Carnegie Mellon

T ———.

I9=213"
e s

<« o A g i

14-513

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Virtual Memory: Details

15-213/15-513: Introduction to Computer Systems
10th Lecture, February 20, 2025

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Today

m Review concepts from last lecture

m Simple memory system example CSAPP 9.6.4
m Case study: Core i7/Linux memory system CSAPP 9.7

m Memory mapping CSAPP 9.8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Review: Virtual Addressing

physical memory

0:
CPU Chip 1:
Virtual address Physical address :
(VA) (PA) .
CPU —> MMU 7 > 4:
4100 5
A

6:
7:
8:
M-1

Data word

m Virtual address space is an abstraction, not real memory
m Physical memory refers to the actual computer memory (DRAM)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Review: Per-process Virtual Address Space

m Each process has its own virtual address space
m All processes share the same Physical Memory

0 Address 0

Virtual ; lati Physical

Address VP 1 w} Address

Space for VP2 PP 2 Space

Process 1: (DRAM)
N-1

(e.g., read-only

PP'6 library code)
) 0
Virtual PP 8
Address VP1
Space for
Process 2:

VP k
N-1 M-1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Page Table

Carnegie Mellon

Physical memory

Virtual address Physical page (DRAM)
number or VPl 0
Valid disk address /] PP
PTEO[0 null %
1 — VP4 PP 3
> 1 0/4
0 N
1 —<_
0 null S Virtual memory
0 .~\/ \\\ (diSk)
PTE7| 1 o \\‘\ \\\\ VP 1
Memory resident ~~ \\ VP 2
page table AR ~a
(DRAM) o VP 3
RSN VP4
VP 6
VP 7
m A page table contains page table entries (PTEs) that map

virtual pages to physical pages.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Conceptual Question

The MMU must know the physical address of the page table
in order to read page table entries from memory. Why does
it need a physical address?

If the MMU knew only a virtual address for the page table,
then, in order to find the page table in memory, it would first

need to look up the physical address of the page table, in the
page table itself, ...

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Review: Translating with a k-level Page Table

m Having multiple levels greatly reduces total page table size

Page table base register
(part of the process’ context)

VIRTUAL ADDRESS
n-1 p-1 0
VPN 1 VPN 2 VPN k VPO
——
the Level 1 aLevel 2 a Level k
page table page table page table
> > > >
] > PPN |} —
m-1 p-1 1} 0
PPN PPO

PHYSICAL ADDRESS

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Conceptual Questions

Why are one-level page tables impractical?

For typical system sizes, the table would require more physical
memory (e.qg., 512 GBs) than most computers have.

How does a multi-level page table fix this problem?

Only allocates the part of the page table tree that’s needed for
the virtual addresses the program uses.

Why is memory access slower with a multi-level page table than
with a one-level page table?

A k-level page table requires k memory loads in order to
determine the physical address. There is no spatial locality to
these loads (see next slide).

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

The problem (with k-level page tables)

Page table
base register
n-1 VIRTUAL ADDRESS o-1 0
VPN 1 VPN 2 . VPN k VPO
——
the Level 1 a Level 2 a Level k
page table page table page table

o
»

/‘ /%”]
Cache Cache Cache Cache
miss! miss! miss! miss!
C
2) 4 /_ a.Che
miss!
PPN PPO

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Review: Translation Lookaside Buffer (TLB)

m A small cache dedicated to storing mappings from virtual addresses to
physical addresses (page table entries)

m MMU consults the TLB for each address as its first action. If there is a TLB hit,
it does not need to fetch anything from the page table (avoiding k lookups)

TLB
9 PTE
VPN o
VA PA
CPU > MMU >
Cache/
o o Memory

Data

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

11

Carnegie Mellon

Review: Accessing the TLB

B MMU uses the VPN portion of the virtual address to
access the TLB:

T = 2tsets
VPN
TLBT matches tag — —— —
of line within set n-1 p+t p+t-1 p p-1 0

TLB tag (TLBT) | TLB index (TLBI) | VPO

Set 0 v tag PTE v tag PTE
TLBI selects the set
¥

Setl v tag PTE v tag PTE

[]

[]

[]
Set T-1 v tag PTE v tag PTE

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Conceptual Question

How does virtual memory interact with the CPU cache(s)?

