-

VELCOVE

4
o N i ¢ e e, mecaniuetis- S :
14-513 S - ”

Wy = a

Machine-Level Programming |: Basics

15-213/14-513/15-513: Introduction to Computer Systems
3" Lecture, January 21, 2025

While waiting for class to start:
login to a shark machine, then type

wget http://www.cs.cmu.edu/~213/activities/gdb-and-assembly.pdf
wget http://www.cs.cmu.edu/~213/activities/gdb-and-assembly.tar
tar xf gdb-and-assembly.tar

cd gdb-and-assembly

Announcements

m Lab 0 due today at midnight — no grace days allowed

= |f lab is taking you > 10 hours, consider dropping the course or
preparing to study hard on C over next 3 weeks!

* Handin via autolab (if still on waitlist, submit once off waitlist)
m Lab 1 (datalab) went out Jan 16, is due Tues Jan 28
m Lab 2 (bomb lab) goes out via Autolab on Thurs Jan 23

® Due Thurs Feb 06

m Written Assignment 1 goes out Wed Jan 22 (via canvas)
* Due Wed Jan 29

m Bootcamp 2 (debugging & gdb) to be posted around Sun Jan
26th

= See Ed for details

Today: Machine Programming I:
Basics

m History of Intel processors and architectures CSAPP
3.1

m Assembly Basics: Registers, operands, move CSAPP
3.3-3.4

m Arithmetic & logical operations CSAPP
3.5

m C, assembly, machine code CSAPP 3.2

Who read the textbook before
class?

Poll: What is a word (w) in assembly in x86-647

char

short

int

long

| don't know

O N =

Intel x86 Processors

Dominate laptop/desktop/server market

Evolutionary design
= Backwards compatible up until 8086, introduced in 1978
= Added more features as time goes on

= Now 3 volumes, about 5,000 pages of documentation
x86 is a Complex Instruction Set Computer (CISC)

= Many different instructions with many different formats

= But, only small subset encountered with Linux programs

Compare: Reduced Instruction Set Computer (RISC)
= RISC: *very few* instructions, with *very few* modes for each
" RISC can be quite fast (but Intel still wins on speed!)

" Current RISC renaissance (e.g., ARM, RISCV), especially for low-
power

10

Intel x86 Evolution: Milestones

Name Date Transistors MH-z

= 8086 1978 29K 5-10

" First 16-bit Intel processor. Basis for IBM PC & DOS
= 1MB address space

= 386 1985 275K 16-33

= First 32 bit Intel processor , referred to as 1A32
= Added “flat addressing”, capable of running Unix

m Pentium 4E 2004 125M 2800-3800
= First 64-bit Intel x86 processor, referred to as x86-64

m Core 2 2006 291 M 1060-3333
" First multi-core Intel processor

m Core i7 2008 7131M 1600-4400

" Four cores (our shark machines)
1

Today: Machine Programming I:
Basics

History of Intel processors and architectures

O
m Assembly Basics: Registers, operands, move
m Arithmetic & logical operations

O

C, assembly, machine code

Levels of Abstraction

#include <stdio.h>

int main () {
int i, n = 10, t1 = 0, t2 = 1, nxt;

C programmer for (i = 1; i <= n; ++i){
printf("s%d, ", tl1);
nxt = t1 + t2;
tl t2;

t2 nxt; }
return 0; }

Assembly programmer

CPU Memory
Addresses
Register >
egisters . Code
PC < > Data
Condition Instructions Stack
Codes <

Computer Designer
: ‘ Gates, clocks, circuit layout, ...

—D Q—

s > 0,

Definitions

m Architecture: (also ISA: instruction set architecture)
The parts of a processor design that one needs to
understand for writing assembly/machine code.

