Dynamic Memory Allocation:
Basic Concepts

15-213/15-513/14-513: Introduction to Computer Systems
13t Lecture

ChatGPT

Don’t

Deadlines and Spring Break

m Labs
= Cachelab is due this Feb 27
= Spring Break Happens
= Malloc checkpoint is due on March 18
= Malloc final is due on Mar 25

m Spring Break
= No lectures or deadlines
= No office hours, but there may be some Ed coverage
= (dga will hold office hours as usual on Monday, Mar 3)

Today

m Basic concepts
m Implicit free lists

void example(long n) {
long *p;

p = (long *)malloc(sizeof(long) * n);
for (long i = @; i < n; i++) {

p[i] = 1;
}

free(p);

Dynamic Memory Allocation

Application

Dynamic Memory Allocator

Heap

m Programmers use dynamic

memory allocators (such as
mal loc) to acquire virtual

memory (VM) at runtime

" For data structures whose size

is only known at runtime

m Dynamic memory allocators

manage an area of process
VM known as the heap

0x400000

0

Kernel virtual memory

User stack
(created at runtime)

;
T

Memory-mapped region for
shared libraries

T

Memory
T invisible to
user code

<« —3rsp
(stack
pointer)

<« “The break”

Run-time heap
(created bymalloc)

Read/write segment
(.data, .bss)

Read-only segment
(.init,.text, .rodata)

Loaded
from

» the
executable
file

Unused

Dynamic Memory Allocation

m Allocator maintains heap as collection of variable sized
blocks, which are either allocated or free
m Types of allocators

= Explicit allocator: application allocates and frees space
= e.g., mallocand freeinC

= Implicit allocator: application allocates, but does not free space
= e.g., new and garbage collection in Java

m Will discuss simple explicit memory allocation today

Themalloc Package

#include <stdlib.h>

void *malloc(size t size)
= Successful:

= Returns a pointer to a memory block of at least size bytes
aligned to a 16-byte boundary (on x86-64)

» [fsize == O, returns NULL
= Unsuccessful: returns NULL (0) and sets errno

void free (void *p)
= Returns the block pointed at by p to pool of available memory
= p must come from a previous call tomalloc, calloc, or realloc

Other functions
= calloc: Version of malloc that initializes allocated block to zero
= realloc: Changes the size of a previously allocated block
= sbrk: Used internally by allocators to grow or shrink the heap

Heap Visualization Convention

m 1square=1“word” =8 bytes

Highest address

within heap
Lowest address (“the break”, adjustable
within heap by sbrk system call)
\ v J \ J
Allocated block Free block
(4 words) (2 words) Free word

Allocated word

10

Allocation Example
(Conceptual)

pl = malloc (32)

'O
N
I

malloc (40)

|Gap for alignment

p3 = malloc (48)

v

free (p2)

p4 = malloc (16)

1

Why is malloc hard?

m Who chooses the order of malloc/free requests?
m What is the lifetime of an allocated block?
m When does malloc have to return?

m Can you move blocks once allocated?

O

What attributes should a perfect malloc have?

Constraints

m Applications

= Canissue arbitrary sequence of malloc and £ree requests

free request must be toamalloc’d block

m Explicit Allocators

Can’t control number or size of allocated blocks
Must respond immediately tomalloc requests
= j.e.,can’t reorder or buffer requests
Must allocate blocks from free memory
= j.e., can only place allocated blocks in free memory
Must align blocks so they satisfy all alignment requirements
= 16-byte (x86-64) alighment on 64-bit systems
Can manipulate and modify only free memory
Can’t move the allocated blocks once they aremalloc’d

= j.e., compaction is not allowed. Why not?

13

Conflicting: Performance & Overhead

m Given some sequence of malloc and free requests:
= Ro,Ry ., Ry o, Ry

m Goals: maximize throughput and peak memory utilization
=" These goals are often conflicting

m Imagine the hypothetical “infinite memory malloc” - it’s
really fast...

