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Deadlines and Spring Break

m Labs
= Cachelab is due this Feb 27
= Spring Break Happens
= Malloc checkpoint is due on March 18
= Malloc final is due on Mar 25

m Spring Break
= No lectures or deadlines
= No office hours, but there may be some Ed coverage
= (dga will hold office hours as usual on Monday, Mar 3)



Today

m Basic concepts
m Implicit free lists



void example(long n) {
long *p;

p = (long *)malloc(sizeof(long) * n);
for (long i = @; i < n; i++) {

p[i] = 1;
}

free(p);



Dynamic Memory Allocation
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Dynamic Memory Allocation

m Allocator maintains heap as collection of variable sized
blocks, which are either allocated or free
m Types of allocators

= Explicit allocator: application allocates and frees space
= e.g., mallocand freeinC

= Implicit allocator: application allocates, but does not free space
= e.g., new and garbage collection in Java

m Will discuss simple explicit memory allocation today



Themalloc Package

#include <stdlib.h>

void *malloc(size t size)
= Successful:

= Returns a pointer to a memory block of at least size bytes
aligned to a 16-byte boundary (on x86-64)

» [fsize == O, returns NULL
= Unsuccessful: returns NULL (0) and sets errno

void free (void *p)
= Returns the block pointed at by p to pool of available memory
= p must come from a previous call tomalloc, calloc, or realloc

Other functions
= calloc: Version of malloc that initializes allocated block to zero
= realloc: Changes the size of a previously allocated block
= sbrk: Used internally by allocators to grow or shrink the heap



Heap Visualization Convention

m 1square=1“word” =8 bytes

Highest address

within heap
Lowest address (“the break”, adjustable
within heap by sbrk system call)
\ v J \ J
Allocated block Free block
(4 words) (2 words) Free word

Allocated word
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Allocation Example
(Conceptual)

pl = malloc (32)

'O
N
I

malloc (40)

|Gap for alignment

p3 = malloc (48)

v

free (p2)

p4 = malloc (16)
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Why is malloc hard?

m Who chooses the order of malloc/free requests?
m What is the lifetime of an allocated block?
m When does malloc have to return?

m Can you move blocks once allocated?

O

What attributes should a perfect malloc have?



Constraints

m Applications

= Canissue arbitrary sequence of malloc and £ree requests

free request must be toamalloc’d block

m Explicit Allocators

Can’t control number or size of allocated blocks
Must respond immediately tomalloc requests
= j.e.,can’t reorder or buffer requests
Must allocate blocks from free memory
= j.e., can only place allocated blocks in free memory
Must align blocks so they satisfy all alignment requirements
= 16-byte (x86-64) alighment on 64-bit systems
Can manipulate and modify only free memory
Can’t move the allocated blocks once they aremalloc’d

= j.e., compaction is not allowed. Why not?
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Conflicting: Performance & Overhead

m Given some sequence of malloc and free requests:
= Ro,Ry ., Ry o, Ry

m Goals: maximize throughput and peak memory utilization
=" These goals are often conflicting

m Imagine the hypothetical “infinite memory malloc” - it’s
really fast...
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Performance Goal: Throughput

m Number of completed requests per unit time

In 10 seconds..
5,000 malloc calls
+ 5,000 free calls

= 1,000 operations/sec
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Performance Goal: Minimize Overhead

Given a sequence of malloc and £free requests:
Ro,R1, .., Ry, oy Ry

After k requests:

Def: Aggregate payload P,
malloc (p) results in a block with a payload of p bytes
The aggregate payload P}, is the sum of currently allocated payloads
The peak aggregate payload Tﬁ{x P; is the maximum aggregate payload at
any point in the sequence up to request

Def: Current heap size Hy,
Assume heap only grows when allocator uses sbrk, never shrinks