The cache’s function is to speed up access to whatever data is
most frequently used. The MMU sits “in between” the CPU and
the cache; the cache works only with physical addresses. This
means data from multiple processes may coexist in the cache (or
compete for cache space).

«——————— TIBT —————*<« TLBl — < CcT > < Cl >+— CO —
13 12 11 10 9 8 7 6 5 4 3 2 1 0 11 10 9 8 7 6 5 4 3 2 1 0

L rr] I
« VPN VPO -) PPN ~ PPO >
Virtual Page Number Virtual Page Offset Physical Page Number Physical Page Offset

1. MMU uses VA to find PTE & get PA 2. PA is used to look in cache for data

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Today

Review concepts from last lecture

[|

m Simple memory system example

m Case study: Core i7/Linux memory system
[|

Memory mapping

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Simple Memory System Example

m Addressing Why is the Why is the
= 14-bit virtual addresses VPO 6 bits? PPO 6 bits?
= 12-bit physical address Why is the Why is the

VPN 8 bits? PPN 6 bits?

= Page size = 64 bytes

13 12 11 10 9 8 7 6 5 4

v

VPN VPO

A

Virtual Page Number

11 10 9 8 7 6 5 4

v

PPN PPO

A

Physical Page Number Physical Page Offset

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

15

Carnegie Mellon

Simple Memory System TLB

m 16 entries
m 4-way associative

) TLBT »<— TLBI —
13 12 11 10 9 8 5 q 3 1 0
0O, 0|00 |1 1
- VPN - VPO .
VPN = 0b1101 = 0x0D
Translation Lookaside Buffer (TLB)

Set Tag PPN | Valid Tag PPN | Valid Tag PPN | Valid Tag PPN | Valid
0 03 - 0 09 oD 1 00 - 0 07 02 1
1 03 2D 1 02 - 0 04 - 0 0A - 0
2 02 - 0 08 - 0 06 - 0 03 - 0
3 07 - 0 03 oD 1 0A 34 1 02 - 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

16

Simple Memory System Page Table

Only showing the first 16 entries (out of 256)

VPN PPN | Valid VPN PPN | Valid
00 28 1 08 13 1
01 - 0 09 17 1
02 33 1 0A 09 1
03 02 1 0B - 0
04 - 0 0C - 0
05 16 1 oD 2D 1 0x0D — 0x2D
06 - 0 OE 11 1
07 - 0 OF oD 1
TLBT e TLBI —
13 12 1 10 ¢ 8 7 6 5 4 3 2 1 o0 1 10 s 8 7 6 5 4 3 2 1 o0

[ofofoJoJaJaJo[a[T T [T [[| wemmp [2]0J22f0fa[[[[[T |

i PPO ——

«————— VPN VPO ———— PPN

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Simple Memory System Cache

m 16 lines, 4-byte cache line size

m Physically addressed V[0b00001101] = V[0x369]
P[0b101101101001] = P[0xB69] = 0x15

m Direct mapped /

< cT = o > €0 —

1110 9 8 7 6 % 4 3 2 1 o
11 1

1,0 0/|1/1]0]1,0]0

< PPN > PPO >
ldx | Tag | valid | Bo | B1 | B2 | B3
8 89
9 -_
A 3B
B —_
C -_
D 15
E D3
" _

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Address Translation Example

Virtual Address: 0x03D4

< TLBT »<— TLBI —
13 12 11 10 9 8 7 6 5 4 3 2 1 0

o,o0,0;,0;11,1,1,0,;1,0,1,0

“ VPN = VPO -
VPN OxOF TLBI Ox3 TLBT 0x03 TLB Hit? Y Page Fault? N PPN: 0xOD
TLB Set Tag PPN | Valid Tag PPN | Valid Tag PPN | Valid Tag PPN | Valid
0 03 - 0 09 oD 1 00 - 0 07 02 1
1 03 2D 1 02 - 0 04 - 0 0A - 0
2 02 - 0 08 - 0 06 - 0 03 - 0
3 07 - 0 03 oD 1 0A 34 1 02 - 0
Physical Address
11 10 7 5 3 2 1 0
0 0 1 1 0 1 0 0 1 0 0
“ PPN = PPO >

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

19

Carnegie Mellon

Address Translation Example
Physical Address

« cT

v
A
o
v
!
®]
o
!

