGILL, etc)

m A pending signal is received at most once

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Signal Concepts: Pending/Blocked Bits

m Kernel maintains pending and blocked bit vectors in the
context of each process
= pending: represents the set of pending signals
= Kernel sets bit k in pending when a signal of type k is sent
= Kernel clears bit k in pending when a signal of type k is received

= blocked: represents the set of blocked signals

= Can be set and cleared by using the sigprocmask function

= Also referred to as the signal mask.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Signal Concepts: Sending a Signal

User level

Process A

Process C

o

<

o
/qs

kernel

,éndlng for A Blocked for A
nding for B Blocked for B
Pending for C Blocked for C

Carnegie Mellon

Sending Signals: Process Groups

m Every process belongs to exactly one process group

pid=20

pgid=20 pi§=f0
pgid=40
Background Background
process group 32 process group 40
pid=21 pid=22 getpgrp ()
pPgid=20 Pgid=20 Return process group of current process

process group 20 Change process group of a process (see

text for details)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Sending Signals with /bin/kill Program

m /bin/kill program
sends arbitrary signaltoa 1inux> ./forks 16

Childl: pid=24818 pgrp=24817
Process or process group Child2: pid=24819 pgrp=24817

linux> ps
m Examples PID TTY TIME CMD

- /bin/kill -9 24818 24788 Pts/Z 00:00:00 tesh

24818 pts/2 00:00:02 forks
Send SIGKILL to process 24818 24810 pts/2 00-00-02 Forks

24820 pts/2 00:00:00 ps

= /bin/kill -9 -24817 l:?.nux> /bin/kill -9 -24817
linux> ps

Send SIGKILL to every process PID TTY TIME CMD

in process group 24317 24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps
linux>

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Sending Signals from the Keyboard

m Typing ctrl-c (ctrl-z) causes the kernel to send a SIGINT (SIGTSTP) to every
job in the foreground process group

= S|GINT — default action is to terminate each process
= SIGTSTP — default action is to stop (suspend) each process

pid=20

. pid=40
pgid=20

pgid=40

Background Background
process group 32 process group 40

pid=21 pid=22
pgid=20 pgid=20
Foreground

rocess group 20
Bryant and O’ HaIIarv.P‘,v.. e ,g,w...g.p,. ioprarer o1 wropoclive, Third Edition 39

Carnegie Mellon

Example of ctrl-cand ctrl-z

bluefish> ./forks 17 STAT (process state) Legend:
Child: pid=28108 pgrp=28107
Parent: pid=28107 pgrp=28107 First letter:
<types ctrl-z> S: sleeping
SR 6 T: stopped
bluefish> ps w R: running
PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28107 pts/8 T 0:01 ./forks 17 Second letter:
28108 pts/8 T 0:01 ./forks 17 s: session leader
28109 pts/8 R+ 0:00 ps w +: foreground proc group
bluefish> fg
./forks 17 See “man ps” for more
<types ctrl-c> details
bluefish> ps w
PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh

28110 pts/8 R+ 0:00 ps w

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Sending Signals with kil1l Function

void forkl2 ()
{
pid t pid[N];
int 1i;
int child status;
for (1 = 0; 1 < N; i++4)
if ((pid[i] = fork()) == 0) {
/* Child: Infinite Loop */
while (1)
}
for (1 = 0; 1 < N; i++) {
printf ("Killing process %d\n", pid[i]);
kill (pid[i], SIGINT)
}
for (i = 0; 1 < N; i++) {
pid t wpid = wait(&child status);
if (WIFEXITED(child;status))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));
else
printf ("Child %d terminated abnormally\n", wpid);
}
} forks.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Carnegie Mellon

Receiving Signals

m Suppose kernel is returning from an exception handler
and is ready to pass control to process p

Process q

user code

kernel code } context switch
Time user code
kernel code } context switch

user code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Receiving Signals

m Suppose kernel is returning from an exception handler
and is ready to pass control to process p

m Kernel computes pnb = pending & ~blocked
= The set of pending nonblocked signals for process p

m If (pnb == 0)
= Pass control to next instruction in the logical flow for p
m Else