Def: Overhead, O,
Fraction of heap space NOT used for program data
Ok = (Hk/m%cx P;) —1.0
<
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Benchmark Example

m Benchmark

syn-array-short

Trace provided with
malloc lab

Allocate & free 10 blocks
a = allocate

f=free

Bias toward allocate at
beginning & free at end
Blocks number 1-10

Allocated: Sum of all
allocated amounts

Peak: Max so far of
Allocated

Step

th th th Hh ® H th ® Hh ® Hh® HO O HDO OO OO

Command

0

O U1 OO JOPRPR JMNMNOOUGILE_ WWNDNDHR

9904
50084
20
16784

840
3244

2012

33856

136

20

Delta
9904
50084
20
16784
-16784
840
3244
-9904
2012
-20
33856
-50084
136
-33856
-2012
20
-840
-136
-3244
-20

Allocated
9904
59988
60008
76792
60008
60848
64092
54188
56200
56180
90036
39952
40088
6232
4220
4240
3400
3264
20
0

Peak

9904
59988
60008
76792
76792
76792
76792
76792
76792
76792
90036
90036
90036
90036
90036
90036
90036
90036
90036
90036
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Step
1
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Benchmark Visualization

th th th th @ Hh Hh @ Hh ® Hh O HO O HD OO D
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Delta
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50084
20
16784
-16784
840
3244
-9904
2012
-20
33856
-50084
136
-33856
-2012
20
-840
-136
-3244
-20

Allocated
9904
59988
60008
76792
60008
60848
64092
54188
56200
56180
90036
39952
40088
6232
4220
4240
3400
3264
20
0

Peak 1
9904
59988
60008
76792
76792
76792
76792
76792
76792
76792
90036
90036
90036
90036 12345678 910111213 14151617 1819 20
90036 Step
90036
90036
90036
90036

%0036 = Plot P, (allocated) and max Py, (peak)
[

0.8

0.6

0.4

0.2

Nomalized Aggregate Memory

=—o—Allocated =—e=Peak

as a function of k (step)
= Y-axis normalized — fraction of maximum
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Typical Benchmark Behavior

1.0

0.8

@ Peak

Allocated

Memory Used / Peak Data
o

Operation / Operation Count

m Longer sequence of mallocs & frees (40,000 blocks)
= Starts with all mallocs, and shifts toward all frees

m Allocator must manage space efficiently the whole time

m Production allocators can shrink the heap
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Fragmentation

m Poor memory utilization caused by fragmentation
= |nternal fragmentation
= External fragmentation
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Internal Fragmentation

m For a given block, internal fragmentation occurs if payload is
smaller than block size

Block
/\
- N
Internal Internal
| —— Payload D o )
fragmentation fragmentation

m Caused by

= QOverhead of maintaining heap data structures
= Padding for alignment purposes
= Explicit policy decisions
(e.g., to return a big block to satisfy a small request)

m Depends only on the pattern of previous requests
" Thus, easy to measure



Internal Fragmentation Effect

1.4

1.0

0.6

Memory Used / Peak Data
o

0.4

=

/

0.0

Operation / Operation Count

m Purple line: additional heap size due to
allocator’s data + padding for alignment
" For this benchmark, 1.5% overhead

= Cannot achieve in practice

= Especially since cannot move allocated blocks

@ Peak +Interna

@ Peak

Allocated

| Fr.

ag
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External Fragmentation

m Occurs when there is enough aggregate heap memory,
but no single free block is large enough

pl = malloc (32)

malloc (40)

'O
N
I

p3 = malloc (48)

free (p2)

p4 = malloc (64) Yikes! (what would happen now?)

m Depends on the pattern of future requests
" Thus, difficult to measure
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External Fragmentation Effect

Peak +All Frag (Best Fit)
@ Peak +Internal Frag

Allocated

sed / Peak Data

X A 0.
Operation / Operation Count

m Green line: additional heap size due to external fragmentation

m Best Fit: One allocation strategy
" (To be discussed later)
= Total overhead = 8.3% on this benchmark
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Implementation Issues

m How do we know how much memory to free given just a
pointer?

m How do we keep track of the free blocks?

m What do we do with the extra space when allocating a
structure that is smaller than the free block it is placed in?

m How do we pick a block to use for allocation -- many
might fit?

m How do we reuse a block that has been freed?
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Knowing How Much to Free

m Standard method

= Keep the length (in bytes) of a block in the word preceding the
block.