11 10 9 8 7 6 5 4 3 2 1 0

< PPN > PPO >
CO_0_ Clox5 CTOx0D Hit? Y. Byte: 0x36
Cache
Idx | Tag | Valid | BO B1 B2 B3 Idx | Tag | Valid | BO B1 B2 B3
0 19 1 99 11 23 11 8 24 1 3A 00 51 89
1 15 0 - - - -~ 9 2D 0 -~ - -~ -
2 1B 1 00 02 04 08 A 2D 1 93 15 DA 3B
3 36 0 -~ -~ - - B 0B 0 - - -~ -
4 32 1 43 6D 8F 09 C 12 0 - - -~ -
5 oD 1 36 72 FO 1D D 16 1 04 96 34 15
6 31 0 -~ - - - E 13 1 83 77 1B D3
7 16 1 11 C2 DF 03 F 14 0 -~ - -~ -

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Address Translation Example: TLB/Cache Miss

Virtual Address: 0x0020

- TLBT —————— <« TLBI —

13 12 11 10 9 8 7 6 5 4 3 2 1 0
o, 0,00, 00| 0 0|10 ,0]0]0O

< VPN = VPO s
VPN 0x00 TLBI _O0 TLBT 0x00 TLB Hit? N Page Fault? N PPN: Ux2o
Physical Address Page table
~ T U l . €O —» VPN | PPN | Valid
.] 00 | 28 | 1
11 10 9 8 7 6 5 4 3 2 1 0 01 - 0
1 0 1 0 0 0 1 0 0 0 0 0 02 33 1
03 02 1
< PPN > PPO >
04 - 0
CO_0 C0x8 CTOX28 Hit?__ Byte: 05 | 16 | 1
06 - 0
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 07 — 0

Carnegie Mellon

Address Translation Example: TLB/Cache Miss

Cache

Idx Tag Valid BO B1 B2 B3 Idx Tag Valid BO B1 B2 B3
0 19 1 99 11 23 11 8 24 1 3A 00 51 89
1 15 0 - - - - 9 2D 0 - - - -
2 1B 1 00 02 04 08 A 2D 1 93 15 DA 3B
3 36 0 - - - - B 0B 0 - - - -
4 32 1 43 6D 8F 09 C 12 0 - - - -
5 oD 1 36 72 FO 1D D 16 1 04 96 34 15
6 31 0 - - - - E 13 1 83 77 1B D3
7 16 1 11 C2 DF 03 F 14 0 - - - -

Physical Address
« CT > cl —<+— CO —

11 10 9 8 7 6 5 4 3 2 1 0
1,01 ,0,0|0|]1 00|00/ 0O

- PPN PPO

v

co 0 C10x8 CT 0x28 Hit? N Byte: Mem

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Quiz Time!

Canvas Quiz: Day 12 — Virtual Memory: Details

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Today

Review concepts from last lecture

H

m Simple memory system example

m Case study: Core i7/Linux memory system
H

Memory mapping

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Intel Core i7 Memory System

Processor package

Core x4
RERISTErs Instruction MMU
i} fe'ach (addr translation) _
v v
L1 d-cache L1 i-cache L1 d-TLB L1i-TLB
32 KB,A8-way 32 KB, 8-way 64 entri(‘e‘s, 4-way 128 entri‘?s, 4-way

A 4

A

y

L2 unified cache

A 4

A 4

L2 unified TLB

512 entries, 4-w

ay

A

QuickPath i
4 links @ 25

nterconnect

vvyy

.6 GB/s each

A

A

y

L3 unified cache
8 MB, 16-way
(shared by all cores)

