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Design and Debugging

15-213/14-513/15-513: Introduction to Computer Systems
8th Lecture
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While in undergrad, I avoided “humanities” classes like the 

plague in order to focus on my primary workloads, something I 

consider to be one of the greatest missed opportunities of my life 

now

My education at CMU was extremely enabling, but [ … ] it took a 

moment of personal hardship for me to even identify and then 

focus on my values.
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After this lecture, you will be able to

✓ Describe the steps to debug complex code failures

✓ Identify ways to manage the complexity when 
programming

✓ State guidelines for communicating the intention of the 
code
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Outline

 Debugging
▪ Defects and Failures

▪ Scientific Debugging

▪ Tools

 Design

▪ Managing complexity

▪ Communication

▪ Naming

▪ Comments
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Complex Systems, Complex Failures

Atlas-Centaur
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 Atlas-Centaur second stage failed after entering an 
uncontrolled spin

▪ Investigation - turbopumps relied on gas expansion and clogged 
from plastic remnants of scouring pads

▪ Proposed Solution - Bake off plastic

 Next launch – second stage failed after entering an …
▪ Further investigation – a valve had been leaking for years (a defect) 

▪ Increased need for engine efficiency pushed this leak into 
failure range

▪ Was likely the actual cause of the previous launch

https://www.thespacereview.com/article/1321/1
https://llis.nasa.gov/lesson/467

https://www.thespacereview.com/article/1321/1
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Defects, Errors, & Failures

1. The programmer creates a defect (or a fault)

2. The defect (maybe) causes an error 

 wrong results in data values or control signals

3. The error propagates 

4. The error causes a failure

  a component or system does not produce the 
intended result at an interface

Why does a defect not necessarily cause an error?

Why is an error not necessarily a failure? 
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Curse of Debugging

 Not every defect causes a failure!
▪ A defect can be latent or active

▪ A defect in code that doesn’t get executed most of the time…

 Testing can only show the presence of [defects] – not 
their absence. (Dijkstra 1972)
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Defects to Failures

 Code with defects will introduce erroneous state or 
control

▪ Correct code may 
propagate this state

▪ Eventually an erroneous 
state is observed

 Some executions will not
trigger the defect

▪ Others will not propagate
erroneous state

 Debugging sifts through
the code to find the defect

Error in 
state

valid 
state
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Explicit Debugging

 Stating the problem
▪ Describe the problem aloud or in writing

▪ A.k.a. “Rubber duck” or “teddy bear” method

▪ Often a comprehensive problem description is sufficient to solve 
the failure

Mental model     !=       actual code

Sometimes it’s just a matter of getting a fresh perspective.
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Scientific Debugging

Hypothesis

Problem 
Description

Code
Failing 
Runs

Other 
Runs

 Before debugging
▪ Describe the problem!

▪ Propose a possible defect; why it explains the failure condition

▪ No idea? What experiments would give you useful info?

 Occam’s Razor – given several hypotheses, pick the 
simplest / closest to current work
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Scientific Debugging

Prediction

Experiment

Observation 
& Conclusion

Hypothesis

▪ Make predictions based on your hypothesis
▪ What do you expect to happen under new conditions

▪ What data could confirm or refute your hypothesis

▪ How can I collect that data?
▪ What experiments?

▪ What collection mechanism?

▪ Does the data refute the hypothesis?

▪ Refine the hypothesis based on the new inputs
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Scientific Debugging

Diagnosis Fix Confirm

 A set of experiments has confirmed the hypothesis
▪ This is the diagnosis of the defect

 Develop a fix for the defect

 Run experiments to confirm the fix

▪ Otherwise, how do you know that it is fixed?

▪ In the real world, you often add a test here
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Code with a Bug

int fib(int n)

{

    int f, f0 = 1, f1 = 1;

    while (n > 1) {

        n = n - 1;

        f = f0 + f1;

        f0 = f1;

        f1 = f;

    }

    return f;

}

int main(..) {

..

  for (i = 9; i > 0; i--)

    printf(“fib(%d)=%d\n”,

      i, fib(i));

$ gcc -o fib fib.c 

fib(9)=55 

fib(8)=34 

... 

fib(2)=2 

fib(1)=134513905

A defect has caused a failure.

