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Dynamic Memory Allocation: 
Basic Concepts

15-213/15-513/14-513: Introduction to Computer Systems
13th Lecture
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Deadlines and Spring Break

 Labs
▪ Cachelab is due this Feb 27

▪ Spring Break Happens

▪ Malloc checkpoint is due on March 18

▪ Malloc final is due on Mar 25

 Spring Break 
▪ No lectures or deadlines

▪ No office hours, but there may be some Ed coverage

▪ (dga will hold office hours as usual on Monday, Mar 3)
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Today

 Basic concepts

 Implicit free lists
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void example(long n) {
    long *p;

    p = (long *)malloc(sizeof(long) * n);

    for (long i = 0; i < n; i++) {
        p[i] = i;
    }

    ...

    free(p);
}
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Dynamic Memory Allocation 

 Programmers use dynamic 
memory allocators (such as 
malloc) to acquire virtual 

memory (VM) at runtime
▪ For data structures whose size 

is only known at runtime

 Dynamic memory allocators 
manage an area of process 
VM known as the heap

Application

Dynamic Memory Allocator

Heap

Kernel virtual memory

Memory-mapped region for
shared libraries

User stack
(created at runtime)

Unused
0

%rsp 
(stack 
pointer)

Memory
invisible to
user code

“The break”

0x400000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded 
from 
the 
executable 
file

Run-time heap
(created by malloc)
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Dynamic Memory Allocation

 Allocator maintains heap as collection of variable sized 
blocks, which are either allocated or free

 Types of allocators
▪ Explicit allocator:  application allocates and frees space 

▪ e.g.,  malloc and free in C

▪ Implicit allocator: application allocates, but does not free space

▪ e.g., new and garbage collection in Java

 Will discuss simple explicit memory allocation today
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The malloc Package
#include <stdlib.h>

void *malloc(size_t size)

▪ Successful:

▪ Returns a pointer to a memory block of at least size bytes
aligned to a 16-byte boundary (on x86-64)

▪ If size == 0, returns NULL

▪ Unsuccessful: returns NULL (0) and sets errno

void free(void *p)

▪ Returns the block pointed at by p to pool of available memory

▪ p must come from a previous call to malloc, calloc, or realloc

Other functions

▪ calloc: Version of malloc that initializes allocated block to zero 

▪ realloc: Changes the size of a previously allocated block

▪ sbrk: Used internally by allocators to grow or shrink the heap
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Heap Visualization Convention

 1 square = 1 “word” = 8 bytes

Allocated block
(4 words)

Free block
(2 words) Free word

Allocated word

Lowest address 
within heap

Highest address
within heap

(“the break”, adjustable 
by sbrk system call)



Carnegie Mellon

11

Allocation Example
(Conceptual)

p1 = malloc(32)

p2 = malloc(40)

p3 = malloc(48)

free(p2)

p4 = malloc(16)

Gap for alignment
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Why is malloc hard?

 Who chooses the order of malloc/free requests?

 What is the lifetime of an allocated block?

 When does malloc have to return?

 Can you move blocks once allocated?

 What attributes should a perfect malloc have?
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Constraints

 Applications
▪ Can issue arbitrary sequence of malloc and free requests

▪ free request must be to a malloc’d block

 Explicit Allocators
▪ Can’t control number or size of allocated blocks

▪ Must respond immediately to malloc requests

▪ i.e., can’t reorder or buffer requests

▪ Must allocate blocks from free memory

▪ i.e., can only place allocated blocks in free memory

▪ Must align blocks so they satisfy all alignment requirements

▪ 16-byte (x86-64) alignment on 64-bit systems

▪ Can manipulate and modify only free memory

▪ Can’t move the allocated blocks once they are malloc’d

▪ i.e., compaction is not allowed.  Why not?
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Conflicting: Performance & Overhead

 Given some sequence of malloc and free requests:

▪  𝑅0, 𝑅1, … , 𝑅𝑘, … , 𝑅𝑛−1

 Goals: maximize throughput and peak memory utilization
▪ These goals are often conflicting

 Imagine the hypothetical “infinite memory malloc” – it’s 
really fast… 
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Performance Goal: Throughput

 Number of completed requests per unit time

In 10 seconds…
        5,000 malloc calls
      + 5,000 free calls

= 1,000 operations/sec
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Performance Goal: Minimize Overhead