A

A

y

i 256 KB, 8-way

A 4

DDR3 Memory controller
3 x 64 bit @ 10.66 GB/s

all cores)

32 GB/s total (shared by
A A

A

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Main memory

v

To other
cores

Tol/O
bridge

25

End-to-end Core i7 Address Translation

it} ot 12,13, and
Virtual address (VA) ¥ main memory
36 | 12]
_' VPN [VPO 1 11
32 I 4 hit miss
TLBT | TLBI
| L1 d-cache
il ! ! ! TLB (64 sets, 8 lines/set)
: hit <
TLB g >
miss 5 :
—>] [[[| N Y D O
L1 d-TLB (16 sets, 4 entries/set)
v9 9 9 9 w0 | | 12 20 |
VPN1 | VPN2 | VPN3 | VPN4 PPN PPO — cT CT co
T 4 Physical _
CR3 J] address
> PTE > PTE | Lo/ PTE] Ls| PTE (PA)

Page tables

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Core i7 Level 1-3 Page Table Entries

63 62 52 51 12 11 9 8 7 6 5 4 3 2 1 0
XD Unused Page table physical base address Unused G | PS A | CD | WT |U/S |R/W|P=1
Available for OS (page table location on disk) P=0

Each entry references a 4K child page table. Significant fields:
P: Child page table present in physical memory (1) or not (0).

R/W: Read-only or read-write access access permission for all reachable pages.
U/S: user or supervisor (kernel) mode access permission for all reachable pages.
WT: Write-through or write-back cache policy for the child page table.

A: Reference bit (set by MMU on reads and writes, cleared by software).

PS: Page size either 4 KB or 4 MB (defined for Level 1 PTEs only).

Page table physical base address: 40 most significant bits of physical page table
address (forces page tables to be 4KB aligned)

XD: Disable or enable instruction fetches from all pages reachable from this PTE.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Core i7 Level 4 Page Table Entries

63 62 52 51 1211 9 8 7 6 5 4 3 2 1 0
XD | Unused Page physical base address Unused G D| A |CD|WT|U/SR/W|P=1
Available for OS (page location on disk) P=0

Each entry references a 4K child page. Significant fields:
P: Child page is present in memory (1) or not (0)

R/W: Read-only or read-write access permission for child page

U/S: User or supervisor mode access

WT: Write-through or write-back cache policy for this page

A: Reference bit (set by MMU on reads and writes, cleared by software)
D: Dirty bit (set by MMU on writes, cleared by software)

G: Global page (don’t evict from TLB on task switch)

Page physical base address: 40 most significant bits of physical page address
(forces pages to be 4KB aligned)

XD: Disable or enable instruction fetches from this page.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Core i7 Page Table Translation

9 9 9 12 Virtual
VPN 1 VPN 2 VPN 3 VPN 4 VPO
address
L1 PT L2 PT L3 PT L4 PT
Page global Page upper Page middle Page
40 directory a0 directory a0 directory a0 table
| / » Iy
CR3 ———— >
Physical
address Offset into
of L1PT /12 physical and
—» L1PTE » L2 PTE » L3PTE ' —» L4PTE virtual page
Physical
address
512 GB 1GB 2 MB 4 KB of page
region region region region
per entry per entry per entry per entry
_ 49
l 7
40 12 Physical
PPN PPO
address

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

29

Trick for Speeding Up L1 Access

CPU Chip

Virtual address Physical address

(VA) (PA)
CPU —> MMU > | L1 cache

m The story so far

= MMU accessed before L1 cache
=" Doesn’t that make L1 cache hits slower?
= Yes! So real systems don’t do this...