How do we know it’s a failure?
It violates the spec.
First, know what SHOULD happen.
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Constructing a Hypothesis

 Specification defined the first Fibonacci number as 1
▪ We have observed working runs (e.g., fib(2))

▪ We have observed a failing run

▪ We then read the code

 fib(1) failed  // Hypothesis

Code Hypothesis

for (i = 9; …) Result depends on order of calls

while (n > 1) { Loop check is incorrect

int f; F is uninitialized
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Brute Force Approach

 First, compilation flags 
▪ MUST include “-Wall”

▪ Should include “-Werror”

Prompt> gcc -Wall -Werror -O3 -o badfib badfib.c

badfib.c: In function ‘fib’:

badfib.c:12:5: error: ‘f’ may be used uninitialized in this function [

     return f;

     ^

cc1: all warnings being treated as errors



Carnegie Mellon

21

Brute Force Approach

 First, compilation flags: “-Wall –Werror”

▪ MUST include “-Wall”

▪ Should include “-Werror”

 Second, other optimization levels
▪ Try at least –O3 and –O0

prompt>gcc  -O3 -o badfib badfib.c

prompt>./badfib

...

fib(2)=2

fib(1)=0

fib(0)=0

prompt>gcc  -O2 -o badfib badfib.c

prompt>./badfib 

...

fib(2)=2

fib(1)=0

fib(0)=0

prompt>gcc  -O1 -o badfib badfib.c

prompt>./badfib

...

fib(2)=2

fib(1)=9

fib(0)=9

prompt>gcc  -O0 -o badfib badfib.c

prompt>./badfib 

...

fib(2)=2

fib(1)=2

fib(0)=2
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Brute Force Approach

 First, compilation flags: “-Wall –Werror”

▪ MUST include “-Wall”

▪ Should include “-Werror”

 Second, other optimization levels
▪ Try at least –O3 and –O0

 Valgrind (even if your program appears to be working!)

▪ Run on both –O3 and –O0

▪ Only run after all warnings are gone!
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prompt> gcc -g  -O3 -o badfib badfib.c

prompt> valgrind badfib

==1462== Memcheck, a memory error detector

==1462== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.

==1462== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info

==1462== Command: badfib

==1462== 

fib(9)=55

fib(8)=34

fib(7)=21

fib(6)=13

fib(5)=8

fib(4)=5

fib(3)=3

fib(2)=2

fib(1)=0

fib(0)=0

==1462== 

Valgrind is not perfect.  On –O3 it finds no errors!
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prompt> gcc -g  -O0 -o badfib badfib.c

prompt> valgrind badfib

==1561== Memcheck, a memory error detector

==1561== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.

==1561== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info

==1561== Command: badfib

==1561== 

fib(9)=55

fib(8)=34

fib(7)=21

fib(6)=13

fib(5)=8

fib(4)=5

fib(3)=3

fib(2)=2

==1561== Conditional jump or move depends on uninitialised 

==1561==    at 0x4E988DA: vfprintf (vfprintf.c:1642)

==1561==    by 0x4EA0F25: printf (printf.c:33)

Valgrind is not perfect, but pretty darn good.
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Constructing a Hypothesis

 Specification defined the first Fibonacci number as 1
▪ We have observed working runs (e.g., fib(2))

▪ We have observed a failing run

▪ We then read the code

 fib(1) failed  // Hypothesis

Code Hypothesis

for (i = 9; …) Result depends on order of calls

while (n > 1) { Loop check is incorrect

int f; F is uninitialized
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Prediction

 Propose a new condition or conditions
▪ What will logically happen if your hypothesis is correct?

▪ What data can be 

 fib(1) failed  // Hypothesis
▪ // Result depends on order of calls

▪ If fib(1) is called first, it will return correctly.

▪ // Loop check is incorrect

▪ Change to n >= 1 and run again.

▪ // f is uninitialized

▪ Change to int f = 1;
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Experiment

 Identical to the conditions of a prior run
▪ Except with one condition changed

 Conditions

▪ Program input, using a debugger, altering the code

 fib(1) failed  // Hypothesis

▪ If fib(1) is called first, it will return correctly.

▪ Fails.

▪ Change to n >= 1

▪ fib(1)=2

▪ fib(0)=...

▪ Change to int f = 1;

▪ Works.  Sometimes a prediction can be a fix.
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Observation
 What is the observed result?

▪ Factual observation, such as “Calling fib(1) will return 1.”

▪ The conclusion will interpret the observation(s)

 Don’t interfere – or back out interference.
▪ printf() can interfere for some kinds of bugs!

▪ Like quantum physics, sometimes observations are part of the 
experiment

 Proceed systematically.
▪ Update the conditions incrementally so each observation relates to 

a specific change

 Do NOT ever proceed past first bug.
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Debugging Tools

 Observing program state can require a variety of tools
▪ Debugger (e.g., gdb)

▪ What state is in local / global variables (if known)

▪ What path through the program was taken

▪ Valgrind

▪ Does execution depend on uninitialized variables

▪ Are memory accesses ever out-of-bounds
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Diagnosis

 A scientific hypothesis that explains current observations 
and makes future predictions becomes a theory

▪ We’ll call this a diagnosis

 Use the diagnosis to develop a fix for the defect

▪ Avoid post hoc, ergo propter hoc fallacy

▪ Or correlation does not imply causation

 Understand why the defect and fix relate
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Fix and Confirm

 Confirm that the fix resolves the failure

 If you fix multiple perceived defects, which fix was for the 
failure?
▪ Be systematic
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Learn

 Common failures and insights
▪ Why did the code fail?