Given a sequence of malloc and free requests:
𝑅0, 𝑅1, … , 𝑅𝑘, … , 𝑅𝑛−1

After 𝒌 requests:

Def: Aggregate payload 𝑷𝒌 
 malloc(p) results in a block with a payload of p bytes

The aggregate payload 𝑃𝑘 is the sum of currently allocated payloads

The peak aggregate payload max
𝑖≤𝑘

𝑃𝑖 is the maximum aggregate payload at 

any point in the sequence up to request 

Def: Current heap size 𝑯𝒌

Assume heap only grows when allocator uses sbrk, never shrinks

Def: Overhead, 𝑶𝒌
Fraction of heap space NOT used for program data

𝑂𝑘 = ( ൗ𝐻𝑘 max
𝑖≤𝑘

𝑃𝑖) − 1.0
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Benchmark Example

 Benchmark 

     syn-array-short
▪ Trace provided with 

malloc lab

▪ Allocate & free 10 blocks

▪ a = allocate

▪ f = free

▪ Bias toward allocate at 
beginning & free at end

▪ Blocks number 1–10

▪ Allocated: Sum of all 
allocated amounts

▪ Peak: Max so far of 
Allocated

Step Command Delta Allocated Peak

1 a 0 9904 9904 9904 9904

2 a 1 50084 50084 59988 59988

3 a 2 20 20 60008 60008

4 a 3 16784 16784 76792 76792

5 f 3 -16784 60008 76792

6 a 4 840 840 60848 76792

7 a 5 3244 3244 64092 76792

8 f 0 -9904 54188 76792

9 a 6 2012 2012 56200 76792

10 f 2 -20 56180 76792

11 a 7 33856 33856 90036 90036

12 f 1 -50084 39952 90036

13 a 8 136 136 40088 90036

14 f 7 -33856 6232 90036

15 f 6 -2012 4220 90036

16 a 9 20 20 4240 90036

17 f 4 -840 3400 90036

18 f 8 -136 3264 90036

19 f 5 -3244 20 90036

20 f 9 -20 0 90036
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Benchmark Visualization

▪ Plot 𝑃𝑘 (allocated) and max
𝑖≤𝑘

 𝑃𝑘 (peak)

as a function of 𝑘 (step)

▪ Y-axis normalized — fraction of maximum

Step Command Delta Allocated Peak

1 a 0 9904 9904 9904 9904

2 a 1 50084 50084 59988 59988

3 a 2 20 20 60008 60008

4 a 3 16784 16784 76792 76792

5 f 3 -16784 60008 76792

6 a 4 840 840 60848 76792

7 a 5 3244 3244 64092 76792

8 f 0 -9904 54188 76792

9 a 6 2012 2012 56200 76792

10 f 2 -20 56180 76792

11 a 7 33856 33856 90036 90036

12 f 1 -50084 39952 90036

13 a 8 136 136 40088 90036

14 f 7 -33856 6232 90036

15 f 6 -2012 4220 90036

16 a 9 20 20 4240 90036

17 f 4 -840 3400 90036

18 f 8 -136 3264 90036

19 f 5 -3244 20 90036

20 f 9 -20 0 90036
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Typical Benchmark Behavior

 Longer sequence of mallocs & frees (40,000 blocks)
▪ Starts with all mallocs, and shifts toward all frees

 Allocator must manage space efficiently the whole time

 Production allocators can shrink the heap
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Fragmentation

 Poor memory utilization caused by fragmentation
▪ Internal fragmentation

▪ External fragmentation
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Internal Fragmentation

 For a given block, internal fragmentation occurs if payload is 
smaller than block size

 Caused by 

▪ Overhead of maintaining heap data structures

▪ Padding for alignment purposes

▪ Explicit policy decisions 
(e.g., to return a big block to satisfy a small request)

 Depends only on the pattern of previous requests
▪ Thus, easy to measure

Payload
Internal 
fragmentation

Block

Internal 
fragmentation
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Internal Fragmentation Effect

 Purple line: additional heap size due to
 allocator’s data + padding for alignment
▪ For this benchmark, 1.5% overhead

▪ Cannot achieve in practice

▪ Especially since cannot move allocated blocks
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External Fragmentation

 Occurs when there is enough aggregate heap memory, 
but no single free block is large enough