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Trick for Speeding Up L1 Access

J— o Tag Check
0 i 6 6 trtr 1t

Physical CcTeé |c|co
address

(PA) PPN PPO

T .ﬂl.l.l.l.l.lOlOl.l
Address No

Virtual Translation Cha"ge:.ﬁ”
address . ¢

(VA) VPN VPO ¢ L1 Cache

. 36 12
m Observation

= Bits that determine Cl identical in virtual and physical address
= Canindexinto cache while address translation taking place

= Generally we hit in TLB, so PPN bits (CT bits) available quickly
= “Virtually indexed, physically tagged”

= Cache carefully sized to make this possible

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Trick for Speeding Up L1 Access

L1 cache
>
CPU Chip Virtual
address Physical address
(VA) (PA)
CPU —> MMU > Set (tags + data)

m Virtual memory with no impact on memory performance!
= MMU moved off critical path (faster than L1 cache)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Today

m Review concepts from last lecture

m Simple memory system example

m Case study: Core i7/Linux memory system
[|

Memory mapping

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Memory-Mapped Files

m Paging = every page of a program’s physical memory is
backed by some page of disk*

m Normally, those pages belong to swap space
m But what if some pages were backed by ... files?

* This is how it used to work 20 years ago.
Nowadays, not always true.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Memory-Mapped Files

Process Physical
virtual memory memory

File on disk

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Memory-Mapped Files

Process 2 Process 1 Physical
virtual memory virtual memory memory

. Swap space

- File on disk

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

Copy-on-write sharing

m fork creates a new Parent Physical
process by copying the virtual memory memory
entire address space i
of the parent process . . Swap space
= That sounds slow
= Itis slow T T | | File on disk

m Clever trick:

= Just duplicate the page tables

= Mark everything read only (PTE permission bits
for all pages set to read-only)

= Copy only on write faults

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

Copy-on-write sharing

Child Parent Physical
virtual memory virtual memory memory

~
- -~
~~
~
~
- ~
JE—— ~o
R -
-
- ~
- S~a
- - =~
- ~<
- ~o
-
~
~~

-
-
-

-
- - - ~~

_______ ST File on disk

m Clever trick:
= Just duplicate the page tables
= Mark everything read only
= Copy only on write faults

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Copy-on-write sharing

Child Parent Physical
virtual memory virtual memory memory

Child
wrote to
this page

\

-
-

~
___—‘—H‘ ~\~
————— - ~o
- - ~S~o
_____ - ~
-

- ~
- - ~
- ~o
- - =~
- - ~
R - ~~o
—_—r T e e ———— [g R
-

File on disk

m Clever trick:

= Just duplicate the page tables
= Mark everything read only
= Copy only on write faults

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

User-Level Memory Mapping

void *mmap (void *start, int len,
int prot, int flags, int fd, int offset)

m Map len bytes starting at offset of£set of the file specified
by file description £d, preferably at address start

= start: may be Ofor “pick an address”
= prot: PROT_READ, PROT_WRITE, PROT_EXEC, ...
= flags: MAP_ANON, MAP_PRIVATE, MAP_SHARED, ...

m Return a pointer to start of mapped area (may not be start)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

User-Level Memory Mapping

void *mmap (void *start, int len,
int prot, int flags, int fd, int offset)

........................ ~
__ | Len bytes
e J -
................................. (or address
len bytes < Chosen by kernel)
offset ot |
(bytes)
0 0
Disk file specified by Process virtual memory
file descriptor £d4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Carnegie Mellon

Uses of mmap

m Reading big files

= Uses paging mechanism to bring files into memory
m Shared data structures

" When call with MAP SHARED flag

= Multiple processes have access to same region of memory (Risky!)

m File-based data structures

= E.g., database

= When unmap region, file will be updated via write-back

= Can implement load from file / update / write back to file
m Enable Attack Lab

= Allow students to execute code on the stack (which is forbidden on
shark machines)

= See backup slides for details

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Summary

m Programmer’s view of virtual memory

= Each process has its own private linear address space
= Cannot be corrupted by other processes

m System view of virtual memory
= Uses memory efficiently by caching virtual memory pages
= Efficient only because of locality
= Simplifies memory management and programming

= Simplifies protection by providing a convenient interpositioning point
to check permissions

m Implemented via combination of hardware & software
= MMU, TLB, exception handling mechanisms part of hardware
= Page fault handlers, TLB management performed in software

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Review Question

For a simple system with a one-level page table, what sub-steps
does the MMU take when it fetches a PTE from a page table?

