
Carnegie Mellon

1

Dynamic Memory Allocation:
Basic Concepts

15-213/15-513/14-513: Introduction to Computer Systems
13th Lecture

Carnegie Mellon

2

ChatGPT

Don’t

Carnegie Mellon

3

Deadlines and Spring Break

 Labs
▪ Cachelab is due this Feb 27

▪ Spring Break Happens

▪ Malloc checkpoint is due on March 18

▪ Malloc final is due on Mar 25

 Spring Break
▪ No lectures or deadlines

▪ No office hours, but there may be some Ed coverage

▪ (dga will hold office hours as usual on Monday, Mar 3)

Carnegie Mellon

4

Today

 Basic concepts

 Implicit free lists

Carnegie Mellon

5

void example(long n) {
 long *p;

 p = (long *)malloc(sizeof(long) * n);

 for (long i = 0; i < n; i++) {
 p[i] = i;
 }

 ...

 free(p);
}

Carnegie Mellon

6

Dynamic Memory Allocation

 Programmers use dynamic
memory allocators (such as
malloc) to acquire virtual

memory (VM) at runtime
▪ For data structures whose size

is only known at runtime

 Dynamic memory allocators
manage an area of process
VM known as the heap

Application

Dynamic Memory Allocator

Heap

Kernel virtual memory

Memory-mapped region for
shared libraries

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

“The break”

0x400000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

Run-time heap
(created by malloc)

Carnegie Mellon

7

Dynamic Memory Allocation

 Allocator maintains heap as collection of variable sized
blocks, which are either allocated or free

 Types of allocators
▪ Explicit allocator: application allocates and frees space

▪ e.g., malloc and free in C

▪ Implicit allocator: application allocates, but does not free space

▪ e.g., new and garbage collection in Java

 Will discuss simple explicit memory allocation today

Carnegie Mellon

8

The malloc Package
#include <stdlib.h>

void *malloc(size_t size)

▪ Successful:

▪ Returns a pointer to a memory block of at least size bytes
aligned to a 16-byte boundary (on x86-64)

▪ If size == 0, returns NULL

▪ Unsuccessful: returns NULL (0) and sets errno

void free(void *p)

▪ Returns the block pointed at by p to pool of available memory

▪ p must come from a previous call to malloc, calloc, or realloc

Other functions

▪ calloc: Version of malloc that initializes allocated block to zero

▪ realloc: Changes the size of a previously allocated block

▪ sbrk: Used internally by allocators to grow or shrink the heap

Carnegie Mellon

10

Heap Visualization Convention

 1 square = 1 “word” = 8 bytes

Allocated block
(4 words)

Free block
(2 words) Free word

Allocated word

Lowest address
within heap

Highest address
within heap

(“the break”, adjustable
by sbrk system call)

Carnegie Mellon

11

Allocation Example
(Conceptual)

p1 = malloc(32)

p2 = malloc(40)

p3 = malloc(48)

free(p2)

p4 = malloc(16)

Gap for alignment

Carnegie Mellon

12

Why is malloc hard?

 Who chooses the order of malloc/free requests?

 What is the lifetime of an allocated block?

 When does malloc have to return?

 Can you move blocks once allocated?

 What attributes should a perfect malloc have?

Carnegie Mellon

13

Constraints

 Applications
▪ Can issue arbitrary sequence of malloc and free requests

▪ free request must be to a malloc’d block

 Explicit Allocators
▪ Can’t control number or size of allocated blocks

▪ Must respond immediately to malloc requests

▪ i.e., can’t reorder or buffer requests

▪ Must allocate blocks from free memory

▪ i.e., can only place allocated blocks in free memory

▪ Must align blocks so they satisfy all alignment requirements

▪ 16-byte (x86-64) alignment on 64-bit systems

▪ Can manipulate and modify only free memory

▪ Can’t move the allocated blocks once they are malloc’d

▪ i.e., compaction is not allowed. Why not?