14

Performance Goal: Throughput

m Number of completed requests per unit time

In 10 seconds..
5,000 malloc calls
+ 5,000 free calls

= 1,000 operations/sec

15

Performance Goal: Minimize Overhead

Given a sequence of malloc and £free requests:
Ro,R1, .., Ry, oy Ry

After k requests:

Def: Aggregate payload P,
malloc (p) results in a block with a payload of p bytes
The aggregate payload P}, is the sum of currently allocated payloads
The peak aggregate payload Tﬁ{x P; is the maximum aggregate payload at
any point in the sequence up to request

Def: Current heap size Hy,
Assume heap only grows when allocator uses sbrk, never shrinks

Def: Overhead, O,
Fraction of heap space NOT used for program data
Ok = (Hk/m%cx P;) —1.0
<

16

Benchmark Example

m Benchmark

syn-array-short

Trace provided with
malloc lab

Allocate & free 10 blocks
a = allocate

f=free

Bias toward allocate at
beginning & free at end
Blocks number 1-10

Allocated: Sum of all
allocated amounts

Peak: Max so far of
Allocated

Step

th th th Hh ® H th ® Hh ® Hh® HO O HDO OO OO

Command

0

O U1 OO JOPRPR JMNMNOOUGILE_ WWNDNDHR

9904
50084
20
16784

840
3244

2012

33856

136

20

Delta
9904
50084
20
16784
-16784
840
3244
-9904
2012
-20
33856
-50084
136
-33856
-2012
20
-840
-136
-3244
-20

Allocated
9904
59988
60008
76792
60008
60848
64092
54188
56200
56180
90036
39952
40088
6232
4220
4240
3400
3264
20
0

Peak

9904
59988
60008
76792
76792
76792
76792
76792
76792
76792
90036
90036
90036
90036
90036
90036
90036
90036
90036
90036

17

Step
1

O 00 NO UL A WN

N B R R R R R R R R
O WO NO LD WIN L O

Benchmark Visualization

th th th th @ Hh Hh @ Hh ® Hh O HO O HD OO D

Command

© U1 0O b OO J OO R, JIMNMNODOULGLELB WWDNRLRDO

9904
50084
20
16784

840
3244

2012

33856

136

20

Delta
9904
50084
20
16784
-16784
840
3244
-9904
2012
-20
33856
-50084
136
-33856
-2012
20
-840
-136
-3244
-20

Allocated
9904
59988
60008
76792
60008
60848
64092
54188
56200
56180
90036
39952
40088
6232
4220
4240
3400
3264
20
0

Peak 1
9904
59988
60008
76792
76792
76792
76792
76792
76792
76792
90036
90036
90036
90036 12345678 910111213 14151617 1819 20
90036 Step
90036
90036
90036
90036

%0036 = Plot P, (allocated) and max Py, (peak)
[

0.8

0.6

0.4

0.2

Nomalized Aggregate Memory

=—o—Allocated =—e=Peak

as a function of k (step)
= Y-axis normalized — fraction of maximum

18

Typical Benchmark Behavior

1.0

0.8

@ Peak

Allocated

Memory Used / Peak Data
o

Operation / Operation Count

m Longer sequence of mallocs & frees (40,000 blocks)
= Starts with all mallocs, and shifts toward all frees

m Allocator must manage space efficiently the whole time

m Production allocators can shrink the heap

19

Fragmentation

m Poor memory utilization caused by fragmentation
= |nternal fragmentation
= External fragmentation

20

Internal Fragmentation

m For a given block, internal fragmentation occurs if payload is
smaller than block size

Block
/\
- N
Internal Internal
| —— Payload D o)
fragmentation fragmentation

m Caused by

= QOverhead of maintaining heap data structures
= Padding for alignment purposes
= Explicit policy decisions
(e.g., to return a big block to satisfy a small request)

m Depends only on the pattern of previous requests
" Thus, easy to measure

Internal Fragmentation Effect

1.4

1.0

0.6

Memory Used / Peak Data
o

0.4

=

/

0.0

Operation / Operation Count

m Purple line: additional heap size due to
allocator’s data + padding for alignment
" For this benchmark, 1.5% overhead

= Cannot achieve in practice

= Especially since cannot move allocated blocks

@ Peak +Interna

@ Peak

Allocated

| Fr.