▪ What are my common defects?

 Assertions and invariants
▪ Add checks for expected behavior

▪ N.b., Assertions must not have side effects

▪ Extend checks to detect the fixed failure

 Testing

▪ Every successful set of conditions is added to the test suite
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Quick and Dirty

 Not every problem needs scientific debugging
▪ Set a time limit: (for example)

▪ 0 minutes – -Wall, valgrind

▪ 1 – 10 minutes – Informal Debugging

▪ 10 – 60 minutes – Scientific Debugging

▪ > 60 minutes – Take a break / Ask for help
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Code Smells

 Use of uninitialized variables

 Unused values

 Unreachable code

 Memory leaks

 Interface misuse

 Null pointers
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Outline

 Debugging
▪ Defects and Failures

▪ Scientific Debugging

▪ Tools

 Design

▪ Managing complexity

▪ Communication

▪ Naming

▪ Comments
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Design

 A good design needs to achieve many things:
▪ Performance

▪ Availability

▪ Modifiability, portability

▪ Scalability

▪ Security

▪ Testability

▪ Usability

▪ Cost to build, cost to operate
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Design

 A good design needs to achieve many things:
▪ Performance

▪ Availability

▪ Modifiability, portability

▪ Scalability

▪ Security

▪ Testability

▪ Usability

▪ Cost to build, cost to operate

But above all else: it must be readable
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Good Design

 Complexity Management 

  & 

 Communication
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There are well known limits to how much complexity a human 
can manage easily.
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But patterns can be very helpful…
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Complexity Management

Many techniques have been developed to help manage 
complexity:

 Separation of concerns

 Modularity

 Reusability

 Extensibility

 DRY

 Abstraction

 Information Hiding

 ...
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Managing Complexity

 Design code to be testable

 Try to reuse testable chunks
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Complexity Example

 Split a cache access into three+ testable components
▪ State all of the steps that a cache access requires

 Convert address into tag, set index, block offset

 Look up the set using the set index

 Check if the tag matches any line in the set

 If so, hit

 If not a match, miss, then

  Find the LRU block

  Evict the LRU block

  Read in the new line from memory

 Update LRU

 Update dirty if the access was a store

▪ Which steps depend on the operation being a load or a store?
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Complexity Example

 Split a datalab problem into testable components:
▪ State all of the steps:  (I use comments)

 Generate the mask 0b101010…10

 Generate the mask 0b010101…01

 Coalesce …

 Generate the mask 0b11001100… and its complement

 Coalesce…

 Do final logic

 Mask generation, e.g., is a simple place to test, has known 
output, etc.
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Designs need to be testable

 Testable design
▪ Testing versus Contracts

▪ These are complementary techniques

 Testing and Contracts are 

▪ Acts of design more than verification

▪ Acts of documentation
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Designs need to be testable

 Testable design
▪ Testing versus Contracts

▪ These are complementary techniques

 Testing and Contracts are 

▪ Acts of design more than verification

▪ Acts of documentation: executable documentation!
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Testing Example – cachelab preview

 In cachelab, we give you our tests, but they’re a little 
more complicated.

 For your cache simulator, you can write your own traces
▪ Write a trace to test for a cache hit

 L 50, 1
 L 50, 1

▪ Write a trace to test dirty bytes in cache

 S 100, 1

 Adding tiny tests as you go makes it much easier to verify 
things are working.

 Before that – test your parsing by outputting our logging 
format.
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Testable design is modular

 Modular code has: separation of concerns, encapsulation, 
abstraction

▪ Leads to: reusability, extensibility, readability, testability

 Separation of concerns

▪ Create helper functions so each function does “one thing”

▪ Functions should neither do too much nor too little

▪ Avoid duplicated code

 Encapsulation, abstraction, and respecting the interface
▪ Each module is responsible for its own internals

▪ No outside code “intrudes” on the inner workings of another module
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Trust the Compiler!

 Use plenty of temporary variables

 Use plenty of functions

 Let compiler do the math
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Communication

When writing code, the author is communicating with: 

 The machine

 Other developers of the system

 Code reviewers

 Their future self



Carnegie Mellon

52

Communication

There are many techniques that have been developed 
around code communication:

 Tests

 Naming

 Comments

 Commit Messages

 Code Review

 Design Patterns

 ...
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Naming
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Avoid deliberately meaningless names:
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Naming is understanding

“If you don’t know what a thing should be 
called, you cannot know what it is. 

