
Carnegie Mellon

1

Design and Debugging

15-213/14-513/15-513: Introduction to Computer Systems
8th Lecture

Carnegie Mellon

2

Carnegie Mellon

3

While in undergrad, I avoided “humanities” classes like the

plague in order to focus on my primary workloads, something I

consider to be one of the greatest missed opportunities of my life

now

My education at CMU was extremely enabling, but […] it took a

moment of personal hardship for me to even identify and then

focus on my values.

Carnegie Mellon

4

Carnegie Mellon

5

Carnegie Mellon

6

After this lecture, you will be able to

✓ Describe the steps to debug complex code failures

✓ Identify ways to manage the complexity when
programming

✓ State guidelines for communicating the intention of the
code

Carnegie Mellon

7

Outline

 Debugging
▪ Defects and Failures

▪ Scientific Debugging

▪ Tools

 Design

▪ Managing complexity

▪ Communication

▪ Naming

▪ Comments

Carnegie Mellon

8

Complex Systems, Complex Failures

Atlas-Centaur

Carnegie Mellon

9

 Atlas-Centaur second stage failed after entering an
uncontrolled spin

▪ Investigation - turbopumps relied on gas expansion and clogged
from plastic remnants of scouring pads

▪ Proposed Solution - Bake off plastic

 Next launch – second stage failed after entering an …
▪ Further investigation – a valve had been leaking for years (a defect)

▪ Increased need for engine efficiency pushed this leak into
failure range

▪ Was likely the actual cause of the previous launch

https://www.thespacereview.com/article/1321/1
https://llis.nasa.gov/lesson/467

https://www.thespacereview.com/article/1321/1

Carnegie Mellon

10

Defects, Errors, & Failures

1. The programmer creates a defect (or a fault)

2. The defect (maybe) causes an error

 wrong results in data values or control signals

3. The error propagates

4. The error causes a failure

 a component or system does not produce the
intended result at an interface

Why does a defect not necessarily cause an error?

Why is an error not necessarily a failure?

Carnegie Mellon

11

Curse of Debugging

 Not every defect causes a failure!
▪ A defect can be latent or active

▪ A defect in code that doesn’t get executed most of the time…

 Testing can only show the presence of [defects] – not
their absence. (Dijkstra 1972)

Carnegie Mellon

12

Defects to Failures

 Code with defects will introduce erroneous state or
control

▪ Correct code may
propagate this state

▪ Eventually an erroneous
state is observed

 Some executions will not
trigger the defect

▪ Others will not propagate
erroneous state

 Debugging sifts through
the code to find the defect

Error in
state

valid
state

Carnegie Mellon

13

Carnegie Mellon

14

Explicit Debugging

 Stating the problem
▪ Describe the problem aloud or in writing

▪ A.k.a. “Rubber duck” or “teddy bear” method

▪ Often a comprehensive problem description is sufficient to solve
the failure

Mental model != actual code

Sometimes it’s just a matter of getting a fresh perspective.

Carnegie Mellon

15

Scientific Debugging

Hypothesis

Problem
Description

Code
Failing
Runs

Other
Runs

 Before debugging
▪ Describe the problem!

▪ Propose a possible defect; why it explains the failure condition

▪ No idea? What experiments would give you useful info?

 Occam’s Razor – given several hypotheses, pick the
simplest / closest to current work

Carnegie Mellon

16

Scientific Debugging

Prediction

Experiment

Observation
& Conclusion

Hypothesis

▪ Make predictions based on your hypothesis
▪ What do you expect to happen under new conditions

▪ What data could confirm or refute your hypothesis

▪ How can I collect that data?
▪ What experiments?

▪ What collection mechanism?

▪ Does the data refute the hypothesis?

▪ Refine the hypothesis based on the new inputs

Carnegie Mellon

17

Scientific Debugging

Diagnosis Fix Confirm

 A set of experiments has confirmed the hypothesis
▪ This is the diagnosis of the defect

 Develop a fix for the defect

 Run experiments to confirm the fix

▪ Otherwise, how do you know that it is fixed?