ag

22

External Fragmentation

m Occurs when there is enough aggregate heap memory,
but no single free block is large enough

pl = malloc (32)

malloc (40)

'O
N
I

p3 = malloc (48)

free (p2)

p4 = malloc (64) Yikes! (what would happen now?)

m Depends on the pattern of future requests
" Thus, difficult to measure

23

External Fragmentation Effect

Peak +All Frag (Best Fit)
@ Peak +Internal Frag

Allocated

sed / Peak Data

X A 0.
Operation / Operation Count

m Green line: additional heap size due to external fragmentation

m Best Fit: One allocation strategy
" (To be discussed later)
= Total overhead = 8.3% on this benchmark

24

Implementation Issues

m How do we know how much memory to free given just a
pointer?

m How do we keep track of the free blocks?

m What do we do with the extra space when allocating a
structure that is smaller than the free block it is placed in?

m How do we pick a block to use for allocation -- many
might fit?

m How do we reuse a block that has been freed?

25

Knowing How Much to Free

m Standard method

= Keep the length (in bytes) of a block in the word preceding the
block.

= Including the header
= This word is often called the header field or header
= Requires an extra word for every allocated block

pO
pO0 = malloc(32) 1

48
(VAN
block size Payload Padding

(aligned) (for alignment)

free (p0)

26

Keeping Track of Free Blocks

m Method 1: Implicit list using length—links all blocks

,,,,,,, Need to tag

e > s each block as
» % 32 48 32 Le allocated/free

Ny
- N~

m Method 2: Explicit list among the free blocks using pointers

O\

77 32 48 35| 7 T Need space
% for pointers

m Method 3: Segregated free list
= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g., Red-Black tree) with pointers within
each free block, and the length used as a key

Today

m Basic concepts
m Implicit free lists

28

Method 1: Implicit Free List

m For each block we need both size and allocation status

" Could store this information in two words: wasteful!

m Standard trick

= When blocks are aligned, some low-order address bits are always 0

" |nstead of storing an always-0 bit, use it as an allocated/free flag

= When reading the Size word, must mask out this bit

1 word
A
s N
Size a
Format of
allocated and Payload
free blocks
Optional
padding

a = 1: Allocated block
a = 0: Free block

Size: total block size

Payload: application data
(allocated blocks only)

29

Detailed Implicit Free List Example

;;;;;

- ~
’’’’’

’

) U . End
Unused \ T .. ¢ Block
‘ \16/0 ‘32/1 ‘64/0 ‘32/1 ‘ 8/1 |

\

heap start

Double-word
aligned

\

heap end

Allocated blocks: shaded

Free blocks: unshaded

Headers: labeled with “size in bytes/allocated bit”
Headers are at non-aligned positions

=» Payloads are aligned

30

Implicit List: Data Structures

header| payload
m Block declaration
uint64_ t word t;
typedef struct block
{
word t header;
unsigned char payload[0]; // Zero length array
} block t;
m Getting payload from block pointer // block t *block
return (void *) (block->payload);
m Getting header from payload // bp points to a payload

return (block t *) ((unsigned char *) pp
- offsetof (block t, payload));

C function of fsetof (struct, member) returns offset of member within struct

31

Implicit List: Header access

Size a
m Getting allocated bit from header
return header & 0x1;
m Getting size from header
return header & ~0xfL;
m Initializing header // block t *block

block->header = size | alloc;

Implicit List: Traversing list

header header

payload

payload | unused

block size

m Find next block

static block t * (block t *)
{

return (block t *) ((unsigned char *) block
+ get size(block));

-

7 Ss
-

- Bab I
- ~~
- ~~
-
- ~~.
- ~
- ~
- ~
- ~
- ~
- ~
- ~
- ~
- ~
-
- SS
-~ ~
-~

Unused

- ~
e S
-

End

\Block

‘ \16/0 ‘32/1 64/0 32/1

‘8/1|

33

Implicit List: Finding a Free Block

First fit:

= Search list from beginning, choose first free block that fits:

Finding space for asize bytes (including header):

}

static block t *find fit(size t

)
{

block_t * ;

for (block heap start; block !'= heap end;
block = find next(block)) {

{
if (! (get_alloc(block))

&& (asize <= get _size(block)))
return block;

}
return NULL; // No fit found

heap starg—.

