Design and Debugging

15-213/14-513/15-513: Introduction to Computer Systems
8t Lecture

Kate

E!
=

hello i'm from the tech industry. today i'm going to explain how to solve
all problems with whatever it is you do! based on my experience of
writing software! which means i'm qualified to solve any problem in any

field. i have checked this with zero people

While in undergrad, | avoided “humanities” classes like the

plague in order to focus on my primary workloads, something |
consider to be one of the greatest missed opportunities of my life
now

My education at CMU was extremely enabling, but [...] it took a

moment of personal hardship for me to even identify and then
focus on my values.

First Destination Outcomes | class of 2024

All | Department: All
College: School of Computer Science | Majors: All

Working Continuing Education Seeking Knowledge Rate

= Filters & Controls

87% 12% 1% 1% 91.7%
937/1,022
Top Industries Top Employers Top Titles
Internet & Software (269) Carnegie Mellon University (29) Software Engineer (237)
Electronic & Computer Hardware (65) Meta (27) Machine Learning Engineer (57)
Higher Education (57) Google (26) Research Scientist (22)
Investment / Portfolio Management (40) Apple (25) Product Designer (20)
Information Technology (34) Amazon (23) Data Scientist (17)
Automotive (23) Microsoft (20) Senior Software Engineer (16)
Financial Services (23) Databricks (19) Research Engineer (14)
Investment Banking (15) Adobe (16) Software Development Engineer (14)
Other Industries (14) TikTok (15) Postdoctoral Researcher (13)
Salary Locations
Reported Median Average
365 $145,000 $148,951 &
Unitede °
@ (6] States
Q °
1 [0 in .
523 335 3 S 3332333 &
6 m < 0 0~ = NI N Moo 2 © 2025 Mapbox © OpenStreetMap ©

After this lecture, you will be able to

V' Describe the steps to debug complex code failures

V' ldentify ways to manage the complexity when
programming

V' State guidelines for communicating the intention of the
code

Outline

m Debugging
= Defects and Failures
= Scientific Debugging
= Tools

m Design
= Managing complexity
= Communication
= Naming
= Comments

Complex Systems, Complex Failures

Atlas-Centaur

m Atlas-Centaur second stage failed after entering an
uncontrolled spin

" |nvestigation - turbopumps relied on gas expansion and clogged
from plastic remnants of scouring pads

= Proposed Solution - Bake off plastic

m Next launch — second stage failed after entering an ...

= Further investigation — a valve had been leaking for years (a defect)

= Increased need for engine efficiency pushed this leak into
failure range

= Was likely the actual cause of the previous launch

https://www.thespacereview.com/article/1321/1

https://llis.nasa.gov/lesson/467

https://www.thespacereview.com/article/1321/1

Defects, Errors, & Failures

1. The programmer creates a defect (or a fault)
2. The defect (maybe) causes an error
wrong results in data values or control signals
3. The error propagates
4. The error causes a failure

a component or system does not produce the
intended result at an interface

Why does a defect not necessarily cause an error?
Why is an error not necessarily a failure?

10

Curse of Debugging

m Not every defect causes a failure!

= A defect can be latent or active
= A defect in code that doesn’t get executed most of the time...

m Testing can only show the presence of [defects] — not
their absence. (Dijkstra 1972)

11

Defects to Failures

m Code with defects will introduce erroneous state or

control

= Correct code may
propagate this state

= Eventually an erroneous
state is observed

m Some executions will not
trigger the defect

= QOthers will not propagate
erroneous state

m Debugging sifts through
the code to find the defect

Program execution

Program
states

Variable and input values

e valid
I ’ I state
@ Erroneous code
| .
L))v(Error in
T T state
]
|
\ 1
X X X
1]
L
2 7

Observer sees failure

12

PRRIS IN THE
THE SPRINGTIME

Explicit Debugging

m Stating the problem

= Describe the problem aloud or in writing
= A.k.a. “Rubber duck” or “teddy bear” method

= Often a comprehensive problem description is sufficient to solve
the failure

Mental model I= actual code

Sometimes it’s just a matter of getting a fresh perspective.