▪ In the real world, you often add a test here

Carnegie Mellon

18

Code with a Bug

int fib(int n)

{

 int f, f0 = 1, f1 = 1;

 while (n > 1) {

 n = n - 1;

 f = f0 + f1;

 f0 = f1;

 f1 = f;

 }

 return f;

}

int main(..) {

..

 for (i = 9; i > 0; i--)

 printf(“fib(%d)=%d\n”,

 i, fib(i));

$ gcc -o fib fib.c

fib(9)=55

fib(8)=34

...

fib(2)=2

fib(1)=134513905

A defect has caused a failure.

How do we know it’s a failure?
It violates the spec.
First, know what SHOULD happen.

Carnegie Mellon

19

Constructing a Hypothesis

 Specification defined the first Fibonacci number as 1
▪ We have observed working runs (e.g., fib(2))

▪ We have observed a failing run

▪ We then read the code

 fib(1) failed // Hypothesis

Code Hypothesis

for (i = 9; …) Result depends on order of calls

while (n > 1) { Loop check is incorrect

int f; F is uninitialized

Carnegie Mellon

20

Brute Force Approach

 First, compilation flags
▪ MUST include “-Wall”

▪ Should include “-Werror”

Prompt> gcc -Wall -Werror -O3 -o badfib badfib.c

badfib.c: In function ‘fib’:

badfib.c:12:5: error: ‘f’ may be used uninitialized in this function [

 return f;

 ^

cc1: all warnings being treated as errors

Carnegie Mellon

21

Brute Force Approach

 First, compilation flags: “-Wall –Werror”

▪ MUST include “-Wall”

▪ Should include “-Werror”

 Second, other optimization levels
▪ Try at least –O3 and –O0

prompt>gcc -O3 -o badfib badfib.c

prompt>./badfib

...

fib(2)=2

fib(1)=0

fib(0)=0

prompt>gcc -O2 -o badfib badfib.c

prompt>./badfib

...

fib(2)=2

fib(1)=0

fib(0)=0

prompt>gcc -O1 -o badfib badfib.c

prompt>./badfib

...

fib(2)=2

fib(1)=9

fib(0)=9

prompt>gcc -O0 -o badfib badfib.c

prompt>./badfib

...

fib(2)=2

fib(1)=2

fib(0)=2

Carnegie Mellon

22

Brute Force Approach

 First, compilation flags: “-Wall –Werror”

▪ MUST include “-Wall”

▪ Should include “-Werror”

 Second, other optimization levels
▪ Try at least –O3 and –O0

 Valgrind (even if your program appears to be working!)

▪ Run on both –O3 and –O0

▪ Only run after all warnings are gone!

Carnegie Mellon

23

prompt> gcc -g -O3 -o badfib badfib.c

prompt> valgrind badfib

==1462== Memcheck, a memory error detector

==1462== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.

==1462== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info

==1462== Command: badfib

==1462==

fib(9)=55

fib(8)=34

fib(7)=21

fib(6)=13

fib(5)=8

fib(4)=5

fib(3)=3

fib(2)=2

fib(1)=0

fib(0)=0

==1462==

Valgrind is not perfect. On –O3 it finds no errors!

Carnegie Mellon

24

prompt> gcc -g -O0 -o badfib badfib.c

prompt> valgrind badfib

==1561== Memcheck, a memory error detector

==1561== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.

==1561== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info

==1561== Command: badfib

==1561==

fib(9)=55

fib(8)=34

fib(7)=21

fib(6)=13

fib(5)=8

fib(4)=5

fib(3)=3

fib(2)=2

==1561== Conditional jump or move depends on uninitialised

==1561== at 0x4E988DA: vfprintf (vfprintf.c:1642)

==1561== by 0x4EA0F25: printf (printf.c:33)

Valgrind is not perfect, but pretty darn good.