 Depends on the pattern of future requests
▪ Thus, difficult to measure

p4 = malloc(64) Yikes! (what would happen now?)

p1 = malloc(32)

p2 = malloc(40)

p3 = malloc(48)

free(p2)
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External Fragmentation Effect

 Green line: additional heap size due to external fragmentation

 Best Fit: One allocation strategy

▪ (To be discussed later)

▪ Total overhead = 8.3% on this benchmark

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
e

m
o

ry
 U

se
d

 /
 P

e
ak

 D
at

a

Operation / Operation Count

Best Fit

Perfect Fit

Data Fit

DataAllocated

Peak

Peak + Internal Frag

Peak + All Frag (Best Fit)



Carnegie Mellon

25

Implementation Issues

 How do we know how much memory to free given just a 
pointer?

 How do we keep track of the free blocks?

 What do we do with the extra space when allocating a 
structure that is smaller than the free block it is placed in?

 How do we pick a block to use for allocation -- many 
might fit?

 How do we reuse a block that has been freed?
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Knowing How Much to Free
 Standard method

▪ Keep the length (in bytes) of a block in the word preceding the 
block.

▪ Including the header

▪ This word is often called the header field or header

▪ Requires an extra word for every allocated block

p0 = malloc(32)

p0

free(p0)

block size Payload
(aligned)

48

Padding
(for alignment)
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Keeping Track of Free Blocks

 Method 1: Implicit list using length—links all blocks

 Method 2: Explicit list among the free blocks using pointers

 Method 3: Segregated free list
▪ Different free lists for different size classes

 Method 4: Blocks sorted by size
▪ Can use a balanced tree (e.g., Red-Black tree) with pointers within 

each free block, and the length used as a key

Need to tag
each block as
allocated/free

Need space
for pointers

Unused

32 48 32 16

32 48 32 16
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Today

 Basic concepts

 Implicit free lists
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Method 1: Implicit Free List

 For each block we need both size and allocation status
▪ Could store this information in two words: wasteful!

 Standard trick

▪ When blocks are aligned, some low-order address bits are always 0

▪ Instead of storing an always-0 bit, use it as an allocated/free flag

▪ When reading the Size word, must mask out this bit

Size

1 word

Format of
allocated and
free blocks

Payload

a = 1: Allocated block  
a = 0: Free block

Size: total block size

Payload: application data
(allocated blocks only)

a

Optional
padding
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Detailed Implicit Free List Example

Start 
of 

heap

Double-word
aligned

16/0 32/1 32/164/0

End
Block

8/1

Allocated blocks: shaded
Free blocks: unshaded
Headers: labeled with “size in bytes/allocated bit”
Headers are at non-aligned positions
➔ Payloads are aligned

Unused

heap_start heap_end
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Implicit List: Data Structures

 Block declaration

 Getting payload from block pointer

 Getting header from payload

typedef uint64_t word_t;

typedef struct block

{

  word_t header;

  unsigned char payload[0];

} block_t;

header payload

return (void *) (block->payload);

return (block_t *) ((unsigned char *) pp 

                     - offsetof(block_t, payload));

// Zero length array

// bp points to a payload

// block_t *block

C function offsetof(struct, member) returns offset of member within struct
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Implicit List: Header access

 Getting allocated bit from header

 Getting size from header

 Initializing header

return header & 0x1;

Size a

return header & ~0xfL;

block->header = size | alloc;

// block_t *block
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Implicit List: Traversing list

 Find next block

static block_t *find_next(block_t *block)

{

  return (block_t *) ((unsigned char *) block 

                        + get_size(block));

}

header payload header payloadunused

block size

16/0 32/1 32/164/0

End
Block

8/1

Unused
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Implicit List: Finding a Free Block
 First fit:

▪ Search list from beginning, choose first free block that fits:

▪ Finding space for asize bytes (including header):

static block_t *find_fit(size_t asize)

{

  block_t *block;

  for (block = heap_start; block != heap_end;

    block = find_next(block)) {

  {

   if (!(get_alloc(block)) 

          && (asize <= get_size(block)))

     return block;

  }

  return NULL; // No fit found

}

16/0 32/1 32/164/0 8/1

heap_start heap_end
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Implicit List: Finding a Free Block
 First fit:

▪ Search list from beginning, choose first free block that fits:

▪ Can take linear time in total number of blocks (allocated and free)

▪ In practice it can cause “splinters” at beginning of list

 Next fit:

▪ Like first fit, but search list starting where previous search finished

▪ Should often be faster than first fit: avoids re-scanning unhelpful blocks

▪ Some research suggests that fragmentation is worse

 Best fit:

▪ Search the list, choose the best free block: fits, with fewest bytes left over

▪ Keeps fragments small—usually improves memory utilization

▪ Will typically run slower than first fit

▪ Still a greedy algorithm.  No guarantee of optimality
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Comparing Strategies

 Total Overheads (for this benchmark)
▪ Perfect Fit: 1.6%

▪ Best Fit: 8.3%

▪ First Fit: 11.9%

▪ Next Fit: 21.6%
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Implicit List: Allocating in Free Block

 Allocating in a free block: splitting
▪ Since allocated space might be smaller than free space, we might want 

to split the block

32 32 1648

32 1632

p

1632

split_block(p, 32)

8

8
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Implicit List: Splitting Free Block

64

p

split_block(p, 32)

// Warning: This code is incomplete

static void split_block(block_t *block, size_t asize){

    size_t block_size = get_size(block);

    

    if ((block_size - asize) >= min_block_size) {

        write_header(block, asize, true);

        block_t *block_next = find_next(block);

    write_header(block_next, block_size - asize, false);

}

1632 3216
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Implicit List: Freeing a Block

 Naive implementation:
▪ Just clear the “allocated” flag

32 16 163232

free(p) p

32 32 1632 16

malloc(5*SIZ) Yikes!
There is enough contiguous

free space, but the allocator

won’t be able to find it

8

8
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Implicit List: Coalescing

 Join (coalesce) with next/previous blocks, if they are free
▪ Coalescing with next block

  32 1632 16

free(p) p

32 32 16

32

48 16

logically
gone

8

1
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Implicit List: Coalescing

 Join (coalesce) with next block, if it is free
▪ Coalescing with next block

  

▪ How do we coalesce with previous block?

▪ How do we know where it starts?

▪ How can we determine whether its allocated?

1632 16

free(p) p

64 16

64

48 16

logically
gone

8

8



Carnegie Mellon

42

Implicit List: Bidirectional Coalescing 
 Boundary tags [Knuth73]

▪ Replicate size/allocated word at “bottom” (end) of free blocks

▪ Allows us to traverse the “list” backwards, but requires extra space

▪ Important and general technique!

Size

Format of
allocated and
free blocks

Payload and
padding

a = 1: Allocated block  
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

a

Size aBoundary tag
(footer)

32 32 32 32 48 3248 32

Header

8 8
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Implementation with Footers

 Locating footer of current block

const size_t dsize = 2*sizeof(word_t);

static word_t *header_to_footer(block_t *block)

{

  size_t asize = get_size(block);

    return (word_t *) (block->payload + asize - dsize);

}

header payload header payloadunused footer

asize

dsize

asize
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Implementation with Footers

 Locating footer of previous block

static word_t *find_prev_footer(block_t *block)

{        

  return &(block->header) - 1;

}

header payload header payloadunused footer

1 word
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Splitting Free Block: Full Version

64

p

split_block(p, 32)

static void split_block(block_t *block, size_t asize){

    size_t block_size = get_size(block);

    

    if ((block_size - asize) >= min_block_size) {

        write_header(block, asize, true);

        write_footer(block, asize, true);

        block_t *block_next = find_next(block);

    write_header(block_next, block_size - asize, false);

    write_footer(block_next, block_size - asize, false);

}

32 32 1632 3264 16
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Constant Time Coalescing

Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block being
freed

Case 1 Case 2 Case 3 Case 4
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m1 1

Constant Time Coalescing (Case 1)

m1 1

n 1

n 1

m2 1

m2 1

m1 1

m1 1

n 0

n 0

m2 1

m2 1
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Constant Time Coalescing (Case 2)

m1 1

m1 1

n 1

n 1

m2 0

m2 0

m1 1

m1 1

n+m2 0

n+m2 0
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m1 0

Constant Time Coalescing (Case 3)

m1 0

n 1

n 1

m2 1

m2 1

n+m1 0

n+m1 0

m2 1

m2 1
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m1 0

Constant Time Coalescing (Case 4)

m1 0

n 1

n 1

m2 0

m2 0

n+m1+m2 0

n+m1+m2 0
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Heap Structure

 Dummy footer before first header
▪ Marked as allocated

▪ Prevents accidental coalescing when freeing first block

 Dummy header after last footer
▪ Prevents accidental coalescing when freeing final block