= Choose least nonzero bit k in pnb and force process p to receive
signal k

" The receipt of the signal triggers some action by p
= Repeat for all nonzero k in pnb
= Pass control to next instruction in logical flow for p

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Default Actions

m Each signal type has a predefined default action, which is
one of:
" The process terminates
= The process stops until restarted by a SIGCONT signal
®= The process ignores the signal

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Installing Signal Handlers

m The signal function modifies the default action associated
with the receipt of signal signum:

" handler t *signal (int signum, handler t *handler)

m Different values for handler:
= SIG_IGN: ignore signals of type signum
= SIG_DFL: revert to the default action on receipt of signals of type signum
= QOtherwise, handler is the address of a user-level signal handler
= Called when process receives signal of type signum
= Referred to as “installing” the handler
= Executing handler is called “catching” or “handling” the signal

= When the handler executes its return statement, control passes back
to instruction in the control flow of the process that was interrupted
by receipt of the signal

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon

Signal Handling Example

void sigint handler (int) /* SIGINT handler */
{

printf () ;
sleep(2) ;

printf ()

fflush (stdout) ;

sleep (1) ;

printf () ;

exit(0) ;

int main(int argc, char** argv)
/* Install the SIGINT handler */
if (signal (SIGINT, sigint handler) == SIG_ERR)

unix error() ;

/* Wait for the receipt of a signal */
pause () ;

return 0;

} sigint.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Signals Handlers as Concurrent Flows

m A signal handler is a separate logical flow (not process) that
runs concurrently with the main program

m But, this flow exists only until returns to main program

Process A Process A Process B

while (1) handler () {

14

}

Time

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Another View of Signal Handlers as
Concurrent Flows

I
Process A 1 Process B
I
|
. I .
Signal sent —> leure : user code (main)
I
to process A kernel code } context switch
I
: user code (main)
I .
] kernel code } context switch
Signal received —> [
I user code (handler)
by process A ! :
: kernel code
3 I
I
Inext I user code (main)
v I
I

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

Nested Signal Handlers

m Handlers can be interrupted by other handlers

Main program Handler S Handler T
(2) Control passes

(1) Program Icurr to handler S
catches signal s

(4) Control passes
(3) Program to handler T

(7) Main program lnext catches signal t >
v (5) Handler T

(6) Handler S
returns to
main
program

returns to
handler S

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Carnegie Mellon

Blocking and Unblocking Signals

m Implicit blocking mechanism

= Kernel blocks any pending signals of type currently being handled
= e.g., a SIGINT handler can’t be interrupted by another SIGINT

m Explicit blocking and unblocking mechanism
" sigprocmask function

m Supporting functions
" sigemptyset — Create empty set
= sigfillset —Addeverysignal number to set
" sigaddset —Add signal number to set
" sigdelset —Delete sighal number from set

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Carnegie Mellon

Temporarily Blocking Signals

sigset t mask, prev mask;

sigemptyset (&mask) ;
sigaddset (&mask, SIGINT) ;

/* Block SIGINT and save previous blocked set */
sigprocmask (SIG_BLOCK, &mask, &prev_mask);

/* Code region that will not be interrupted by SIGINT */

/* Restore previous blocked set, unblocking SIGINT */
sigprocmask (SIG _SETMASK, &prev mask, NULL);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

Safe Signal Handling

m Handlers are tricky because they are concurrent with
main program and share the same global data structures

= Shared data structures can become corrupted.

m We'll explore concurrency issues later in the term

m For now here are some guidelines to help you avoid
trouble.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Guidelines for Writing Safe Handlers

m GO: Keep your handlers as simple as possible
= e.g., set aglobal flag and return

m G1: Call only async-signal-safe functions in your handlers
" printf, sprintf, malloc, andexit are not safe!

m G2:Save and restore errno on entry and exit
= So that other handlers don’t overwrite your value of errno

m G3: Protect accesses to shared data structures by temporarily
blocking all signals
= To prevent possible corruption
m G4: Declare global variables as volatile
= To prevent compiler from storing them in a register
m GO5: Declare global flags as volatile sig atomic t