If you don’t know what it is, you cannot sit 
down and write the code.” - Sam Gardiner
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Better naming practices

1. Start with meaning and intention

2. Use words with precise meanings (avoid “data”, “info”, 
“perform”)

3. Prefer fewer words in names

4. Avoid abbreviations in names

5. Use code review to improve names

6. Be consistent about your naming scheme

7. Read the code out loud to check that it sounds okay

8. Actually rename things
1. Modern editors make this easier
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Naming guidelines – Use dictionary words

 Only use dictionary words and abbreviations that appear 
in a dictionary.

▪ For example: FileCpy -> FileCopy

▪ Avoid vague abbreviations such as acc, mod, auth, etc..
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Avoid using single-letter names

 Single letters are unsearchable
▪ Give no hints as to the variable’s usage

 Exceptions are loop counters
▪ Especially if you know why i, j, etc. were originally used

▪ C/unix systems have a few other common conventions, such as ‘fd’ 
for “file descriptor” and “str” for a string argument to a function. 
Following existing style is fine & good.
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Limit name character length

“Good naming limits individual name length, and reduces 
the need for specialized vocabulary” – Philip Relf
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Limit name word count

 Keep names to a four word maximum

 Limit names to the number of words that people can read 
at a glance.

 Which of each pair do you prefer?
a1) arraysOfSetsOfLinesOfBlocks

a2) cache

b1) evictedData

b2) evictedDataBytes
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Describe Meaning

 Use descriptive names.

 Avoid names with no meaning: a, foo, blah, tmp, etc

 There are reasonable exceptions:
void swap(int* a, int* b) {

  int tmp = *a;

  *a = *b;

  *b = tmp;

}
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Use a large vocabulary

 Be more specific when possible:
▪ Person -> Employee

 What is size in this binaryTree?

struct binaryTree {

  int size;

  …

};
height

numChildren

subTreeNumNodes

keyLength
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Use problem domain terms

 Use the correct term in the problem domain’s language.
▪ Hint: as a student, consider the terms in the assignment

 In cachelab, consider the following:

line 

element
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Use opposites precisely

 Consistently use opposites in standard pairs
▪ first/end -> first/last
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Comments
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Don’t Comments

▪ Don’t say what the code does 
▪ because the code already says that

▪ Don’t explain awkward logic
▪ improve the code to make it clear

▪ Don’t add too many comments 
▪ it’s messy, and they get out of date



Carnegie Mellon

67

Awkward Code

 Imagine someone (TA, employer, etc) has to read your 
code

▪ Would you rather rewrite or comment the following?

▪ How about?

▪ Both lines update program state in the same way.

(*(void **)((*(void **)(bp)) + DSIZE)) = (*(void **)(bp + DSIZE));

bp->prev->next = bp->next;
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Do Comments

 Answer the question: why the code exists

 When should I use this code?

 When shouldn’t I use it?

 What are the alternatives to this code?
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Why does this exist?

 Explain why a magic number is what it is.

 When should this code be used?  Is there an alternative?

// Each address is 64-bit, which is 16 + 1 hex characters

const int MAX_ADDRESS_LENGTH = 17;

unsigned power2(unsigned base, unsigned expo){

    unsigned i;

    unsigned result = 1;

    for(i=0;i<expo;i++){

        result+=result;

    }

    return result;

}
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How to write good comments

1. Code by commenting!
Write short comment

1. Helps you think about design & overcome blank-page problem

2. Single line comments

3. Example: Write four one-line comments for quick sort

// Initialize locals

// Pick a pivot value

// Reorder array around the pivot

// Recurse
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How to write good comments

1. Write short comments of what the code will do.
1. Single line comments

2. Example: Write four one-line comments for quick sort

2. Write that code.

3. Revise comments / code
1. If the code or comments are awkward or complex

2. Join / Split comments as needed

4. Maintain code and revised comments
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Commit Messages

 Committing code to a source repository is a vital part of 
development

▪ Protects against system failures and typos:

▪ cat foo.c versus cat > foo.c

▪ The commit messages are your record of your work

▪ Communicating to your future self

▪ Describe in one line what you did

“Parses command line arguments”

“fix bug in unique tests, race condition not solved”

“seg list finished, performance is …”

 Use branches
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Summary

 Programs have defects
▪ Be systematic about finding them

 Programs are more complex than humans can manage
▪ Write code to be manageable

 Programming is not solitary, even if you are 
communicating with a grader or a future self
▪ Be understandable in your communication
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