Carnegie Mellon

14

Conflicting: Performance & Overhead

 Given some sequence of malloc and free requests:

▪ 𝑅0, 𝑅1, … , 𝑅𝑘, … , 𝑅𝑛−1

 Goals: maximize throughput and peak memory utilization
▪ These goals are often conflicting

 Imagine the hypothetical “infinite memory malloc” – it’s
really fast…

Carnegie Mellon

15

Performance Goal: Throughput

 Number of completed requests per unit time

In 10 seconds…
 5,000 malloc calls
 + 5,000 free calls

= 1,000 operations/sec

Carnegie Mellon

16

Performance Goal: Minimize Overhead

Given a sequence of malloc and free requests:
𝑅0, 𝑅1, … , 𝑅𝑘, … , 𝑅𝑛−1

After 𝒌 requests:

Def: Aggregate payload 𝑷𝒌
 malloc(p) results in a block with a payload of p bytes

The aggregate payload 𝑃𝑘 is the sum of currently allocated payloads

The peak aggregate payload max
𝑖≤𝑘

𝑃𝑖 is the maximum aggregate payload at

any point in the sequence up to request

Def: Current heap size 𝑯𝒌

Assume heap only grows when allocator uses sbrk, never shrinks

Def: Overhead, 𝑶𝒌
Fraction of heap space NOT used for program data

𝑂𝑘 = (ൗ𝐻𝑘 max
𝑖≤𝑘

𝑃𝑖) − 1.0

Carnegie Mellon

17

Benchmark Example

 Benchmark

 syn-array-short
▪ Trace provided with

malloc lab

▪ Allocate & free 10 blocks

▪ a = allocate

▪ f = free

▪ Bias toward allocate at
beginning & free at end

▪ Blocks number 1–10

▪ Allocated: Sum of all
allocated amounts

▪ Peak: Max so far of
Allocated

Step Command Delta Allocated Peak

1 a 0 9904 9904 9904 9904

2 a 1 50084 50084 59988 59988

3 a 2 20 20 60008 60008

4 a 3 16784 16784 76792 76792

5 f 3 -16784 60008 76792

6 a 4 840 840 60848 76792

7 a 5 3244 3244 64092 76792

8 f 0 -9904 54188 76792

9 a 6 2012 2012 56200 76792

10 f 2 -20 56180 76792

11 a 7 33856 33856 90036 90036

12 f 1 -50084 39952 90036

13 a 8 136 136 40088 90036

14 f 7 -33856 6232 90036

15 f 6 -2012 4220 90036

16 a 9 20 20 4240 90036

17 f 4 -840 3400 90036

18 f 8 -136 3264 90036

19 f 5 -3244 20 90036

20 f 9 -20 0 90036

Carnegie Mellon

18

Benchmark Visualization

▪ Plot 𝑃𝑘 (allocated) and max
𝑖≤𝑘

 𝑃𝑘 (peak)

as a function of 𝑘 (step)

▪ Y-axis normalized — fraction of maximum

Step Command Delta Allocated Peak

1 a 0 9904 9904 9904 9904

2 a 1 50084 50084 59988 59988

3 a 2 20 20 60008 60008

4 a 3 16784 16784 76792 76792

5 f 3 -16784 60008 76792

6 a 4 840 840 60848 76792

7 a 5 3244 3244 64092 76792

8 f 0 -9904 54188 76792

9 a 6 2012 2012 56200 76792

10 f 2 -20 56180 76792

11 a 7 33856 33856 90036 90036

12 f 1 -50084 39952 90036

13 a 8 136 136 40088 90036

14 f 7 -33856 6232 90036

15 f 6 -2012 4220 90036

16 a 9 20 20 4240 90036

17 f 4 -840 3400 90036

18 f 8 -136 3264 90036

19 f 5 -3244 20 90036

20 f 9 -20 0 90036

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
o

rm
al

iz
ed

 A
g

gr
e

ga
te

 M
em

or
y

Step

Allocated Peak

Carnegie Mellon

19

Typical Benchmark Behavior

 Longer sequence of mallocs & frees (40,000 blocks)
▪ Starts with all mallocs, and shifts toward all frees

 Allocator must manage space efficiently the whole time

 Production allocators can shrink the heap

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
e

m
o

ry
 U

se
d

 /
 P

e
ak

 D
at

a

Operation / Operation Count

Data Fit

DataAllocated

Peak

Carnegie Mellon

20

Fragmentation

 Poor memory utilization caused by fragmentation
▪ Internal fragmentation

▪ External fragmentation

Carnegie Mellon

21

Internal Fragmentation

 For a given block, internal fragmentation occurs if payload is
smaller than block size

 Caused by

▪ Overhead of maintaining heap data structures

▪ Padding for alignment purposes

▪ Explicit policy decisions
(e.g., to return a big block to satisfy a small request)