= flag: variable that is only read or written (e.g. flag = 1, not flag++)
= Flag declared this way does not need to be protected like other globals

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Async-Signal-Safety

m Function is async-signal-safe if either reentrant (e.g., all
variables stored on stack frame, CS:APP3e 12.7.2) or non-
interruptible by signals

m Posix guarantees 117 functions to be async-signal-safe
= Source: “man 7 signal-safety”
= Popular functions on the list:
= exlt, wrilite, walt, waltpid, sleep, kill
= Popular functions that are not on the list:
= printf, sprintf, malloc, exit

= Unfortunate fact: write is the only async-signal-safe output function

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Safe Formatted Output: Option #1

m Use the reentrant SIO (Safe I/0 library) from csapp.cin
your handlers
" ssize t sio puts(char s[]) /* Put string */
" ssize t sio putl(long V) /* Put long */

" void sio error(char s[]) /* Put msg & exit */

void sigint handler (int sig) /* Safe SIGINT handler */

{
sio puts("So you think you can stop the bomb"

" with ctrl-c, do you?\n");

sleep (2) ;

sio puts("Well...");
sleep (1) ;

sio puts("OK. :-)\n");
_exit(0);

} sigintsafe.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

Carnegie Mellon

Safe Formatted Output: Option #2

m Use the new & improved reentrant sio printf!
= Handles restricted class of print f format strings
= Recognizes: 3¢ %$s %d %u %$x %%
= Size designators ‘1’ and ‘2’

void sigint handler(int sig) /* Safe SIGINT handler */
{
sio printf("So you think you can stop the bomb"
" (process %d) with ctrl-%c, do you?\n",
(int) getpid(), 'c');
sleep (2) ;
sio puts("Well...");
sleep (1) ;
sio puts("OK. :-)\n");
_exit(0);
}

sigintsafe.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

Carnegie Mellon

volatile int ccount = 0;

void child handler(int sig) {
int olderrno errno;
pid_t pid;
if ((pid = wait(NULL)) < 0)

Sio_error("wait error");

ccount--;
sio_puts ("Handler reaped child ");
sio_putl ((long)pid) ;
sio puts (" \n");
sleep (1) ;
errno olderrno;

}

void forkl4d () {
pid_t pid|[N];
int 1i;
ccount = N; N
signal (SIGCHLD, child handler);

for (i = 0; 1 < N; i++) {
if ((pid[i] = fork()) == 0) {
sleep (1) ;
exit(0); /* Child exits */

}
}

while (ccount > 0) /* Parent spins */

.
14

This code is incorrect!

Correct Signal Handling

m Pending signals are
not queued

= For each signal type, one
bit indicates whether or
not signal is pending...

= _..thus at most one
pending signal of any
particular type.
m You can’t use signals
to count events, such as

children terminating.

whaleshark> ./forks 14
Handler reaped child 23240
Handler reaped child 23241
. ..(hangs)

forks.c
57

Correct Signal Handling

m Must wait for all terminated child processes
" Put wait inaloop toreap all terminated children

void child handler2 (int sigqg)
{
int olderrno = errno;
pid t pid;
while ((pid = wait(NULL)) > 0) {
ccount--;
sio puts("Handler reaped child ");
sio putl((long)pid) ;
sio puts(" \n");
}

if (errno '= ECHILD)
sio_error("wait error");
} errno = olderrno; whaleshark> ./forks 15
Handler reaped child 23246

Handler reaped child 23247
Handler reaped child 23248
Handler reaped child 23249
Handler reaped child 23250
whaleshark>

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

Carnegie Mellon

Synchronizing Flows to Avoid Races

m SIGCHLD handler for a simple shell

= Blocks all signals while running critical code

void handler (int siq)

{

int olderrno = errno;
sigset t mask all, prev_all;
pid t pid;

sigfillset(&mask all);

while ((pid = waitpid(-1, NULL, 0)) > 0) { /* Reap child */
sigprocmask (SIG_BLOCK, &mask all, &prev_all);
deletejob(pid); /* Delete the child from the job list */

sigprocmask (SIG_SETMASK, é&prev_all, NULL);