N,

\ ’

AY

AY

- Bab I
- ~~
- ~~
-
- ~~.
- ~
- ~
- ~
- ~
- ~
- ~
- ~
- ~
- ~
-
- SS
-~ ~
-~

- ~
e S
-

16/0 32/1 64/0

8/1

34

Implicit List: Finding a Free Block

m First fit:

Search list from beginning, choose first free block that fits:
Can take linear time in total number of blocks (allocated and free)
In practice it can cause “splinters” at beginning of list

m Next fit:

Like first fit, but search list starting where previous search finished
Should often be faster than first fit: avoids re-scanning unhelpful blocks
Some research suggests that fragmentation is worse

m Best fit:

Search the list, choose the best free block: fits, with fewest bytes left over
Keeps fragments small—usually improves memory utilization

Will typically run slower than first fit

Still a greedy algorithm. No guarantee of optimality

35

Comparing Strategies

~
—

.4 X X
Operation / Operation Count

m Total Overheads (for this benchmark)

= Perfect Fit: 1.6%
= Best Fit: 8.3%
" First Fit: 11.9%

= Next Fit: 21.6%

o o D ual

Best Fit

36

Implicit List: Allocating in Free Block

m Allocating in a free block: splitting

= Since allocated space might be smaller than free space, we might want
to split the block

’’’’’’’’’’

V R Sa” Sa-” NL/’ ;/‘
732 32 418 16 %
o]
split _block(p, 32)
’,¢" ‘s\‘,,;" ‘N\Q’¢” ~~\\A/" N\‘III-N\‘

7432 32 32 16 |16 VA

37

Implicit List: Splitting Free Block

split _block(p, 32)

- -,
- ~ - \N\
“* P

- S ~
16 32 32 lgw

-
- -~
-
-
-
-
-

// Warning: This code is incomplete

static void split block (block t *block, size t asize) {
size t block size = get_size(block);

if ((block size - asize) >= min block size) ({
write header (block, asize, true);
block t *block next = find next(block);
write header (block next, block size - asize, false);

38

Implicit List: Freeing a Block

m Naive implementation:
= Just clear the “allocated” flag

——————
§§§§§§

——————

7 - SaL” Sa” a7 N Vad ;,;
Q 32 32 312 16 16 %
free(p) P
”’I‘ *s\\~”¢‘ S~ e - ~\\\~’¢-N\Al¢ TS
7 [
/A 32 32 32 16 |16 /& %
malloc (5*s1z) Yikes!

There is enough contiguous
free space, but the allocator
won’t be able to find it

39

Implicit List: Coalescing

m Join (coalesce) with next/previous blocks, if they are free

= Coalescing with next block

free(p)

%

Z

logically
gone

40

Implicit List: Coalescing

m Join (coalesce) with next block, if it is free
= Coalescing with next block

L LT
- "~
- ~
- -~
- -~
- ~

2 T gy

%64 312 16 |16
free(p) p

.

/464 48

= How do we coalesce with previous block?

= How do we know where it starts?

= How can we determine whether its allocated?

logically
gone

41

Implicit List: Bidirectional Coalescing

m Boundary tags [Knuth73]

= Replicate size/allocated word at “bottom” (end) of free blocks
= Allows us to traverse the “list” backwards, but requires extra space
= |mportant and general technique!