14

Scientific Debugging

m Before debugging
= Describe the problem!
" Propose a possible defect; why it explains the failure condition
= No idea? What experiments would give you useful info?

m Occam’s Razor — given several hypotheses, pick the
simplest / closest to current work

Failing

Code RUNS
Problem Other
Description Runs

Scientific Debugging

= Make predictions based on your hypothesis

= What do you expect to happen under new conditions
= What data could confirm or refute your hypothesis

[Prediction J

= How can | collect that data? /
= What experiments?
= What collection mechanism? [HypcthesisJ

= Does the data refute the hypothesis? \

= Refine the hypothesis based on the new inputs [

Observation
& Conclusion

N\

[Experiment J

/

16

Scientific Debugging

m A set of experiments has confirmed the hypothesis

= This is the diagnosis of the defect
m Develop a fix for the defect

m Run experiments to confirm the fix
= QOtherwise, how do you know that it is fixed?
" |n the real world, you often add a test here

Diagnosis Fix

Confirm

17

Code with a Bug

int fib(int n) $ gcec -o fib fib.c
{ £fib (9)=55
int £, £f0 =1, £f1 = 1; fib (8)=34
while (n > 1) {
£ =20+ f1, £1b(2)=2
£0 = f1: fib(1)=134513905
fl = £;
}
return f£;

}

A defect has caused a failure.
int main(..) {

for .(it:.(gé.ki) (>d‘))'° <i:1<_) How do we know it’s a failure?
prin “fib (%d)=%d\n"”, .
i £ib(i)) : It violates the spec.
First, know what SHOULD happen.

Constructing a Hypothesis

m Specification defined the first Fibonacci number as 1
= We have observed working runs (e.g., fib(2))
= We have observed a failing run
= We then read the code

m fib(1) failed // Hypothesis
Code Hypothesis
for(i=9;..) Result depends on order of calls
while (n > 1) { Loop check is incorrect
intf; F is uninitialized

19

Brute Force Approach

m First, compilation flags
= MUST include “-Wall”
= Should include “~-Werror”

Prompt> gcc -Wall -Werror -03 -o badfib badfib.c

badfib.c: In function ‘fib’:
badfib.c:12:5: error: ‘f’ may be used uninitialized in this funct

return f£;
A

ccl: all warnings being treated as errors

20

Brute Force Approa

m First, compilation flags: “-

= MUST include “-Wall”
= Should include “~-Werror”

m Second, other optimizatiol
" Try atleast —O3 and —O0

prompt>gcc -03
prompt>. /badfib
fib (2)=2
fib(1)=0
£fib(0)=0
prompt>gcc -02
prompt>. /badfib

fib(2)=2
fib(1)=0
£fib(0)=0
prompt>gcc -01
prompt>. /badfib

fib(2)=2
fib(1)=9
£fib(0)=9
prompt>gcc -00
prompt>. /badfib

£ib(2)=2
£ib(1)=2

=0

=0

-0

=0

badfib badfib.

badfib badfib.

badfib badfib.

badfib badfib.

Cc

Cc

C

Cc

Brute Force Approach

m First, compilation flags: “-Wall —-Werror”
= MUST include “-Wall”
= Should include “~-Werror”

m Second, other optimization levels
" Try atleast —O3 and —O0

m Valgrind (even if your program appears to be working!)
= Run on both—-03 and -00

= Only run after all warnings are gone!

22

prompt> gcc -g -03 -o badfib badfib.c

prompt> valgrind badfib

==1462== Memcheck, a memory error detector

==1462== Copyright (C) 2002-2017, and GNU GPL'd, by Julia
==1462== Using Valgrind-3.13.0 and LibVEX; rerun with -h
==1462== Command: badfib

==1462==

fib (9)=55

fib (8) =34

fib(7)=21

fib(6)=13

fib (5)=8

fib(4)=5

£ib Valgrind is not perfect. On —03 it finds no errors!
fib(2)=2

fib(1)=0

fib (0)=0

—_——T1ARD —— 23

prompt> gcc -g -00 -o badfib badfib.c

prompt> valgrind badfib

==1561== Memcheck, a memory error detector

==1561== Copyright (C) 2002-2017, and GNU GPL'd, by Julia
==1561== Using Valgrind-3.13.0 and LibVEX; rerun with -h
==1561== Command: badfib