}

if (pid !'= 0 && errno !'= ECHILD)
sio _error("waitpid error");

errno = olderrno;

} procmaskl.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

59

Carnegie Mellon

Synchronizing Flows to Avoid Races

m Simple shell with a subtle synchronization error because it
assumes parent runs before child

int main(int argc, char **argv)

{

int pid;

sigset t mask all, prev_all;

int n=N; /*N=25 */
sigfillset(&mask all);

signal (SIGCHLD, handler);

initjobs(); /* Initialize the job list */

while (n--) {
if ((pid = fork()) == 0) { /* Child */
execve ("/bin/date", argv, NULL);
}
sigprocmask (SIG BLOCK, &mask all, &prev all); /* Parent */
addjob(pid); /* Add the child to the job list */
sigprocmask (SIG_SETMASK, &prev_all, NULL);

}
exit(0) ;

} procmaskl.c
Br , - , - - i 60

Carnegie Mellon

Corrected Shell Program Without Race

int main(int argc, char **argv)
{
int pid;
sigset t mask all, mask one, prev_one;
int n = N; /* N=5 */
sigfillset (&mask all);
sigemptyset (&mask one) ;
sigaddset (&mask one, SIGCHLD) ;
signal (SIGCHLD, handler) ;
initjobs(); /* Initialize the job list */

while (n--) {
sigprocmask (SIG_BLOCK, &mask one, &prev one); /* Block SIGCHLD */
if ((pid = fork()) == 0) { /* Child process */
sigprocmask (SIG_SETMASK, &prev one, NULL); /* Unblock SIGCHLD */
execve ("/bin/date", argv, NULL) ;
}
sigprocmask (SIG BLOCK, &mask all, NULL); /* Parent process */
addjob(pid); /* Add the child to the job list */
sigprocmask (SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */
}
exit(0) ;

} procmask2.c

Explicitly Waiting for Signals

m Handlers for program explicitly waiting for SIGCHLD to arrive

volatile sig atomic_t pid;

void sigchld handler (int s)

{
int olderrno = errno;
pid = waitpid(-1l, NULL, 0); /* Main is waiting for nonzero pid */
errno = olderrno;

}

void sigint handler (int s)

{

}

waitforsignal.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 62

Explicitly Waiting for Signals

int main(int argc, char **argv) ({
sigset t mask, prev; Similar to a shell waiting
int n = N; /* N = 10 */ for a foreground job to
signal (SIGCHLD, sigchld handler) ; terminate.
signal (SIGINT, sigint handler) ;
sigemptyset (&mask) ;

sigaddset (&mask, SIGCHLD) ;

while (n--) {
sigprocmask (SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */
if (fork() == 0) /* Child */
exit (0) ;
/* Parent */
pid = 0;
sigprocmask (SIG _SETMASK, &prev, NULL); /* Unblock SIGCHLD */

/* Wait for SIGCHILD to be received (wasteful!) */
while (!'pid)
/* Do some work after receiving SIGCHLD */
printf(".");

}

printf ("\n") ;

exit (0); waitforsignal.c

Bryant g 63

Carnegie Mellon

Explicitly Waiting for Signals

while ('pid)

’

m Program is correct, but very wasteful

" Program in busy-wait loop

while ('pid) /* Race! */
pause () ;

m Possible race condition
= Between checking pid and starting pause, might receive signal

while ('pid) /* Too slow! */
sleep (1) ;

m Safe, but slow

= Will take up to one second to respond

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 64

Carnegie Mellon

Waiting for Signals with sigsuspend

m int sigsuspend(const sigset t *mask)

m Equivalent to atomic (uninterruptable) version of:

sigprocmask (SIG_SETMASK, &mask, &prev);
pause () ;

sigprocmask (SIG_SETMASK, é&prev, NULL) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 65