The MMU has to split the virtual address into VPN and VPO.
The VPN can then be used to index directly into the page table.

If the valid bit is set on the PTE, the entry contains a PPN and the
physical address is PPN followed by PPO (=VPO).

Otherwise, a page fault is triggered.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Address Translation With a Page Table

Virtual address

p p-1 0

Virtual page offset (VPO)

Page table n-1
base register (PTBR) Virtual page number (VPN)
(CR3 in x86)
Page table
Valid Physical page number (PPN)
Physical page table
address for the current :

process

Valid bit =0:

Page not in memory €
(page fault)

Valid bit =1

m'1 v

p p-1 v

0

Physical page number (PPN)

Physical page offset (PPO)

Physical address

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

45

Carnegie Mellon

Example: Using mmap to Support Attack Lab

m Problem
m Want students to be able to perform code injection attacks
m Shark machine stacks are not executable
m Solution
m Suggested by Sam King (now at UC Davis)
Use mmap to allocate region of memory marked executable
Divert stack to new region
Execute student attack code
Restore back to original stack

Use munmap to remove mapped region

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

Using mmap to Support Attack Lab

Memory
. invisible to
Kernel virtual memory
user code
User stack
created at runtime o
() Frsp
L (stack
T pointer)

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

Read/write segment
(.data, .bss)

Read-only segment

0x40000000| '-iPit,.text, .rodata)

Unused

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Using mmap to Support Attack Lab

Memory
. invisible to
Kernel virtual memory
user code
User stack
(created at runtime) $rsp
L (stack
T pointer)
Memory-mapped region for
shared libraries
Region created by mmap
0x55586000
Run-time heap
(created by malloc)
Read/write segment 0x55586000
(.data, .bss)
Read-only segment
0x40000000 (.init,.text, .rodata)
Unused

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

Using mmap to Support Attack Lab

Memory
. invisible to
Kernel virtual memory
user code
User stack
(created at runtime) $rsp
L (stack
T pointer)
Frame for launch
Memory-mapped region for
shared libraries Frame for test
Region created by mmap Frame for getbuf
0x55586000
Run-time heap
(created by malloc)
Read/write segment 0x55586000
(.data, .bss)
Read-only segment
0x40000000 (.init,.text, .rodata)
Unused

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Carnegie Mellon

Using mmap to Support Attack Lab

Memory
. invisible to
Kernel virtual memory
user code
User stack
created at runtime o
() Frsp
L (stack
T pointer)

Memory-mapped region for
shared libraries

Restore original %rsp
Use munmap to remove mapped region

Run-time heap
(created by malloc)

Read/write segment
(.data, .bss)

Read-only segment

0x40000000| '-iPit,.text, .rodata)

Unused

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Carnegie Mellon

Using mmap to Support Attack Lab

Allocate new region

void * = mmap (START ADDR, STACK SIZE, PROT EXEC|PROT READ|PROT WRITE,
MAP PRIVATE | MAP GROWSDOWN | MAP ANONYMOUS | MAP FIXED,
0, 0);
if (new_stack '= START ADDR) {
munmap (new_stack, STACK SIZE);
exit(1l);
}

Divert stack to new region & execute attack code Restore stack and remove region

stack top = new_stack + STACK SIZE - 8; asm("movg %0, $%rsp"
asm("movg %%rsp,%%rax ; movq %1, %%rsp ; :
movqg %$%rax, 30" : "r" (global save stack) // %0
"=r" (global save stack) // %0)
: "r" (stack top) // %1
) ; munmap (new_stack, STACK SIZE) ;

launch (global offset) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

Virtual Address Space of a Linux Process

~
Process-specific data)
. structs (ptables,
Different for ™ (p
task and mm structs,
each process Kernel
kernel stack))
~ > virtual
. i memor
Identical for Physical memory y
each process
P Kernel code and data)
User stack \
Memory mapped region
for shared libraries
Process
brk t > virtual
Runtime heap (malloc) memory
Uninitialized data (.bss)
Initialized data (.data)
0x00400000 —,| __Program text (.text)
Bryant and O’Hallaron, Computer Systems: A Programmer’s PersG oo e oo / 52