Start 
of 

heap
16/0 32/1 32/164/0

Dummy
Header

8/1

Dummy
Footer

8/1

heap_start heap_end
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Top-Level Malloc Code
const size_t dsize = 2*sizeof(word_t);

void *mm_malloc(size_t size)

{

  size_t asize = round_up(size + dsize, dsize);

  block_t *block = find_fit(asize);

  if (block == NULL)

    return NULL;

  size_t block_size = get_size(block);

  write_header(block, block_size, true);

  write_footer(block, block_size, true);

  split_block(block, asize);

  return header_to_payload(block);

}

round_up(n, m)

=

m *((n+m-1)/m)



Carnegie Mellon

54

Top-Level Free Code
void mm_free(void *bp)

{

  block_t *block = payload_to_header(bp);

  size_t size = get_size(block);

  write_header(block, size, false);

  write_footer(block, size, false);

  coalesce_block(block);

}
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Disadvantages of Boundary Tags

 Internal fragmentation

 Can it be optimized?

▪ Which blocks need the footer tag?

▪ What does that mean?

Size

Payload and
padding

a

Size a



Carnegie Mellon

56

No Boundary Tag for Allocated Blocks

Size

1 word

Payload

a = 1: Allocated block  
a = 0: Free block
b = 1: Previous block is allocated
b = 0: Previous block is free

Size: block size

Payload: application data

b1

Optional
padding

Size

Unallocated

b0

Size b0

1 word

Allocated
Block

Free
Block

 Boundary tag needed only for free blocks

 When sizes are multiples of 16, have 4 spare bits
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No Boundary Tag for Allocated Blocks
(Case 1)

m1 ?1

n 11

m2 11

m1 ?1

n 10

n 10

m2 01

Header: Use 2 bits (address bits always zero due to alignment):
 (previous block allocated)<<1 | (current block allocated)

previous
block

block
being
freed

next
block
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No Boundary Tag for Allocated Blocks 
(Case 2)

m1 ?1

n 11

m2 10

m2 10

m1 ?1

n+m2 10

n+m2 10

previous
block

block
being
freed

next
block

Header: Use 2 bits (address bits always zero due to alignment):
 (previous block allocated)<<1 | (current block allocated)
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m1 ?0

m1 ?0

n 01

m2 11

n+m1 ?0

n+m1 ?0

m2 01

No Boundary Tag for Allocated Blocks 
(Case 3)

previous
block

block
being
freed

next
block

Header: Use 2 bits (address bits always zero due to alignment):
 (previous block allocated)<<1 | (current block allocated)
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No Boundary Tag for Allocated Blocks 
(Case 4)

previous
block

block
being
freed

next
block

m1 ?0

n 01

m2 10

m2 10

m1 ?0

n+m1+m2

n+m1+m2

?0

?0

Header: Use 2 bits (address bits always zero due to alignment):
 (previous block allocated)<<1 | (current block allocated)
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Summary of Key Allocator Policies
 Placement policy:

▪ First-fit, next-fit, best-fit, etc.

▪ Trades off lower throughput for less fragmentation 

▪ Interesting observation: segregated free lists (next lecture) 
approximate a best fit placement policy without having to search 
entire free list

 Splitting policy:
▪ When do we go ahead and split free blocks?

▪ How much internal fragmentation are we willing to tolerate?

 Coalescing policy:
▪ Immediate coalescing: coalesce each time free is called 

▪ Deferred coalescing: try to improve performance of free by deferring 
coalescing until needed.
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Implicit Lists: Summary
 Implementation: very simple

 Allocate cost: 
▪ linear time worst case

 Free cost: 
▪ constant time worst case

▪ even with coalescing

 Memory Overhead
▪ will depend on placement policy

▪ First-fit, next-fit or best-fit

 Not used in practice for  malloc/free because of linear-
time allocation
▪ used in many special purpose applications

 However, the concepts of splitting and boundary tag 
coalescing are general to all allocators
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