= Examples: instruction set specification, registers

m Microarchitecture: Implementation of the
architecture

= Examples: cache sizes and core frequency

m Code Forms:

= Machine Code: The byte-level programs that a processor
executes

= Assembly Code: A text representation of machine code
m Example ISAs:

" Intel: x86, IA32, Itanium, x86-64
= ARM: Used in almost all mobile phones

m DIC/rr \/. Na.. i nii mmiiiama IC A 18

Assembly /Machine Code View

CPU Memory
Addresses
Registers >
& Data Code
PC < > Data
Condition Instructions Stack
Codes <

Programmer-Visible State

= PC: Program counter " Memory

. . » Byte addressable arra
= Address of next instruction y y

= Called “RIP" (x86-64)
" Register file

= Code and user data
= Stack to support procedures

= Heavily used program data
= Condition codes

= Store status information about most
recent arithmetic or logical operation

= Used for conditional branching

Assembly: Data Types

m “Integer’ data of 1, 2, 4, or 8 bytes

= Data values
" Addresses (untyped pointers)

Floating point data of 4, 8, or 10 bytes
(SIMD vector data types of 8, 16, 32 or 64 bytes)
Code: Byte sequences encoding series of instructions

No aggregate types such as arrays or structures

= Just contiguously allocated bytes in memory

20

Assembly: Data Types

m “Integer’ data of 1, 2, 4, or 8 bytes

= Data values

" Addresses (untyped pointers)
Register names

/\

addq %»rbx, Z%rax
is

rax += rbx

These are 64-bit registers, so
we know this is a 64-bit add

21

x860-64 Integer Registers

srax %eax
$rbx $ebx
Ircx %ecx
$rdx $edx
srsi %esi
Srdi sedi
3rsp %esp
srbp %ebp

%$r8 $r8d

$r9 $r9d

%rl0 $rlod
srll srlld
$rl2 sri2d
%rl3 $rl13d
$rl4d srldad
$rl5 $rl15d

= (Can reference low-order 4 bytes (also low-order 1 & 2

bytes)

= Not part of memorv (or cache)

22

Some History: I1A32 Registers Origin

(mostly obsolete)

—
Teax $ax %ah %al accumulate
$ecx $cx %$ch Scl counter

2

= edx %dx | %dh 3dl data

Q

= <

©

o sebx $bx $bh $bl base

c

)

o o : 0 s source
ceS1l oS1 indesx
o : o A3 destination

L (] edl sdi index
0 o stack
°eSp L pointer

base
sebp $bp _
pointer
\)
Y

16-bit virtual registers

(backwards compatibility) 2

Assembly: Operations

m Transfer data between memory and register

= |[oad data from memory into register

= Store register data into memory

m Perform arithmetic function on register or memory data

m Transfer control

" Unconditional jumps to/from procedures
= Conditional branches

" |ndirect branches

24

Moving Data

m Moving Data

ource, Dest

m Operand Types

Immediate: Constant integer data
= Example: $0x400, $-533
= Like C constant, but prefixed with ‘$’
= Encoded with 1, 2, or 4 bytes

= Register: One of 16 integer registers

= Example: $rax, %rl3

= But $rsp reserved for special use

= Simplést example: (%$rax)

= Various other “addressing modes”

$rax

$rcx

$rdx

$rbx

$rsi

$rdi

3rsp

srbp

$rN

= Qthers have special uses for particular instructions
consecutive bytes of memory at address given by register

Warning: Intel docs use
mov Dest, Source

25

movqg Operand Combinations

movqg <

Source

-
Imm

Reg

\ Mem

1
1

Dest

Reg

Mem

Reg
Mem

Reg

Src,Dest

movq

movq

movqg %rax,srdx

movqg %rax, (%rdx)

movqg (%$rax) ,%rdx

$S0x4,%rax

$-147, (%$rax)

C Analog
temp = 0x4;
*p = -147;
temp2 = templ;
*p = temp;
temp = *p;

Cannot do memory-memory transfer with a single

instruction

26

Simple Memory Addressing
Modes

= Normal (R) Mem|[Reg|[R]]

= Register R specifies memory address

= Aha! Pointer dereferencing in C

movq (3%rcx) ,h Srax

m Displacement D(R) Mem|[Reg|[R]+ D]
" Register R specifies start of memory region

= Constant displacement D specifies offset

movqg 8 (%$rbp) , 3rdx

27

Activity 1

If you didn’t do at the start of class:

login to a shark machine, then type

wget http://www.cs.cmu.edu/~213/activities/gdb-and-assembly.pdf
wget http://www.cs.cmu.edu/~213/activities/gdb-and-assembly. tar
tar xf gdb-and-assembly. tar

cd gdb-and-assembly

Now run the program by typing ./actl
and follow its instructions for rerunning it inside GDB.