= Including the header
= This word is often called the header field or header
= Requires an extra word for every allocated block

pO
pO0 = malloc(32) 1

48
(VAN
block size Payload Padding

(aligned) (for alignment)

free (p0)
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Keeping Track of Free Blocks

m Method 1: Implicit list using length—links all blocks

,,,,,,, Need to tag

e > s each block as
» % 32 48 32 Le allocated/free

Ny
- N~

m Method 2: Explicit list among the free blocks using pointers

O\

77 32 48 35| 7 T Need space
% for pointers

m Method 3: Segregated free list
= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g., Red-Black tree) with pointers within
each free block, and the length used as a key



Today

m Basic concepts
m Implicit free lists
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Method 1: Implicit Free List

m For each block we need both size and allocation status

" Could store this information in two words: wasteful!

m Standard trick

= When blocks are aligned, some low-order address bits are always 0

" |nstead of storing an always-0 bit, use it as an allocated/free flag

= When reading the Size word, must mask out this bit

1 word
A
s N
Size a
Format of
allocated and Payload
free blocks
Optional
padding

a = 1: Allocated block
a = 0: Free block

Size: total block size

Payload: application data
(allocated blocks only)
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Detailed Implicit Free List Example

;;;;;

______
- ~
’’’’’

’

) U . End
Unused \ T .. ¢ Block
‘ \16/0 ‘32/1 ‘64/0 ‘32/1 ‘ 8/1 |

\

heap start

Double-word
aligned

\

heap end

Allocated blocks: shaded

Free blocks: unshaded

Headers: labeled with “size in bytes/allocated bit”
Headers are at non-aligned positions

=» Payloads are aligned
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Implicit List: Data Structures

header| payload
m Block declaration
uint64_ t word t;
typedef struct block
{
word t header;
unsigned char payload[0]; // Zero length array
} block t;
m Getting payload from block pointer // block t *block
return (void *) (block->payload);
m Getting header from payload // bp points to a payload

return (block t *) ((unsigned char *) pp
- offsetof (block t, payload));

C function of fsetof (struct, member) returns offset of member within struct
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Implicit List: Header access

Size a
m Getting allocated bit from header
return header & 0x1;
m Getting size from header
return header & ~0xfL;
m Initializing header // block t *block

block->header = size | alloc;




Implicit List: Traversing list

header header

payload

payload | unused

block size

m Find next block

static block t * (block t * )
{

return (block t *) ((unsigned char *) block
+ get size(block));

-------
-

7 Ss
-

- Bab I
- ~~
- ~~
-
- ~~.
- ~
- ~
- ~
- ~
- ~
- ~
- ~
- ~
- ~
-
- SS
-~ ~
-~

Unused

_______
- ~
e S
-

End

\Block

‘ \16/0 ‘32/1 64/0 32/1

‘8/1|
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Implicit List: Finding a Free Block

First fit:

= Search list from beginning, choose first free block that fits:

Finding space for asize bytes (including header):

}

static block t *find fit(size t

)
{

block_t * ;

for (block heap start; block !'= heap end;
block = find next(block)) {

{
if (! (get_alloc(block))

&& (asize <= get _size(block)))
return block;

}
return NULL; // No fit found

heap starg—.