Carnegie Mellon

25

Constructing a Hypothesis

 Specification defined the first Fibonacci number as 1
▪ We have observed working runs (e.g., fib(2))

▪ We have observed a failing run

▪ We then read the code

 fib(1) failed // Hypothesis

Code Hypothesis

for (i = 9; …) Result depends on order of calls

while (n > 1) { Loop check is incorrect

int f; F is uninitialized

Carnegie Mellon

26

Prediction

 Propose a new condition or conditions
▪ What will logically happen if your hypothesis is correct?

▪ What data can be

 fib(1) failed // Hypothesis
▪ // Result depends on order of calls

▪ If fib(1) is called first, it will return correctly.

▪ // Loop check is incorrect

▪ Change to n >= 1 and run again.

▪ // f is uninitialized

▪ Change to int f = 1;

Carnegie Mellon

27

Experiment

 Identical to the conditions of a prior run
▪ Except with one condition changed

 Conditions

▪ Program input, using a debugger, altering the code

 fib(1) failed // Hypothesis

▪ If fib(1) is called first, it will return correctly.

▪ Fails.

▪ Change to n >= 1

▪ fib(1)=2

▪ fib(0)=...

▪ Change to int f = 1;

▪ Works. Sometimes a prediction can be a fix.

Carnegie Mellon

28

Observation
 What is the observed result?

▪ Factual observation, such as “Calling fib(1) will return 1.”

▪ The conclusion will interpret the observation(s)

 Don’t interfere – or back out interference.
▪ printf() can interfere for some kinds of bugs!

▪ Like quantum physics, sometimes observations are part of the
experiment

 Proceed systematically.
▪ Update the conditions incrementally so each observation relates to

a specific change

 Do NOT ever proceed past first bug.

Carnegie Mellon

29

Debugging Tools

 Observing program state can require a variety of tools
▪ Debugger (e.g., gdb)

▪ What state is in local / global variables (if known)

▪ What path through the program was taken

▪ Valgrind

▪ Does execution depend on uninitialized variables

▪ Are memory accesses ever out-of-bounds

Carnegie Mellon

30

Diagnosis

 A scientific hypothesis that explains current observations
and makes future predictions becomes a theory

▪ We’ll call this a diagnosis

 Use the diagnosis to develop a fix for the defect

▪ Avoid post hoc, ergo propter hoc fallacy

▪ Or correlation does not imply causation

 Understand why the defect and fix relate

Carnegie Mellon

31

Fix and Confirm

 Confirm that the fix resolves the failure

 If you fix multiple perceived defects, which fix was for the
failure?
▪ Be systematic

Carnegie Mellon

32

Learn

 Common failures and insights
▪ Why did the code fail?

▪ What are my common defects?

 Assertions and invariants
▪ Add checks for expected behavior

▪ N.b., Assertions must not have side effects

▪ Extend checks to detect the fixed failure

 Testing

▪ Every successful set of conditions is added to the test suite

Carnegie Mellon

33

Quick and Dirty

 Not every problem needs scientific debugging
▪ Set a time limit: (for example)

▪ 0 minutes – -Wall, valgrind

▪ 1 – 10 minutes – Informal Debugging

▪ 10 – 60 minutes – Scientific Debugging

▪ > 60 minutes – Take a break / Ask for help

Carnegie Mellon

34

Code Smells

 Use of uninitialized variables

 Unused values

 Unreachable code

 Memory leaks

 Interface misuse

 Null pointers

Carnegie Mellon

36

Outline

 Debugging
▪ Defects and Failures

▪ Scientific Debugging

▪ Tools

 Design

▪ Managing complexity

▪ Communication

▪ Naming

▪ Comments

Carnegie Mellon

37

Design

 A good design needs to achieve many things:
▪ Performance

▪ Availability

▪ Modifiability, portability

▪ Scalability

▪ Security

▪ Testability

▪ Usability

▪ Cost to build, cost to operate

Carnegie Mellon

38

Design

 A good design needs to achieve many things:
▪ Performance

▪ Availability

▪ Modifiability, portability

▪ Scalability

▪ Security

▪ Testability

▪ Usability

▪ Cost to build, cost to operate

But above all else: it must be readable

Carnegie Mellon

39

Good Design

 Complexity Management

 &

 Communication

Carnegie Mellon

40

There are well known limits to how much complexity a human
can manage easily.