==1561==

fib (9)=55

fib (8) =34

fib(7)=21

fib(6)=13

fib(5)=8

fib(4)=5

£ib Valgrind is not perfect, but pretty darn good.

fib (2)=2

==1561== Conditional jump or move depends on uninitialise

==1561== at Ox4E988DA: vfprintf (vfprintf.c:1642)
—_—1RAT] —— her NDvARANTOR: ArantFFf (Araintd+FE ~--2A°) 24

Constructing a Hypothesis

m Specification defined the first Fibonacci number as 1
= We have observed working runs (e.g., fib(2))
= We have observed a failing run
= We then read the code

m fib(1) failed // Hypothesis
Code Hypothesis
for(i=9;..) Result depends on order of calls
while (n > 1) { Loop check is incorrect
intf; F is uninitialized

25

Prediction

m Propose a new condition or conditions

= What will logically happen if your hypothesis is correct?
= What data can be

m fib(1) failed // Hypothesis
= // Result depends on order of calls
= |f fib(1) is called first, it will return correctly.
= // Loop check is incorrect
= Change to n >= 1 and run again.
= //fis uninitialized

= Changetointf=1;

26

Experiment

m Ildentical to the conditions of a prior run

= Except with one condition changed
m Conditions

= Program input, using a debugger, altering the code

m fib(1) failed // Hypothesis
= |f fib(1) is called first, it will return correctly.
= Fails.

"= Changeton>=1
= fib(1)=2
= fib(0)=...
" Changetointf=1;

= Works. Sometimes a prediction can be a fix.

27

Observation

What is the observed result?

= Factual observation, such as “Calling fib(1) will return 1.”
" The conclusion will interpret the observation(s)

Don’t interfere — or back out interference.

= printf() can interfere for some kinds of bugs!

= Like quantum physics, sometimes observations are part of the
experiment

Proceed systematically.

= Update the conditions incrementally so each observation relates to
a specific change

Do NOT ever proceed past first bug.

28

Debugging Tools

m Observing program state can require a variety of tools
= Debugger (e.g., gdb)
= What state is in local / global variables (if known)
= What path through the program was taken

= Valgrind
= Does execution depend on uninitialized variables
= Are memory accesses ever out-of-bounds

29

Diagnosis

m A scientific hypothesis that explains current observations
and makes future predictions becomes a theory
= We'll call this a diagnosis

m Use the diagnosis to develop a fix for the defect

= Avoid post hoc, ergo propter hoc fallacy
= Or correlation does not imply causation

m Understand why the defect and fix relate

30

Fix and Confirm

m Confirm that the fix resolves the failure

m If you fix multiple perceived defects, which fix was for the
failure?
= Be systematic

31

Learn

m Common failures and insights
= Why did the code fail?
= What are my common defects?

m Assertions and invariants

= Add checks for expected behavior
= N.b., Assertions must not have side effects
= Extend checks to detect the fixed failure

m Testing

= Every successful set of conditions is added to the test suite

32

Quick and Dirty

m Not every problem needs scientific debugging
= Set a time limit: (for example)
= 0 minutes —-Wall, valgrind
= 1 - 10 minutes — Informal Debugging
= 10— 60 minutes — Scientific Debugging
= > 60 minutes — Take a break / Ask for help

33

Code Smells

Use of uninitialized variables
Unused values

Unreachable code

Memory leaks

Interface misuse

Null pointers

34

Outline

m Debugging
= Defects and Failures
= Scientific Debugging
= Tools

m Design
= Managing complexity
= Communication
= Naming
= Comments

36

Design

m A good design needs to achieve many things:

Performance

Availability

Modifiability, portability
Scalability

Security

Testability

Usability

Cost to build, cost to operate

37

Design

m A good design needs to achieve many things:

Performance

Availability

Modifiability, portability
Scalability

Security

Testability

Usability

Cost to build, cost to operate

But above all else: it must be readable

38

Good Design

Complexity Management

&

Communication

39

There are well known limits to how much complexity a human
can manage easily.