Carnegie Mellon

Waiting for Signals with sigsuspend

int main(int argc, char **argv) ({
sigset t mask, prev;
int n = N; /* N =10 */
signal (SIGCHLD, sigchld handler) ;
signal (SIGINT, sigint handler) ;
sigemptyset (&mask) ;
sigaddset (&mask, SIGCHLD) ;
while (n--) {
sigprocmask (SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */
if (fork() == 0) /* Child */
exit (0) ;

/* Wait for SIGCHLD to be received */
pid = O;
while (!'pid)
sigsuspend (&prev) ;

/* Optionally unblock SIGCHLD */
sigprocmask (SIG_SETMASK, &prev, NULL) ;
/* Do some work after receiving SIGCHLD */
printf(".");

}

printf ("\n") ;

exit (0) ;

sigsuspend.c
Bry . r y

Carnegie Mellon

Today

Exceptional Control Flow
Exceptions

H
H
m Signals
H

If we have time: Nonlocal Jumps

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 67

Nonlocal Jumps: setjmp/longjmp

m Powerful (but dangerous) user-level mechanism for
transferring control to an arbitrary location

= Controlled to way to break the procedure call / return discipline
= Useful for error recovery and signal handling

m int setjmp (jmp buf j)
"= Must be called before longjmp
= |dentifies a return site for a subsequent longjmp
" (Called once, returns one or more times

m Implementation:

= Remember where you are by storing the current register context,
stack pointer, and PCvalue in jmp buf

" Return O

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 68

setjmp/longjmp (cont)

m void longjmp (jmp buf j, int i)
= Meaning:
= return from the setjmp remembered by jump buffer j again ...
= ...this time returning i instead of O
= Called after setjmp
= (Called once, but never returns

m longjmp Implementation:

= Restore register context (stack pointer, base pointer, PC value) from
jump buffer 5

= Set %$eax (the return value) to i
= Jump to the location indicated by the PC stored in jump buf 5

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 69

setjmp/longjmp Example

m Goal: return directly to original caller from a deeply-
nested function

/* Deeply nested function foo */
void foo (void)

{
if (errorl)
longjmp (buf, 1);
bar () ;
}

void bar (void)
{
if (error2)
longjmp (buf, 2);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 70

Carnegie Mellon

jmp buf buf;

setjmp/longjmp
Example (cont)

int errorl = 0;
int error2 = 1;

void foo(void), bar(void);

int main{()
{
switch (setjmp (buf)) ({
case O:
foo();
break;
case 1:
printf ("Detected an errorl condition in foo\n");
break;
case 2:
printf ("Detected an error2 condition in foo\n");
break;
default:
printf ("Unknown error condition in foo\n");

}
exit(0) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 71

Carnegie Mellon

Limitations of Nonlocal Jumps

m Works within stack discipline

= Can only long jump to environment of function that has been called
but not yet completed

Before longjmp After longjmp

jmp buf env; env
......... > Pl Pl
P1 ()
{
if (setjmp(env)) { P2
/* Long Jump to here */
} else {
P2(); P2
}
} P2
P2 ()
{ . . . P2(); . . . P3(); } P3
P3()
{
longjmp (env, 1);
}

Bryant and O’Harraror, Cumputer Systeris: A PTOEIaInmier s PETSPECUVE, TITU EUTCon 72

Carnegie Mellon

Limitations of Long Jumps (cont.)

m Works within stack discipline

= Can only long jump to environment of function that has been called
but not yet completed

jmp buf env; Pl
PO J P2
{ env
}
P2 () Pl
{

if (setjmp(env)) ({ env

/* Long Jump to here */ | P2

}
} P2 returns P1
P3() env
{x...p P3

longjmp (env, 1);
} At longjmp

Bryant and O’H4 . - § S - , 73

Carnegie Mellon

Putting It All Together: A Program
That Restarts Itself When ctrl-c'd

#include "csapp.h"

sigjmp buf buf;
greatwhite> ./restart

void handler (int sig) starting
{ processing. ..
siglongjmp (buf, 1); processing. ..
} processing. ..
int main() restarting Ctrl-c
{ processing. *
if (!sigsetjmp (buf, 1)) { processing. ..
Signal (SIGINT, handler); restarting
Sio puts ("starting\n") ; processing. Ctrl-c
} processing. ..
D processing. ..