Carnegie Mellon

Linux Organizes VM as Collection of “Areas”

Process virtual memory
vm_area_ struct

task struct R
- mm_struct " vm_end
T » ped vm_start
vm_prot
mmap vm_flags
Shared libraries
> vm_end
m pgd: vm_start g
vm_prot
= Page global directory address vm_fF:ags Data
= Points to L1 page table -
E vm_prot:
" Read/write permissions for Text
this area " vm end
E Vvm flags vm_start >
- vm_prot
" Pages shared with other vm_flags
processes or private to this vm:next 0
process Each process has own task struct, etc

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Carnegie Mellon

Linux Page Fault Handling

vm_area_struct Process virtual memory

vm_end
vm_start
vm_prot
vm_flags

shared libraries

f 0 Segmentation fault:

—read accessing a non-existing page
vm_end
vm_start "
vm:prot e
vm_flags data . read Normal page fault
text a Protection exception:

d i o . Write e.g., violating permission by
vm start —— writing to a read-only page (Linux
vm:prot reports as Segmentation fault)
vm_flags
vm_next

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

	Slide 1
	Slide 2: Virtual Memory: Details 15-213/15-513: Introduction to Computer Systems 10th Lecture, February 20, 2025
	Slide 3: Today
	Slide 4: Review: Virtual Addressing
	Slide 5: Review: Per-process Virtual Address Space
	Slide 6: Review: Page Table
	Slide 7: Conceptual Question
	Slide 8: Review: Translating with a k-level Page Table
	Slide 9: Conceptual Questions
	Slide 10: The problem (with k-level page tables)
	Slide 11: Review: Translation Lookaside Buffer (TLB)
	Slide 12: Review: Accessing the TLB
	Slide 13: Conceptual Question
	Slide 14: Today
	Slide 15: Simple Memory System Example
	Slide 16: Simple Memory System TLB
	Slide 17: Simple Memory System Page Table
	Slide 18: Simple Memory System Cache
	Slide 19: Address Translation Example
	Slide 20: Address Translation Example
	Slide 21: Address Translation Example: TLB/Cache Miss
	Slide 22: Address Translation Example: TLB/Cache Miss
	Slide 23: Quiz Time!
	Slide 24: Today
	Slide 25: Intel Core i7 Memory System
	Slide 26: End-to-end Core i7 Address Translation
	Slide 27: Core i7 Level 1-3 Page Table Entries
	Slide 28: Core i7 Level 4 Page Table Entries
	Slide 29: Core i7 Page Table Translation
	Slide 30: Trick for Speeding Up L1 Access
	Slide 31: Trick for Speeding Up L1 Access
	Slide 32: Trick for Speeding Up L1 Access
	Slide 33: Today
	Slide 34: Memory-Mapped Files
	Slide 35: Memory-Mapped Files
	Slide 36: Memory-Mapped Files
	Slide 37: Copy-on-write sharing
	Slide 38: Copy-on-write sharing
	Slide 39: Copy-on-write sharing
	Slide 40: User-Level Memory Mapping
	Slide 41: User-Level Memory Mapping
	Slide 42: Uses of mmap
	Slide 43: Summary
	Slide 44: Review Question
	Slide 45: Address Translation With a Page Table
	Slide 46: Example: Using mmap to Support Attack Lab
	Slide 47: Using mmap to Support Attack Lab
	Slide 48: Using mmap to Support Attack Lab
	Slide 49: Using mmap to Support Attack Lab
	Slide 50: Using mmap to Support Attack Lab
	Slide 51: Using mmap to Support Attack Lab
	Slide 52: Virtual Address Space of a Linux Process
	Slide 53: Linux Organizes VM as Collection of “Areas”
	Slide 54: Linux Page Fault Handling