VoL. 63, No. 2 Marca, 1956

THE PSYCHOLOGICAL REVIEW

THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO:
SOME LIMITS ON OUR CAPACITY FOR
PROCESSING INFORMATION *

GEORGE A. MILLER

Harvard University

40

But patterns can be very helpful...

COGNITIVE PSYCHOLOGY 4, 55-81 (1973)

Perception in Chess?

WmriaMm G, CHASE AND HERBERT A. S1MON
Carnegie—Mellon University

This paper develops a technique for isolating and studying the per-
ceptual structures that chess players perceive. Three chess players of varying
strength — from master to novice — were confronted with two tasks: (1)
A perception task, where the player reproduces 2 chess position in plain
view, and (2) de Groot’s (1965) short-term recall task, where the player
reproduces a chess position after viewing it for 5 sec. The successive glances
at the position in the perceptual task and long pauses in the memory task
were used to segment the structures in the reconstruction protocol. The size
and nature of these structures were then analyzed as a function of chess skill.

41

Complexity Management

Many techniques have been developed to help manage
complexity:

Separation of concerns
Modularity

Reusability
Extensibility

DRY

Abstraction
Information Hiding

42

Managing Complexity
m Design code to be testable

m Try to reuse testable chunks

43

Complexity Example

m Split a cache access into three+ testable components

= State all of the steps that a cache access requires

= Which steps depend on the operation being a load or a store?

44

Complexity Example

m Split a datalab problem into testable components:
= State all of the steps: (I use comments)
Generate the mask 0b101010...10
Generate the mask 0b010101...01
Coalesce ...
Generate the mask 0b11001100... and its complement
Coalesce...
Do final logic

Mask generation, e.g., is a simple place to test, has known
output, etc.

45

Designs need to be testable

m Testable design

= Testing versus Contracts
= These are complementary techniques

m Testing and Contracts are

= Acts of design more than verification
= Acts of documentation

46

Designs need to be testable

m Testable design

= Testing versus Contracts
= These are complementary techniques

m Testing and Contracts are

= Acts of design more than verification
= Acts of documentation: executable documentation!

47

Testing Example — cachelab preview

In cachelab, we give you our tests, but they're a little
more complicated.

For your cache simulator, you can write your own traces
= Write a trace to test for a cache hit

L 50,1
L 50,1

= Write atrace to test dirty bytes in cache
S100, 1

Adding tiny tests as you go makes it much easier to verify
things are working.

Before that — test your parsing by outputting our logging
format.

48

Testable design is modular

m Modular code has: separation of concerns, encapsulation,
abstraction

= |eads to: reusability, extensibility, readability, testability

m Separation of concerns

= (Create helper functions so each function does “one thing”
= Functions should neither do too much nor too little
= Avoid duplicated code

m Encapsulation, abstraction, and respecting the interface
= Each module is responsible for its own internals
= No outside code “intrudes” on the inner workings of another module

49

Trust the Compiler!

m Use plenty of temporary variables
m Use plenty of functions
m Let compiler do the math

50

Communication

When writing code, the author is communicating with:

The machine

Other developers of the system
Code reviewers

Their future self

51

Communication

There are many techniques that have been developed
around code communication:

Tests

Naming
Comments
Commit Messages
Code Review
Design Patterns

52

Naming

Avoid deliberately meaningless names:

Pull requests Issues Marketplace Explore

Repositories

Showing 8,937,025 available code results ® rorkR

| Code +

alexef/gobject-introspection

Commits
3 = tests/scanner/foo.h

Issues #ifndef _ FOO_OBIECT_H__
#define _ FOO_OBIECT_H__
Packages
#include <glib-object.h>
Marketplace #include <giofgio.h> /* GAsyncReadyCallback */

#include "utility.h"