28

Understanding Swap()

void swap

(long *xp, long *yp)
{
long t0 = *xp;
long tl = *yp;
*yp = t0;
}
Register Value
Srdi Xp
$rsi yp swap:
Srax t0 movq
Srdx tl movq
movq
movq

ret

Registers
$rdi [
$rsi
$rax
$rdx

$rdi), %Srax
$rsi), %rdx
$rdx, (%rdi)
$rax, (%rsi)

3 3

Memory
t0 = *xp
tl = *yp
*xp = tl
*yp = t0

31

Understanding Swap()

Registers

srdi| 0x120

$rsi 0x100

$rax

$rdx

swap:
movqg
movq
movq
movqg
ret

(%rdi) , Srax
$rsi), %rdx

$rdx,
$rax,

(%$rdi)
$rsi)

Memory
Address
123 | 0x120
0x118
0x110
0x108
456 | 0x100
t0 = *xp
t1l = *yp
*xp = tl
*yp = t0

32

Understanding Swap()

Registers

srdi| 0x120

$rsi 0x100

$rax 123

$rdx

swap:
movqg
movq
movq
movqg
ret

(%rdi) , Srax
$rsi), %rdx

$rdx,
$rax,

(%$rdi)
$rsi)

Memory
Address
123 | 0x120
0x118
0x110
0x108
456 | 0x100
t0 = *xp
t1l = *yp
*xp = tl
*yp = t0

33

Understanding Swap()

Registers

srdi| 0x120

$rsi 0x100

Srax 123

Frdx 456 |€

swap:
movqg
movqg
movq
movqg
ret

(%rdi) , Srax
$rsi), %rdx
$rdx, (%rdi)
$rax, (%rsi)

Memory
Address
123 | 0x120
0x118
0x110
0x108
456 | 0x100
t0 = *xp
tl = *yp
*xp = tl
*yp = t0

34

Understanding Swap()

Registers

srdi| 0x120

$rsi 0x100

Srax 123

$rdx 456

swap:
movqg
movq
movqg
movqg
ret

%$rdi) ,
%$rsi),
$rdx,
$rax,

$rax
$rdx
$rdi)
$rsi)

Memory
Address
456 | 0x120
0x118
0x110
0x108
456 | 0x100
t0 = *xp
t1l = *yp
*xp = t1
*yp = t0

35

Understanding Swap()

Registers

srdi| 0x120

$rsi 0x100

Srax 123

$rdx 456

swap:
movqg
movq
movq
movqg
ret

(%rdi) , Srax
$rsi), %rdx

$rdx,
$rax,

(%$rdi)
grsi)

Memory
Address
456 | 0x120
0x118
0x110
0x108
0x100
t0 = *xp
t1l = *yp
*xp = tl
*yp = t0

36

Complete Memory Addressing Modes

m Most General Form
D(Rb,Ri,S) Mem|Reg[Rb]+S*Reg|Ri]+ D]
= D: Constant “displacement” 1, 2, or 4 bytes
= Rb: Base register: Any of 16 integer registers
= Ri: Index register: Any, except for $rsp
" S: Scale: 1, 2, 4, or 8 (why these numbers?)

m Special Cases
(Rb,Ri) Mem|[Reg[Rb]+Reg|Ri]]
D(Rb,Ri) Mem|[Reg[Rb]+Reg|Ri]+D]
(Rb,Ri,S) Mem|Reg[Rb]+S*Reg|Ri]]

37

Address Computation Instruction

m leaq Src, Dst

" Src is address mode expression

= Set Dst to address denoted by expression

m Uses
*= Computing addresses without a memory reference
= E.g., translation of p = &x[i];

= Computing arithmetic expressions of the form x + k*y
=k=1,2 4 0r8

38

Activity 2

m Launch activity 2 by typing gdb

m Thenin gdb type r s
and follow the instructions.