 Depends only on the pattern of previous requests
▪ Thus, easy to measure

Payload
Internal
fragmentation

Block

Internal
fragmentation

Carnegie Mellon

22

Internal Fragmentation Effect

 Purple line: additional heap size due to
 allocator’s data + padding for alignment
▪ For this benchmark, 1.5% overhead

▪ Cannot achieve in practice

▪ Especially since cannot move allocated blocks

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
e

m
o

ry
 U

se
d

 /
 P

e
ak

 D
at

a

Operation / Operation Count

Perfect Fit

Data Fit

DataAllocated

Peak

Peak + Internal Frag

Carnegie Mellon

23

External Fragmentation

 Occurs when there is enough aggregate heap memory,
but no single free block is large enough

 Depends on the pattern of future requests
▪ Thus, difficult to measure

p4 = malloc(64) Yikes! (what would happen now?)

p1 = malloc(32)

p2 = malloc(40)

p3 = malloc(48)

free(p2)

Carnegie Mellon

24

External Fragmentation Effect

 Green line: additional heap size due to external fragmentation

 Best Fit: One allocation strategy

▪ (To be discussed later)

▪ Total overhead = 8.3% on this benchmark

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
e

m
o

ry
 U

se
d

 /
 P

e
ak

 D
at

a

Operation / Operation Count

Best Fit

Perfect Fit

Data Fit

DataAllocated

Peak

Peak + Internal Frag

Peak + All Frag (Best Fit)

Carnegie Mellon

25

Implementation Issues

 How do we know how much memory to free given just a
pointer?

 How do we keep track of the free blocks?

 What do we do with the extra space when allocating a
structure that is smaller than the free block it is placed in?

 How do we pick a block to use for allocation -- many
might fit?

 How do we reuse a block that has been freed?

Carnegie Mellon

26

Knowing How Much to Free
 Standard method

▪ Keep the length (in bytes) of a block in the word preceding the
block.

▪ Including the header

▪ This word is often called the header field or header

▪ Requires an extra word for every allocated block

p0 = malloc(32)

p0

free(p0)

block size Payload
(aligned)

48

Padding
(for alignment)

Carnegie Mellon

27

Keeping Track of Free Blocks

 Method 1: Implicit list using length—links all blocks

 Method 2: Explicit list among the free blocks using pointers

 Method 3: Segregated free list
▪ Different free lists for different size classes

 Method 4: Blocks sorted by size
▪ Can use a balanced tree (e.g., Red-Black tree) with pointers within

each free block, and the length used as a key

Need to tag
each block as
allocated/free

Need space
for pointers

Unused

32 48 32 16

32 48 32 16

Carnegie Mellon

28

Today

 Basic concepts

 Implicit free lists

Carnegie Mellon

29

Method 1: Implicit Free List

 For each block we need both size and allocation status
▪ Could store this information in two words: wasteful!

 Standard trick

▪ When blocks are aligned, some low-order address bits are always 0

▪ Instead of storing an always-0 bit, use it as an allocated/free flag

▪ When reading the Size word, must mask out this bit

Size

1 word

Format of
allocated and
free blocks

Payload

a = 1: Allocated block
a = 0: Free block

Size: total block size

Payload: application data
(allocated blocks only)

a

Optional
padding

Carnegie Mellon

30

Detailed Implicit Free List Example

Start
of

heap

Double-word
aligned

16/0 32/1 32/164/0

End
Block

8/1

Allocated blocks: shaded
Free blocks: unshaded
Headers: labeled with “size in bytes/allocated bit”
Headers are at non-aligned positions
➔ Payloads are aligned

Unused

heap_start heap_end

Carnegie Mellon

31

Implicit List: Data Structures

 Block declaration

 Getting payload from block pointer

 Getting header from payload

typedef uint64_t word_t;

typedef struct block

{

 word_t header;

 unsigned char payload[0];

} block_t;

header payload

return (void *) (block->payload);

return (block_t *) ((unsigned char *) pp

 - offsetof(block_t, payload));

// Zero length array

// bp points to a payload

// block_t *block

C function offsetof(struct, member) returns offset of member within struct

Carnegie Mellon

32

Implicit List: Header access

 Getting allocated bit from header

 Getting size from header

 Initializing header

return header & 0x1;

Size a

return header & ~0xfL;

block->header = size | alloc;

// block_t *block

Carnegie Mellon

33

Implicit List: Traversing list

 Find next block

static block_t *find_next(block_t *block)