__________
N,

\ ’

AY

AY

- Bab I
- ~~
- ~~
-
- ~~.
- ~
- ~
- ~
- ~
- ~
- ~
- ~
- ~
- ~
-
- SS
-~ ~
-~

_______
- ~
e S
-

16/0 32/1 64/0

8/1
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Implicit List: Finding a Free Block

m First fit:

Search list from beginning, choose first free block that fits:
Can take linear time in total number of blocks (allocated and free)
In practice it can cause “splinters” at beginning of list

m Next fit:

Like first fit, but search list starting where previous search finished
Should often be faster than first fit: avoids re-scanning unhelpful blocks
Some research suggests that fragmentation is worse

m Best fit:

Search the list, choose the best free block: fits, with fewest bytes left over
Keeps fragments small—usually improves memory utilization

Will typically run slower than first fit

Still a greedy algorithm. No guarantee of optimality
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Comparing Strategies

~
—

.4 X X
Operation / Operation Count

m Total Overheads (for this benchmark)

= Perfect Fit: 1.6%
= Best Fit: 8.3%
" First Fit: 11.9%

= Next Fit: 21.6%

o o D ual

Best Fit
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Implicit List: Allocating in Free Block

m Allocating in a free block: splitting

= Since allocated space might be smaller than free space, we might want
to split the block

’’’’’’’’’’

V R Sa” Sa-” NL/’ ;/‘
732 32 418 16 %
o]
split _block(p, 32)
’,¢" ‘s\‘,,;" ‘N\Q’¢” ~~\\A/" N\‘III-N\‘

7432 32 32 16 |16 VA
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Implicit List: Splitting Free Block

split _block(p, 32)

- -,
- ~ - \N\
“* P

- S ~
16 32 32 lgw

-
- -~
-
-
-
-
-

// Warning: This code is incomplete

static void split block (block t *block, size t asize) {
size t block size = get_size(block);

if ((block size - asize) >= min block size) ({
write header (block, asize, true);
block t *block next = find next(block);
write header (block next, block size - asize, false);
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Implicit List: Freeing a Block

m Naive implementation:
= Just clear the “allocated” flag

——————
§§§§§§

——————

7 - SaL” Sa” a7 N Vad ;,;
Q 32 32 312 16 16 %
free(p) P
”’I‘ *s\\~”¢‘ S~ e - ~\\\~’¢-N\Al¢ TS
7 [
/A 32 32 32 16 |16 /& %
malloc (5*s1z) Yikes!

There is enough contiguous
free space, but the allocator
won’t be able to find it
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Implicit List: Coalescing

m Join (coalesce) with next/previous blocks, if they are free

= Coalescing with next block

free(p)

%

Z

logically
gone
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Implicit List: Coalescing

m Join (coalesce) with next block, if it is free
= Coalescing with next block

L LT
- "~
- ~
- -~
- -~
- ~

2 T gy

%64 312 16 |16
free(p) p

.

/464 48

= How do we coalesce with previous block?

= How do we know where it starts?

= How can we determine whether its allocated?

logically
gone
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Implicit List: Bidirectional Coalescing

m Boundary tags [Knuth73]

= Replicate size/allocated word at “bottom” (end) of free blocks
= Allows us to traverse the “list” backwards, but requires extra space
= |mportant and general technique!

————--—~

V R Sa” Sa-" S’ ;/‘
32 32 32 32 48 48 32 32
‘/i RS ’,’Vs~~ ’a”i\ I” A
Header — Size = a = 1: Allocated block
a = 0: Free block
Format of
allocated and Payload and Size: Total block size
padding
f ree blocks Payload: Application data
(allocated blocks only)
Boundary tag —— Size a

(footer)
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Implementation with Footers

header| payload | unused | footer | header] payload
asize
asize >
«——— dsize
m Locating footer of current block
const size t dsize = 2*sizeof (word t);
static word t *header to footer(block t * )

{
size t asize = get_size(block);
return (word t *) (block->payload + asize - dsize);
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Implementation with Footers

header| payload | unused | footer | header| payload
—
1 word
m Locating footer of previous block

{

}

static word t *find prev footer(block t * )

return & (block->header) - 1;
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Splitting Free Block: Full Version

split _block(p, 32)