Sio_puts ("restarting\n");

while(1l) {

Sleep(1) ;

Sio_puts ("processing...\n");
}

exit(0); /* Control never reaches here */

} restart.c
Bryant , i i 74

o

	Slide 1: Exceptional Control Flow 15-213/15-513: Introduction to Computer Systems 18th Lecture, March 20, 2025
	Slide 3: Today
	Slide 4: Problem with Simple Shell Example
	Slide 5: Printers Used to Catch on Fire
	Slide 6: Highly Exceptional Control Flow
	Slide 7: Control Flow
	Slide 8: Altering the Control Flow
	Slide 9: Exceptional Control Flow
	Slide 10: Today
	Slide 11: Exceptions
	Slide 12: Exception Tables
	Slide 13: Taxonomy of Hardware ECF
	Slide 14: Asynchronous Exceptions (Interrupts)
	Slide 15: Synchronous Exceptions
	Slide 16: System Calls
	Slide 17: System Call Example: Opening File
	Slide 18: System Call Example: Opening File
	Slide 19: Fault Example: Page Fault
	Slide 20: Fault Example: Invalid Memory Reference
	Slide 21: Quiz
	Slide 22: Today
	Slide 23: ECF Exists at All Levels of a System
	Slide 24: Problem with Simple Shell Example
	Slide 25: ECF to the Rescue!
	Slide 26: Signals
	Slide 27: Signal Concepts: Sending a Signal
	Slide 28: Signal Concepts: Sending a Signal
	Slide 29: Signal Concepts: Sending a Signal
	Slide 30: Signal Concepts: Sending a Signal
	Slide 31: Signal Concepts: Sending a Signal
	Slide 32: Signal Concepts: Sending a Signal
	Slide 33: Signal Concepts: Receiving a Signal
	Slide 34: Signal Concepts: Pending and Blocked Signals
	Slide 35: Signal Concepts: Pending/Blocked Bits
	Slide 36: Signal Concepts: Sending a Signal
	Slide 37: Sending Signals: Process Groups
	Slide 38: Sending Signals with /bin/kill Program
	Slide 39: Sending Signals from the Keyboard
	Slide 40: Example of ctrl-c and ctrl-z
	Slide 41: Sending Signals with kill Function
	Slide 42: Receiving Signals
	Slide 43: Receiving Signals
	Slide 44: Default Actions
	Slide 45: Installing Signal Handlers
	Slide 46: Signal Handling Example
	Slide 47: Signals Handlers as Concurrent Flows
	Slide 48: Another View of Signal Handlers as Concurrent Flows
	Slide 49: Nested Signal Handlers
	Slide 50: Blocking and Unblocking Signals
	Slide 51: Temporarily Blocking Signals
	Slide 52: Safe Signal Handling
	Slide 53: Guidelines for Writing Safe Handlers
	Slide 54: Async-Signal-Safety
	Slide 55: Safe Formatted Output: Option #1
	Slide 56: Safe Formatted Output: Option #2
	Slide 57: Correct Signal Handling
	Slide 58: Correct Signal Handling
	Slide 59: Synchronizing Flows to Avoid Races
	Slide 60: Synchronizing Flows to Avoid Races
	Slide 61: Corrected Shell Program Without Race
	Slide 62: Explicitly Waiting for Signals
	Slide 63: Explicitly Waiting for Signals
	Slide 64: Explicitly Waiting for Signals
	Slide 65: Waiting for Signals with sigsuspend
	Slide 66: Waiting for Signals with sigsuspend
	Slide 67: Today
	Slide 68: Nonlocal Jumps: setjmp/longjmp
	Slide 69: setjmp/longjmp (cont)
	Slide 70: setjmp/longjmp Example
	Slide 71: setjmp/longjmp Example (cont)
	Slide 72: Limitations of Nonlocal Jumps
	Slide 73: Limitations of Long Jumps (cont.)
	Slide 74: Putting It All Together: A Program That Restarts Itself When ctrl-c’d