{

 return (block_t *) ((unsigned char *) block

 + get_size(block));

}

header payload header payloadunused

block size

16/0 32/1 32/164/0

End
Block

8/1

Unused

Carnegie Mellon

34

Implicit List: Finding a Free Block
 First fit:

▪ Search list from beginning, choose first free block that fits:

▪ Finding space for asize bytes (including header):

static block_t *find_fit(size_t asize)

{

 block_t *block;

 for (block = heap_start; block != heap_end;

 block = find_next(block)) {

 {

 if (!(get_alloc(block))

 && (asize <= get_size(block)))

 return block;

 }

 return NULL; // No fit found

}

16/0 32/1 32/164/0 8/1

heap_start heap_end

Carnegie Mellon

35

Implicit List: Finding a Free Block
 First fit:

▪ Search list from beginning, choose first free block that fits:

▪ Can take linear time in total number of blocks (allocated and free)

▪ In practice it can cause “splinters” at beginning of list

 Next fit:

▪ Like first fit, but search list starting where previous search finished

▪ Should often be faster than first fit: avoids re-scanning unhelpful blocks

▪ Some research suggests that fragmentation is worse

 Best fit:

▪ Search the list, choose the best free block: fits, with fewest bytes left over

▪ Keeps fragments small—usually improves memory utilization

▪ Will typically run slower than first fit

▪ Still a greedy algorithm. No guarantee of optimality

Carnegie Mellon

36

Comparing Strategies

 Total Overheads (for this benchmark)
▪ Perfect Fit: 1.6%

▪ Best Fit: 8.3%

▪ First Fit: 11.9%

▪ Next Fit: 21.6%

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
e

m
o

ry
 U

se
d

 /
 P

e
ak

 D
at

a

Operation / Operation Count

Next Fit

First Fit

Best Fit

Perfect Fit

Data Fit

Data

Carnegie Mellon

37

Implicit List: Allocating in Free Block

 Allocating in a free block: splitting
▪ Since allocated space might be smaller than free space, we might want

to split the block

32 32 1648

32 1632

p

1632

split_block(p, 32)

8

8

Carnegie Mellon

38

Implicit List: Splitting Free Block

64

p

split_block(p, 32)

// Warning: This code is incomplete

static void split_block(block_t *block, size_t asize){

 size_t block_size = get_size(block);

 if ((block_size - asize) >= min_block_size) {

 write_header(block, asize, true);

 block_t *block_next = find_next(block);

 write_header(block_next, block_size - asize, false);

}

1632 3216

Carnegie Mellon

39

Implicit List: Freeing a Block

 Naive implementation:
▪ Just clear the “allocated” flag

32 16 163232

free(p) p

32 32 1632 16

malloc(5*SIZ) Yikes!
There is enough contiguous

free space, but the allocator

won’t be able to find it

8

8

Carnegie Mellon

40

Implicit List: Coalescing

 Join (coalesce) with next/previous blocks, if they are free
▪ Coalescing with next block

 32 1632 16

free(p) p

32 32 16

32

48 16

logically
gone

8

1

Carnegie Mellon

41

Implicit List: Coalescing

 Join (coalesce) with next block, if it is free
▪ Coalescing with next block

▪ How do we coalesce with previous block?

▪ How do we know where it starts?

▪ How can we determine whether its allocated?

1632 16

free(p) p

64 16

64

48 16

logically
gone

8

8

Carnegie Mellon

42

Implicit List: Bidirectional Coalescing
 Boundary tags [Knuth73]

▪ Replicate size/allocated word at “bottom” (end) of free blocks

▪ Allows us to traverse the “list” backwards, but requires extra space

▪ Important and general technique!

Size

Format of
allocated and
free blocks

Payload and
padding

a = 1: Allocated block
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

a

Size aBoundary tag
(footer)

32 32 32 32 48 3248 32

Header

8 8

Carnegie Mellon

44

Implementation with Footers

 Locating footer of current block

const size_t dsize = 2*sizeof(word_t);

static word_t *header_to_footer(block_t *block)

{

 size_t asize = get_size(block);

 return (word_t *) (block->payload + asize - dsize);

}

header payload header payloadunused footer

asize

dsize

asize

Carnegie Mellon

45

Implementation with Footers

 Locating footer of previous block

static word_t *find_prev_footer(block_t *block)

{

 return &(block->header) - 1;