——__———----

“_——’— ‘~~.~* e x\y,¢ S
64 64 16 32 32 32 3216
P

static void split block (block t *block, size t asize) {
size t block size = get size(block) ;

if ((block size - asize) >= min block size) ({
write header (block, asize, true);
write footer (block, asize, true);
block t *block next = find next(block);
write header (block next, block size - asize, false);
write footer (block next, block size - asize, false);
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Constant Time Coalescing

Block being
freed

Case 1 Case 2 Case 3 Case 4
Allocated Allocated Free Free
Allocated Free Allocated Free
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Constant Time Coalescing (Case 1)

ml

ml

ml

ml

m2

m2

m2

m2
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Constant Time Coalescing (Case 2)

ml

ml

ml

ml

n+m2

m2

m2

n+m2
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Constant Time Coalescing (Case 3)

ml 0 n+ml 0
ml 0
n 1
—
n 1 n+ml 0
m2 1 m2 1
m2 1 m2 1




Constant Time Coalescing (Case 4)

ml

n+ml+m?2

ml

m2

m2

n+ml+m?2

51



_________
’’’’’’’’’’
~.,
,,,,,,

Dummy

Footer /
Start 4 I 3

of ‘ 8/1 \16/0 ‘32/1 ‘64/0 32/1 ‘ 8/1 |
heap / _ _ . : , . : ; ;

heap start heap end

_— ==
- ~~
- S~<
P ~
- ~
- ~
- ~
- ~
- ~
- ~
- ~
- ~.
- ~.
- ~.
-
- S
- ~.

P

\

m Dummy footer before first header
= Marked as allocated
= Prevents accidental coalescing when freeing first block

m Dummy header after last footer

= Prevents accidental coalescing when freeing final block
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Top-Level Malloc Code

const size t dsize = 2*sizeof (word t);
void *mm malloc(size t )
{
size t = round up(size + dsize, dsize);
block t * = find fit(asize);
if (block == )
return ;
size t = get_size(block);

write header (block, block size,
write footer (block, block size,

split block (block, asize);

return header to _payload (block) ;

) ;
) ;

round up(n, m)

m *((n+m-1) /m)
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Top-Level Free Code

void mm free(void *bp)

{

block t * = payload to header (bp);
size t = get_size (block);

write header (block, size, ) ;

write footer (block, size, ) ;

coalesce_block(block);




Disadvantages of Boundary Tags

m Internal fragmentation

m Canit be optimized?
= Which blocks need the footer tag?
= What does that mean?

Size

Payload and
padding

Size
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No Boundary Tag for Allocated Blocks

m Boundary tag needed only for free blocks
m When sizes are multiples of 16, have 4 spare bits

1 word 1 word
/ —"~ ~~ ~ —" ~
Size bl a = 1: Allocated block Size b0
a = 0: Free block
b = 1: Previous block is allocated
b = 0: Previous block is free
Payload
Unallocated
Size: block size
Optional Payload: application data
padding Size b0
Allocated Free

Block Block
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No Boundary Tag for Allocated Blocks
(Case 1)

. m1l ?1 ml ?1
previous
block
block n 11 n 10
being -_—
freed n 10
m2 11 m2 01
next
block

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)
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No Boundary Tag for Allocated Blocks
(Case 2)

ml ?1 ml ?1
previous
block
block n 11 n+m2 10
being -_—
freed
m2 10
next
block m2 10 n+m2 10

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)



No Boundary Tag for Allocated Blocks
(Case 3)

' ml ?0 n+ml ?0
previous

block
ml ?0

block n 01

being -_—

freed n+m1 20
m2 11 m2 01

next

block

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)



No Boundary Tag for Allocated Blocks
(Case 4)

previous mil ?0 n+ml+m?2 ?0
block
ml ?0
block n 01
being e
freed
m2 10
next
block m2 10 n+mil+m?2 ?0

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)