Carnegie Mellon

41

But patterns can be very helpful…

Carnegie Mellon

42

Complexity Management

Many techniques have been developed to help manage
complexity:

 Separation of concerns

 Modularity

 Reusability

 Extensibility

 DRY

 Abstraction

 Information Hiding

 ...

Carnegie Mellon

43

Managing Complexity

 Design code to be testable

 Try to reuse testable chunks

Carnegie Mellon

44

Complexity Example

 Split a cache access into three+ testable components
▪ State all of the steps that a cache access requires

 Convert address into tag, set index, block offset

 Look up the set using the set index

 Check if the tag matches any line in the set

 If so, hit

 If not a match, miss, then

 Find the LRU block

 Evict the LRU block

 Read in the new line from memory

 Update LRU

 Update dirty if the access was a store

▪ Which steps depend on the operation being a load or a store?

Carnegie Mellon

45

Complexity Example

 Split a datalab problem into testable components:
▪ State all of the steps: (I use comments)

 Generate the mask 0b101010…10

 Generate the mask 0b010101…01

 Coalesce …

 Generate the mask 0b11001100… and its complement

 Coalesce…

 Do final logic

 Mask generation, e.g., is a simple place to test, has known
output, etc.

Carnegie Mellon

46

Designs need to be testable

 Testable design
▪ Testing versus Contracts

▪ These are complementary techniques

 Testing and Contracts are

▪ Acts of design more than verification

▪ Acts of documentation

Carnegie Mellon

47

Designs need to be testable

 Testable design
▪ Testing versus Contracts

▪ These are complementary techniques

 Testing and Contracts are

▪ Acts of design more than verification

▪ Acts of documentation: executable documentation!

Carnegie Mellon

48

Testing Example – cachelab preview

 In cachelab, we give you our tests, but they’re a little
more complicated.

 For your cache simulator, you can write your own traces
▪ Write a trace to test for a cache hit

 L 50, 1
 L 50, 1

▪ Write a trace to test dirty bytes in cache

 S 100, 1

 Adding tiny tests as you go makes it much easier to verify
things are working.

 Before that – test your parsing by outputting our logging
format.

Carnegie Mellon

49

Testable design is modular

 Modular code has: separation of concerns, encapsulation,
abstraction

▪ Leads to: reusability, extensibility, readability, testability

 Separation of concerns

▪ Create helper functions so each function does “one thing”

▪ Functions should neither do too much nor too little

▪ Avoid duplicated code

 Encapsulation, abstraction, and respecting the interface
▪ Each module is responsible for its own internals

▪ No outside code “intrudes” on the inner workings of another module

Carnegie Mellon

50

Trust the Compiler!

 Use plenty of temporary variables

 Use plenty of functions

 Let compiler do the math

Carnegie Mellon

51

Communication

When writing code, the author is communicating with:

 The machine

 Other developers of the system

 Code reviewers

 Their future self

Carnegie Mellon

52

Communication

There are many techniques that have been developed
around code communication:

 Tests

 Naming

 Comments

 Commit Messages

 Code Review

 Design Patterns

 ...

Carnegie Mellon

53

Naming

Carnegie Mellon

54

Avoid deliberately meaningless names:

Carnegie Mellon

55

Naming is understanding

“If you don’t know what a thing should be
called, you cannot know what it is.