}

header payload header payloadunused footer

1 word

Carnegie Mellon

46

Splitting Free Block: Full Version

64

p

split_block(p, 32)

static void split_block(block_t *block, size_t asize){

 size_t block_size = get_size(block);

 if ((block_size - asize) >= min_block_size) {

 write_header(block, asize, true);

 write_footer(block, asize, true);

 block_t *block_next = find_next(block);

 write_header(block_next, block_size - asize, false);

 write_footer(block_next, block_size - asize, false);

}

32 32 1632 3264 16

Carnegie Mellon

47

Constant Time Coalescing

Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block being
freed

Case 1 Case 2 Case 3 Case 4

Carnegie Mellon

48

m1 1

Constant Time Coalescing (Case 1)

m1 1

n 1

n 1

m2 1

m2 1

m1 1

m1 1

n 0

n 0

m2 1

m2 1

Carnegie Mellon

49

Constant Time Coalescing (Case 2)

m1 1

m1 1

n 1

n 1

m2 0

m2 0

m1 1

m1 1

n+m2 0

n+m2 0

Carnegie Mellon

50

m1 0

Constant Time Coalescing (Case 3)

m1 0

n 1

n 1

m2 1

m2 1

n+m1 0

n+m1 0

m2 1

m2 1

Carnegie Mellon

51

m1 0

Constant Time Coalescing (Case 4)

m1 0

n 1

n 1

m2 0

m2 0

n+m1+m2 0

n+m1+m2 0

Carnegie Mellon

52

Heap Structure

 Dummy footer before first header
▪ Marked as allocated

▪ Prevents accidental coalescing when freeing first block

 Dummy header after last footer
▪ Prevents accidental coalescing when freeing final block

Start
of

heap
16/0 32/1 32/164/0

Dummy
Header

8/1

Dummy
Footer

8/1

heap_start heap_end

Carnegie Mellon

53

Top-Level Malloc Code
const size_t dsize = 2*sizeof(word_t);

void *mm_malloc(size_t size)

{

 size_t asize = round_up(size + dsize, dsize);

 block_t *block = find_fit(asize);

 if (block == NULL)

 return NULL;

 size_t block_size = get_size(block);

 write_header(block, block_size, true);

 write_footer(block, block_size, true);

 split_block(block, asize);

 return header_to_payload(block);

}

round_up(n, m)

=

m *((n+m-1)/m)

Carnegie Mellon

54

Top-Level Free Code
void mm_free(void *bp)

{

 block_t *block = payload_to_header(bp);

 size_t size = get_size(block);

 write_header(block, size, false);

 write_footer(block, size, false);

 coalesce_block(block);

}

Carnegie Mellon

55

Disadvantages of Boundary Tags

 Internal fragmentation

 Can it be optimized?

▪ Which blocks need the footer tag?

▪ What does that mean?

Size

Payload and
padding

a

Size a

Carnegie Mellon

56

No Boundary Tag for Allocated Blocks

Size

1 word

Payload

a = 1: Allocated block
a = 0: Free block
b = 1: Previous block is allocated
b = 0: Previous block is free

Size: block size

Payload: application data

b1

Optional
padding

Size

Unallocated

b0

Size b0

1 word

Allocated
Block

Free
Block

 Boundary tag needed only for free blocks

 When sizes are multiples of 16, have 4 spare bits

Carnegie Mellon

57

No Boundary Tag for Allocated Blocks
(Case 1)

m1 ?1

n 11

m2 11

m1 ?1

n 10

n 10

m2 01

Header: Use 2 bits (address bits always zero due to alignment):
 (previous block allocated)<<1 | (current block allocated)

previous
block

block
being
freed

next
block

Carnegie Mellon

58

No Boundary Tag for Allocated Blocks
(Case 2)

m1 ?1

n 11

m2 10

m2 10

m1 ?1

n+m2 10

n+m2 10

previous
block

block
being
freed

next
block

Header: Use 2 bits (address bits always zero due to alignment):
 (previous block allocated)<<1 | (current block allocated)

Carnegie Mellon

59

m1 ?0

m1 ?0

n 01

m2 11

n+m1 ?0

n+m1 ?0

m2 01

No Boundary Tag for Allocated Blocks
(Case 3)

previous
block

block
being
freed

next
block

Header: Use 2 bits (address bits always zero due to alignment):
 (previous block allocated)<<1 | (current block allocated)

Carnegie Mellon

60

No Boundary Tag for Allocated Blocks
(Case 4)

previous
block

block
being
freed

next
block

m1 ?0

n 01

m2 10

m2 10

m1 ?0

n+m1+m2

n+m1+m2

?0

?0

Header: Use 2 bits (address bits always zero due to alignment):
 (previous block allocated)<<1 | (current block allocated)

Carnegie Mellon

61

Summary of Key Allocator Policies
 Placement policy:

▪ First-fit, next-fit, best-fit, etc.