Summary of Key Allocator Policies

m Placement policy:
= First-fit, next-fit, best-fit, etc.
= Trades off lower throughput for less fragmentation

= |nteresting observation: segregated free lists (next lecture)
approximate a best fit placement policy without having to search
entire free list

m Splitting policy:
= When do we go ahead and split free blocks?
= How much internal fragmentation are we willing to tolerate?

m Coalescing policy:
" Immediate coalescing: coalesce each time free is called

= Deferred coalescing: try to improve performance of £ree by deferring
coalescing until needed.
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Implicit Lists: Summary

Implementation: very simple

Allocate cost:
" |inear time worst case

Free cost:
= constant time worst case
= even with coalescing

Memory Overhead
= will depend on placement policy
= First-fit, next-fit or best-fit

Not used in practice for malloc/free because of linear-
time allocation

= used in many special purpose applications

However, the concepts of splitting and boundary tag
coalescing are general to all allocators

62



	Slide 1: Dynamic Memory Allocation:  Basic Concepts  15-213/15-513/14-513: Introduction to Computer Systems 13th Lecture  
	Slide 2: ChatGPT
	Slide 3: Deadlines and Spring Break
	Slide 4: Today
	Slide 5
	Slide 6: Dynamic Memory Allocation 
	Slide 7: Dynamic Memory Allocation
	Slide 8: The malloc Package
	Slide 10: Heap Visualization Convention
	Slide 11: Allocation Example (Conceptual)
	Slide 12: Why is malloc hard?
	Slide 13: Constraints
	Slide 14: Conflicting: Performance & Overhead
	Slide 15: Performance Goal: Throughput
	Slide 16: Performance Goal: Minimize Overhead
	Slide 17: Benchmark Example
	Slide 18: Benchmark Visualization
	Slide 19: Typical Benchmark Behavior
	Slide 20: Fragmentation
	Slide 21: Internal Fragmentation
	Slide 22: Internal Fragmentation Effect
	Slide 23: External Fragmentation
	Slide 24: External Fragmentation Effect
	Slide 25: Implementation Issues
	Slide 26: Knowing How Much to Free
	Slide 27: Keeping Track of Free Blocks
	Slide 28: Today
	Slide 29: Method 1: Implicit Free List
	Slide 30: Detailed Implicit Free List Example
	Slide 31: Implicit List: Data Structures
	Slide 32: Implicit List: Header access
	Slide 33: Implicit List: Traversing list
	Slide 34: Implicit List: Finding a Free Block
	Slide 35: Implicit List: Finding a Free Block
	Slide 36: Comparing Strategies
	Slide 37: Implicit List: Allocating in Free Block
	Slide 38: Implicit List: Splitting Free Block
	Slide 39: Implicit List: Freeing a Block
	Slide 40: Implicit List: Coalescing
	Slide 41: Implicit List: Coalescing
	Slide 42: Implicit List: Bidirectional Coalescing 
	Slide 44: Implementation with Footers
	Slide 45: Implementation with Footers
	Slide 46: Splitting Free Block: Full Version
	Slide 47: Constant Time Coalescing
	Slide 48: Constant Time Coalescing (Case 1)
	Slide 49: Constant Time Coalescing (Case 2)
	Slide 50: Constant Time Coalescing (Case 3)
	Slide 51: Constant Time Coalescing (Case 4)
	Slide 52: Heap Structure
	Slide 53: Top-Level Malloc Code
	Slide 54: Top-Level Free Code
	Slide 55: Disadvantages of Boundary Tags
	Slide 56: No Boundary Tag for Allocated Blocks
	Slide 57: No Boundary Tag for Allocated Blocks (Case 1)
	Slide 58: No Boundary Tag for Allocated Blocks (Case 2)
	Slide 59: No Boundary Tag for Allocated Blocks (Case 3)
	Slide 60: No Boundary Tag for Allocated Blocks (Case 4)
	Slide 61: Summary of Key Allocator Policies
	Slide 62: Implicit Lists: Summary