If you don’t know what it is, you cannot sit
down and write the code.” - Sam Gardiner

Carnegie Mellon

56

Better naming practices

1. Start with meaning and intention

2. Use words with precise meanings (avoid “data”, “info”,
“perform”)

3. Prefer fewer words in names

4. Avoid abbreviations in names

5. Use code review to improve names

6. Be consistent about your naming scheme

7. Read the code out loud to check that it sounds okay

8. Actually rename things
1. Modern editors make this easier

Carnegie Mellon

57

Naming guidelines – Use dictionary words

 Only use dictionary words and abbreviations that appear
in a dictionary.

▪ For example: FileCpy -> FileCopy

▪ Avoid vague abbreviations such as acc, mod, auth, etc..

Carnegie Mellon

58

Avoid using single-letter names

 Single letters are unsearchable
▪ Give no hints as to the variable’s usage

 Exceptions are loop counters
▪ Especially if you know why i, j, etc. were originally used

▪ C/unix systems have a few other common conventions, such as ‘fd’
for “file descriptor” and “str” for a string argument to a function.
Following existing style is fine & good.

Carnegie Mellon

59

Limit name character length

“Good naming limits individual name length, and reduces
the need for specialized vocabulary” – Philip Relf

Carnegie Mellon

60

Limit name word count

 Keep names to a four word maximum

 Limit names to the number of words that people can read
at a glance.

 Which of each pair do you prefer?
a1) arraysOfSetsOfLinesOfBlocks

a2) cache

b1) evictedData

b2) evictedDataBytes

Carnegie Mellon

61

Describe Meaning

 Use descriptive names.

 Avoid names with no meaning: a, foo, blah, tmp, etc

 There are reasonable exceptions:
void swap(int* a, int* b) {

 int tmp = *a;

 *a = *b;

 *b = tmp;

}

Carnegie Mellon

62

Use a large vocabulary

 Be more specific when possible:
▪ Person -> Employee

 What is size in this binaryTree?

struct binaryTree {

 int size;

 …

};
height

numChildren

subTreeNumNodes

keyLength

Carnegie Mellon

63

Use problem domain terms

 Use the correct term in the problem domain’s language.
▪ Hint: as a student, consider the terms in the assignment

 In cachelab, consider the following:

line

element

Carnegie Mellon

64

Use opposites precisely

 Consistently use opposites in standard pairs
▪ first/end -> first/last

Carnegie Mellon

65

Comments

Carnegie Mellon

66

Don’t Comments

▪ Don’t say what the code does
▪ because the code already says that

▪ Don’t explain awkward logic
▪ improve the code to make it clear

▪ Don’t add too many comments
▪ it’s messy, and they get out of date

Carnegie Mellon

67

Awkward Code

 Imagine someone (TA, employer, etc) has to read your
code

▪ Would you rather rewrite or comment the following?

▪ How about?

▪ Both lines update program state in the same way.

(*(void **)((*(void **)(bp)) + DSIZE)) = (*(void **)(bp + DSIZE));

bp->prev->next = bp->next;

Carnegie Mellon

68

Do Comments

 Answer the question: why the code exists

 When should I use this code?

 When shouldn’t I use it?

 What are the alternatives to this code?

Carnegie Mellon

69

Why does this exist?

 Explain why a magic number is what it is.

 When should this code be used? Is there an alternative?

// Each address is 64-bit, which is 16 + 1 hex characters

const int MAX_ADDRESS_LENGTH = 17;

unsigned power2(unsigned base, unsigned expo){

 unsigned i;

 unsigned result = 1;

 for(i=0;i<expo;i++){

 result+=result;

 }

 return result;