▪ Trades off lower throughput for less fragmentation

▪ Interesting observation: segregated free lists (next lecture)
approximate a best fit placement policy without having to search
entire free list

 Splitting policy:
▪ When do we go ahead and split free blocks?

▪ How much internal fragmentation are we willing to tolerate?

 Coalescing policy:
▪ Immediate coalescing: coalesce each time free is called

▪ Deferred coalescing: try to improve performance of free by deferring
coalescing until needed.

Carnegie Mellon

62

Implicit Lists: Summary
 Implementation: very simple

 Allocate cost:
▪ linear time worst case

 Free cost:
▪ constant time worst case

▪ even with coalescing

 Memory Overhead
▪ will depend on placement policy

▪ First-fit, next-fit or best-fit

 Not used in practice for malloc/free because of linear-
time allocation
▪ used in many special purpose applications

 However, the concepts of splitting and boundary tag
coalescing are general to all allocators

	Slide 1: Dynamic Memory Allocation: Basic Concepts 15-213/15-513/14-513: Introduction to Computer Systems 13th Lecture
	Slide 2: ChatGPT
	Slide 3: Deadlines and Spring Break
	Slide 4: Today
	Slide 5
	Slide 6: Dynamic Memory Allocation
	Slide 7: Dynamic Memory Allocation
	Slide 8: The malloc Package
	Slide 10: Heap Visualization Convention
	Slide 11: Allocation Example (Conceptual)
	Slide 12: Why is malloc hard?
	Slide 13: Constraints
	Slide 14: Conflicting: Performance & Overhead
	Slide 15: Performance Goal: Throughput
	Slide 16: Performance Goal: Minimize Overhead
	Slide 17: Benchmark Example
	Slide 18: Benchmark Visualization
	Slide 19: Typical Benchmark Behavior
	Slide 20: Fragmentation
	Slide 21: Internal Fragmentation
	Slide 22: Internal Fragmentation Effect
	Slide 23: External Fragmentation
	Slide 24: External Fragmentation Effect
	Slide 25: Implementation Issues
	Slide 26: Knowing How Much to Free
	Slide 27: Keeping Track of Free Blocks
	Slide 28: Today
	Slide 29: Method 1: Implicit Free List
	Slide 30: Detailed Implicit Free List Example
	Slide 31: Implicit List: Data Structures
	Slide 32: Implicit List: Header access
	Slide 33: Implicit List: Traversing list
	Slide 34: Implicit List: Finding a Free Block
	Slide 35: Implicit List: Finding a Free Block
	Slide 36: Comparing Strategies
	Slide 37: Implicit List: Allocating in Free Block
	Slide 38: Implicit List: Splitting Free Block
	Slide 39: Implicit List: Freeing a Block
	Slide 40: Implicit List: Coalescing
	Slide 41: Implicit List: Coalescing
	Slide 42: Implicit List: Bidirectional Coalescing
	Slide 44: Implementation with Footers
	Slide 45: Implementation with Footers
	Slide 46: Splitting Free Block: Full Version
	Slide 47: Constant Time Coalescing
	Slide 48: Constant Time Coalescing (Case 1)
	Slide 49: Constant Time Coalescing (Case 2)
	Slide 50: Constant Time Coalescing (Case 3)
	Slide 51: Constant Time Coalescing (Case 4)
	Slide 52: Heap Structure
	Slide 53: Top-Level Malloc Code
	Slide 54: Top-Level Free Code
	Slide 55: Disadvantages of Boundary Tags
	Slide 56: No Boundary Tag for Allocated Blocks
	Slide 57: No Boundary Tag for Allocated Blocks (Case 1)
	Slide 58: No Boundary Tag for Allocated Blocks (Case 2)
	Slide 59: No Boundary Tag for Allocated Blocks (Case 3)
	Slide 60: No Boundary Tag for Allocated Blocks (Case 4)
	Slide 61: Summary of Key Allocator Policies
	Slide 62: Implicit Lists: Summary