————--—~

V R Sa” Sa-" S’ ;/‘
32 32 32 32 48 48 32 32
‘/i RS ’,’Vs~~ ’a”i\ I” A
Header — Size = a = 1: Allocated block
a = 0: Free block
Format of
allocated and Payload and Size: Total block size
padding
f ree blocks Payload: Application data
(allocated blocks only)
Boundary tag —— Size a

(footer)

42

Implementation with Footers

header| payload | unused | footer | header] payload
asize
asize >
«——— dsize
m Locating footer of current block
const size t dsize = 2*sizeof (word t);
static word t *header to footer(block t *)

{
size t asize = get_size(block);
return (word t *) (block->payload + asize - dsize);

44

Implementation with Footers

header| payload | unused | footer | header| payload
—
1 word
m Locating footer of previous block

{

}

static word t *find prev footer(block t *)

return & (block->header) - 1;

45

Splitting Free Block: Full Version

split _block(p, 32)

——__———----

“_——’— ‘~~.~* e x\y,¢ S
64 64 16 32 32 32 3216
P

static void split block (block t *block, size t asize) {
size t block size = get size(block) ;

if ((block size - asize) >= min block size) ({
write header (block, asize, true);
write footer (block, asize, true);
block t *block next = find next(block);
write header (block next, block size - asize, false);
write footer (block next, block size - asize, false);

46

Constant Time Coalescing

Block being
freed

Case 1 Case 2 Case 3 Case 4
Allocated Allocated Free Free
Allocated Free Allocated Free

47

Constant Time Coalescing (Case 1)

ml

ml

ml

ml

m2

m2

m2

m2

48

Constant Time Coalescing (Case 2)

ml

ml

ml

ml

n+m2

m2

m2

n+m2

49

Constant Time Coalescing (Case 3)

ml 0 n+ml 0
ml 0
n 1
—
n 1 n+ml 0
m2 1 m2 1
m2 1 m2 1

Constant Time Coalescing (Case 4)

ml

n+ml+m?2

ml

m2

m2

n+ml+m?2

51

’’’’’’’’’’
~.,
,,,,,,

Dummy

Footer /
Start 4 I 3

of ‘ 8/1 \16/0 ‘32/1 ‘64/0 32/1 ‘ 8/1 |
heap / _ _ . : , . : ; ;

heap start heap end

_— ==
- ~~
- S~<
P ~
- ~
- ~
- ~
- ~
- ~
- ~
- ~
- ~.
- ~.
- ~.
-
- S
- ~.

P

\

m Dummy footer before first header
= Marked as allocated
= Prevents accidental coalescing when freeing first block

m Dummy header after last footer

= Prevents accidental coalescing when freeing final block

52

Top-Level Malloc Code

const size t dsize = 2*sizeof (word t);
void *mm malloc(size t)
{
size t = round up(size + dsize, dsize);
block t * = find fit(asize);
if (block ==)
return ;
size t = get_size(block);

write header (block, block size,
write footer (block, block size,

split block (block, asize);

return header to _payload (block) ;

) ;
) ;

round up(n, m)

m *((n+m-1) /m)

53

Top-Level Free Code

void mm free(void *bp)

{

block t * = payload to header (bp);
size t = get_size (block);

write header (block, size,) ;

write footer (block, size,) ;

coalesce_block(block);

Disadvantages of Boundary Tags

m Internal fragmentation

m Canit be optimized?
= Which blocks need the footer tag?
= What does that mean?

Size

Payload and
padding

Size

55

No Boundary Tag for Allocated Blocks

m Boundary tag needed only for free blocks
m When sizes are multiples of 16, have 4 spare bits

1 word 1 word
/ —"~ ~~ ~ —" ~
Size bl a = 1: Allocated block Size b0
a = 0: Free block
b = 1: Previous block is allocated
b = 0: Previous block is free
Payload
Unallocated
Size: block size
Optional Payload: application data
padding Size b0
Allocated Free

Block Block

56

No Boundary Tag for Allocated Blocks
(Case 1)

. m1l ?1 ml ?1
previous
block
block n 11 n 10
being -_—
freed n 10
m2 11 m2 01
next
block

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

57

No Boundary Tag for Allocated Blocks
(Case 2)

ml ?1 ml ?1
previous
block
block n 11 n+m2 10
being -_—
freed
m2 10
next
block m2 10 n+m2 10

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

No Boundary Tag for Allocated Blocks
(Case 3)

' ml ?0 n+ml ?0
previous

block
ml ?0

block n 01

being -_—

freed n+m1 20
m2 11 m2 01

next

block

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

No Boundary Tag for Allocated Blocks
(Case 4)

previous mil ?0 n+ml+m?2 ?0
block
ml ?0
block n 01
being e
freed
m2 10
next
block m2 10 n+mil+m?2 ?0