80-00060

Topics
. #define FOO_SUCCES5_INT @x1138
Wikis
#define FOO_DEFIME_SHOULD_BE_EXPOSED "should be exposed”
Users
@ C Showing the top three matches Last indexed on Jun 25, 2018
Languages
PHP 26,699,388 alexef/gobject-introspection
tests/scanner/foo.c
JavaScript 8,942 989
#include "foo.h"
#include "girepository.h"
Python 7.892.881
HTML 4228224 /* A hidden type not exposed publicly, similar to GUPNP's XML wrapper
abject */
Ce+ 4,093,394 typedef struct _FooHidden FooHidden;
Ruby 4.021,592
int foo_init_argv (int argc, char **argv)};
Java 289173
@ C Showing the top four matches Last indexed on Jun 25, 2018
Text 2,612,262

ML 2,509,848

Naming is understanding

“If you don’t know what a thing should be
called, you cannot know what it is.

If you don’t know what it is, you cannot sit
down and write the code.” - Sam Gardiner

Better naming practices

Start with meaning and intention

Use words with precise meanings (avoid “data”, “info”,
“perform”)

Prefer fewer words in names

Avoid abbreviations in names

Use code review to improve names

Be consistent about your naming scheme

Read the code out loud to check that it sounds okay

0 N O U kAW

Actually rename things

1. Modern editors make this easier

56

Naming guidelines — Use dictionary words

m Only use dictionary words and abbreviations that appear
in a dictionary.
= For example: FileCpy -> FileCopy
= Avoid vague abbreviations such as acc, mod, auth, etc..

57

Avoid using single-letter names

m Single letters are unsearchable
= Give no hints as to the variable’s usage

m Exceptions are loop counters
= Especially if you know why i, j, etc. were originally used

= C/unix systems have a few other common conventions, such as ‘fd’
for “file descriptor” and “str” for a string argument to a function.

Following existing style is fine & good.

58

Limit name character length

“Good naming limits individual name length, and reduces
the need for specialized vocabulary” — Philip Relf

59

Limit name word count

m Keep names to a four word maximum

m Limit names to the number of words that people can read
at a glance.

m Which of each pair do you prefer?
al) arraysOfSetsOfLinesOfBlocks

a2) cache

bl) evictedData

b2) evictedDataBytes

60

Describe Meaning

m Use descriptive names.

m Avoid names with no meaning: a, foo, blah, tmp, etc

m There are reasonable exceptions:
void swap (int* a, 1int* b) {
int tmp = *a;
*a — *b;
*b = tmp;

61

Use a large vocabulary

m Be more specific when possible:

" Person -> Employee

m What is size in this binaryTree?

struct binaryTree {

int size;
height
numChildren
subTreeNumNodes
keyLength

Y

62

Use problem domain terms

m Use the correct term in the problem domain’s language.

= Hint: as a student, consider the terms in the assignment

m In cachelab, consider the following:

line

element

63

Use opposites precisely

m Consistently use opposites in standard pairs
= first/end -> first/last

64

Comments

Don’t Comments

= Don’t say what the code does

= because the code already says that

= Don’t explain awkward logic
= improve the code to make it clear

= Don’t add too many comments

= jt’s messy, and they get out of date

66

Awkward Code

m Imagine someone (TA, employer, etc) has to read your
code

= Would you rather rewrite or comment the following?

(*(void **) ((*(void **) (bp)) + DSIZE)) = (*(void **) (bp + DSIZE));

= How about?
bp->prev->next = bp->next;

= Both lines update program state in the same way.

67

Do Comments

m Answer the question: why the code exists

m When should | use this code?
m When shouldn’t | use it?
m What are the alternatives to this code?

68

Why does this exist?

m Explain why a magic number is what it is.