}

Carnegie Mellon

70

How to write good comments

1. Code by commenting!
Write short comment

1. Helps you think about design & overcome blank-page problem

2. Single line comments

3. Example: Write four one-line comments for quick sort

// Initialize locals

// Pick a pivot value

// Reorder array around the pivot

// Recurse

Carnegie Mellon

71

How to write good comments

1. Write short comments of what the code will do.
1. Single line comments

2. Example: Write four one-line comments for quick sort

2. Write that code.

3. Revise comments / code
1. If the code or comments are awkward or complex

2. Join / Split comments as needed

4. Maintain code and revised comments

Carnegie Mellon

73

Commit Messages

 Committing code to a source repository is a vital part of
development

▪ Protects against system failures and typos:

▪ cat foo.c versus cat > foo.c

▪ The commit messages are your record of your work

▪ Communicating to your future self

▪ Describe in one line what you did

“Parses command line arguments”

“fix bug in unique tests, race condition not solved”

“seg list finished, performance is …”

 Use branches

Carnegie Mellon

74

Summary

 Programs have defects
▪ Be systematic about finding them

 Programs are more complex than humans can manage
▪ Write code to be manageable

 Programming is not solitary, even if you are
communicating with a grader or a future self
▪ Be understandable in your communication

Carnegie Mellon

75

Acknowledgements

 Some debugging content derived from:
▪ http://www.whyprogramsfail.com/slides.php

▪ And Saltzer & Kaashoek, “Principles of Computer System Design”

 Some code examples for design are based on:
▪ “The Art of Readable Code”. Boswell and Foucher. 2011.

 Lecture originally written by

▪ Michael Hilton and Brian Railing

http://www.whyprogramsfail.com/slides.php

	Slide 1: Design and Debugging 15-213/14-513/15-513: Introduction to Computer Systems 8th Lecture
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: After this lecture, you will be able to
	Slide 7: Outline
	Slide 8: Complex Systems, Complex Failures
	Slide 9
	Slide 10: Defects, Errors, & Failures
	Slide 11: Curse of Debugging
	Slide 12: Defects to Failures
	Slide 13
	Slide 14: Explicit Debugging
	Slide 15: Scientific Debugging
	Slide 16: Scientific Debugging
	Slide 17: Scientific Debugging
	Slide 18: Code with a Bug
	Slide 19: Constructing a Hypothesis
	Slide 20: Brute Force Approach
	Slide 21: Brute Force Approach
	Slide 22: Brute Force Approach
	Slide 23
	Slide 24
	Slide 25: Constructing a Hypothesis
	Slide 26: Prediction
	Slide 27: Experiment
	Slide 28: Observation
	Slide 29: Debugging Tools
	Slide 30: Diagnosis
	Slide 31: Fix and Confirm
	Slide 32: Learn
	Slide 33: Quick and Dirty
	Slide 34: Code Smells
	Slide 36: Outline
	Slide 37: Design
	Slide 38: Design
	Slide 39: Good Design
	Slide 40
	Slide 41: But patterns can be very helpful…
	Slide 42: Complexity Management
	Slide 43: Managing Complexity
	Slide 44: Complexity Example
	Slide 45: Complexity Example
	Slide 46: Designs need to be testable
	Slide 47: Designs need to be testable
	Slide 48: Testing Example – cachelab preview
	Slide 49: Testable design is modular
	Slide 50: Trust the Compiler!
	Slide 51: Communication
	Slide 52: Communication
	Slide 53
	Slide 54: Avoid deliberately meaningless names:
	Slide 55: Naming is understanding
	Slide 56: Better naming practices
	Slide 57: Naming guidelines – Use dictionary words
	Slide 58: Avoid using single-letter names
	Slide 59: Limit name character length
	Slide 60: Limit name word count
	Slide 61: Describe Meaning
	Slide 62: Use a large vocabulary
	Slide 63: Use problem domain terms
	Slide 64: Use opposites precisely
	Slide 65
	Slide 66: Don’t Comments
	Slide 67: Awkward Code
	Slide 68: Do Comments
	Slide 69: Why does this exist?
	Slide 70: How to write good comments
	Slide 71: How to write good comments
	Slide 73: Commit Messages
	Slide 74: Summary
	Slide 75: Acknowledgements