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

Summary of Key Allocator Policies

m Placement policy:
= First-fit, next-fit, best-fit, etc.
= Trades off lower throughput for less fragmentation

= |nteresting observation: segregated free lists (next lecture)
approximate a best fit placement policy without having to search
entire free list

m Splitting policy:
= When do we go ahead and split free blocks?
= How much internal fragmentation are we willing to tolerate?

m Coalescing policy:
" Immediate coalescing: coalesce each time free is called

= Deferred coalescing: try to improve performance of £ree by deferring
coalescing until needed.

61

Implicit Lists: Summary

Implementation: very simple

Allocate cost:
" |inear time worst case

Free cost:
= constant time worst case
= even with coalescing

Memory Overhead
= will depend on placement policy
= First-fit, next-fit or best-fit

Not used in practice for malloc/free because of linear-
time allocation

= used in many special purpose applications

However, the concepts of splitting and boundary tag
coalescing are general to all allocators

62

	Slide 1: Dynamic Memory Allocation: Basic Concepts 15-213/15-513/14-513: Introduction to Computer Systems 13th Lecture
	Slide 2: ChatGPT
	Slide 3: Deadlines and Spring Break
	Slide 4: Today
	Slide 5
	Slide 6: Dynamic Memory Allocation
	Slide 7: Dynamic Memory Allocation
	Slide 8: The malloc Package
	Slide 10: Heap Visualization Convention
	Slide 11: Allocation Example (Conceptual)
	Slide 12: Why is malloc hard?
	Slide 13: Constraints
	Slide 14: Conflicting: Performance & Overhead
	Slide 15: Performance Goal: Throughput
	Slide 16: Performance Goal: Minimize Overhead
	Slide 17: Benchmark Example
	Slide 18: Benchmark Visualization
	Slide 19: Typical Benchmark Behavior
	Slide 20: Fragmentation
	Slide 21: Internal Fragmentation
	Slide 22: Internal Fragmentation Effect
	Slide 23: External Fragmentation
	Slide 24: External Fragmentation Effect
	Slide 25: Implementation Issues
	Slide 26: Knowing How Much to Free
	Slide 27: Keeping Track of Free Blocks
	Slide 28: Today
	Slide 29: Method 1: Implicit Free List
	Slide 30: Detailed Implicit Free List Example
	Slide 31: Implicit List: Data Structures
	Slide 32: Implicit List: Header access
	Slide 33: Implicit List: Traversing list
	Slide 34: Implicit List: Finding a Free Block
	Slide 35: Implicit List: Finding a Free Block
	Slide 36: Comparing Strategies
	Slide 37: Implicit List: Allocating in Free Block
	Slide 38: Implicit List: Splitting Free Block
	Slide 39: Implicit List: Freeing a Block
	Slide 40: Implicit List: Coalescing
	Slide 41: Implicit List: Coalescing
	Slide 42: Implicit List: Bidirectional Coalescing
	Slide 44: Implementation with Footers
	Slide 45: Implementation with Footers
	Slide 46: Splitting Free Block: Full Version
	Slide 47: Constant Time Coalescing
	Slide 48: Constant Time Coalescing (Case 1)
	Slide 49: Constant Time Coalescing (Case 2)
	Slide 50: Constant Time Coalescing (Case 3)
	Slide 51: Constant Time Coalescing (Case 4)
	Slide 52: Heap Structure
	Slide 53: Top-Level Malloc Code
	Slide 54: Top-Level Free Code
	Slide 55: Disadvantages of Boundary Tags
	Slide 56: No Boundary Tag for Allocated Blocks
	Slide 57: No Boundary Tag for Allocated Blocks (Case 1)
	Slide 58: No Boundary Tag for Allocated Blocks (Case 2)
	Slide 59: No Boundary Tag for Allocated Blocks (Case 3)
	Slide 60: No Boundary Tag for Allocated Blocks (Case 4)
	Slide 61: Summary of Key Allocator Policies
	Slide 62: Implicit Lists: Summary