// Each address is 64-bit, which is 16 + 1 hex characters
const 1int MAX ADDRESS LENGTH = 17;

m When should this code be used? Is there an alternative?

unsigned power?2 (unsigned base, unsigned expo) {
unsigned 1i;
unsigned result = 1;
for (i=0; i<expo;i++) {
result+=result;

}

return result;

69

How to write good comments

1. Code by commenting!
Write short comment
1. Helps you think about design & overcome blank-page problem
2. Single line comments
3. Example: Write four one-line comments for quick sort

// Initialize locals
// Pick a pivot value
// Reorder array around the pivot

// Recurse

70

How to write good comments

1. Write short comments of what the code will do.

1. Single line comments
2. Example: Write four one-line comments for quick sort

2. Write that code.

3. Revise comments / code

1. If the code or comments are awkward or complex
2. Join / Split comments as needed

4. Maintain code and revised comments

71

Commit Messages

m Committing code to a source repository is a vital part of
development
= Protects against system failures and typos:
= cat foo.c versus cat > foo.c
= The commit messages are your record of your work
= Communicating to your future self
= Describe in one line what you did
“Parses command line arguments”
“fix bug in unique tests, race condition not solved”
“seg list finished, performance is ...”

m Use branches

73

Summary

m Programs have defects

= Be systematic about finding them

m Programs are more complex than humans can manage
= Write code to be manageable

m Programming is not solitary, even if you are
communicating with a grader or a future self

= Be understandable in your communication

74

Acknowledgements

m Some debugging content derived from:
= http://www.whyprogramsfail.com/slides.php

= And Saltzer & Kaashoek, “Principles of Computer System Design”

m Some code examples for design are based on:
= “The Art of Readable Code”. Boswell and Foucher. 2011.

m Lecture originally written by
= Michael Hilton and Brian Railing

75

http://www.whyprogramsfail.com/slides.php

	Slide 1: Design and Debugging 15-213/14-513/15-513: Introduction to Computer Systems 8th Lecture
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: After this lecture, you will be able to
	Slide 7: Outline
	Slide 8: Complex Systems, Complex Failures
	Slide 9
	Slide 10: Defects, Errors, & Failures
	Slide 11: Curse of Debugging
	Slide 12: Defects to Failures
	Slide 13
	Slide 14: Explicit Debugging
	Slide 15: Scientific Debugging
	Slide 16: Scientific Debugging
	Slide 17: Scientific Debugging
	Slide 18: Code with a Bug
	Slide 19: Constructing a Hypothesis
	Slide 20: Brute Force Approach
	Slide 21: Brute Force Approach
	Slide 22: Brute Force Approach
	Slide 23
	Slide 24
	Slide 25: Constructing a Hypothesis
	Slide 26: Prediction
	Slide 27: Experiment
	Slide 28: Observation
	Slide 29: Debugging Tools
	Slide 30: Diagnosis
	Slide 31: Fix and Confirm
	Slide 32: Learn
	Slide 33: Quick and Dirty
	Slide 34: Code Smells
	Slide 36: Outline
	Slide 37: Design
	Slide 38: Design
	Slide 39: Good Design
	Slide 40
	Slide 41: But patterns can be very helpful…
	Slide 42: Complexity Management
	Slide 43: Managing Complexity
	Slide 44: Complexity Example
	Slide 45: Complexity Example
	Slide 46: Designs need to be testable
	Slide 47: Designs need to be testable
	Slide 48: Testing Example – cachelab preview
	Slide 49: Testable design is modular
	Slide 50: Trust the Compiler!
	Slide 51: Communication
	Slide 52: Communication
	Slide 53
	Slide 54: Avoid deliberately meaningless names:
	Slide 55: Naming is understanding
	Slide 56: Better naming practices
	Slide 57: Naming guidelines – Use dictionary words
	Slide 58: Avoid using single-letter names
	Slide 59: Limit name character length
	Slide 60: Limit name word count
	Slide 61: Describe Meaning
	Slide 62: Use a large vocabulary
	Slide 63: Use problem domain terms
	Slide 64: Use opposites precisely
	Slide 65
	Slide 66: Don’t Comments
	Slide 67: Awkward Code
	Slide 68: Do Comments
	Slide 69: Why does this exist?
	Slide 70: How to write good comments
	Slide 71: How to write good comments
	Slide 73: Commit Messages
	Slide 74: Summary
	Slide 75: Acknowledgements