./act?2

39

Address Computation Instruction

m leaq Src, Dst

" Src is address mode expression

= Set Dst to address denoted by expression

m Uses

*= Computing addresses without a memory reference
= E.g., translation of p = &x[i];

= Computing arithmetic expressions of the form x + k*y
=k=1,2 4 0r8

m Example from Activity 2

}°ng mi2(Song x) Converted to ASM by compiler:

return x*12;

}

leaqg (%rdi,%rdi,2),
salg $2, %rax

$rax

t = x+2*x
return t<<2

40

Address Computation Examples

ard 0x£000 D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]
crax x " D: Constant “displacement” 1, 2, or 4 bytes
S rox 0x0100 - RP: Base regi?ter: Any of 16 integer registers
" Ri: Index register: Any, except for $rsp
=S Scale: 1, 2, 4, or 8 (why these numbers?)
Expression Address Computation Address

0x8 (%$rdx)

$rdx, $rcx)

(%rdx, $rcx,4)

0x80 (,%rdx, 2)

41

Address Computation Examples

$rdx 0x£f000

$rcx 0x0100

Expression Address Computation Address

0x8 ($rdx) 0x£f000 + 0x8 0x£008
$rdx, $rcx) 0x£f000 + 0x100 0x£100
$rdx, %rcx,4) Ox£f000 + 4*0x100 |(0x£f400
0x80 (,%rdx,2) 2*0xf000 + 0x80 0x1e080

Today: Machine Programming I:
Basics

History of Intel processors and architectures

O
m Assembly Basics: Registers, operands, move
m Arithmetic & logical operations

O

C, assembly, machine code

Some Arithmetic Operations

m Two Operand Instructions:

Format
addg
subg
imulg
salqg
sarqg
shrqg
X0rqg
andg

orqg

Computation

Src,Dest Dest = Dest + Src
Src,Dest Dest = Dest — Src
Src,Dest Dest = Dest * Src
Src,Dest Dest = Dest << Src
Src,Dest Dest = Dest >> Src
Src,Dest Dest = Dest >> Src
Src,Dest Dest = Dest "~ Src
Src,Dest Dest = Dest & Src
Src,Dest Dest = Dest | Src

Also called shlq
Arithmetic
Logical

m Watch out for argument order! Src,Dest
(Warning: Intel docs use “op Dest,Src'’)

m No distinction between signed and unsigned int

l\AIl‘I\l?\

44

Some Arithmetic Operations

m One Operand Instructions

incg
decqg

negqg
notqg

Dest
Dest
Dest
Dest

Dest =Dest +1
Dest = Dest -1
Dest = — Dest
Dest = ~“Dest

m See book for more instructions

45

Quiz Timel

Check out:
Day 3 — Machine Programming Basics

https://canvas.cmu.edu/courses /42532 /quizzes /12720
.

46

https://canvas.cmu.edu/courses/42532/quizzes/127207
https://canvas.cmu.edu/courses/42532/quizzes/127207

Arithmetic Expression Example

long arith

(long x,

{

long t1l
long t2
long t3
long t4 =
long t5 =
long rval

long y, long z)

xX+y;

z+tl;

x+4;

y * 48;

t3 + t4;

= t2 * t5;

return rval;

arith:
leaq $rdi,%$rsi), %rax
addg $rdx, Srax
leaq %$rsi,%rsi,2), %rdx
salqg $4, %$rdx
leaq 4 (%rdi,%rdx), %rcx
imulqg Ircx, srax
ret

Interesting Instructions
" leaq: address computation
" salq: shift
" imulq: multiplication

= But, only used once

47

Understanding Arithmetic
Expression Example

long arith

(long x,

{

long t1l
long t2
long t3
long t4 =
long t5 =
long rval

long y, long z)

xX+y;

z+tl;

x+4;

y * 48;

t3 + t4;

= t2 * t5;

return rval;

arith:
leaq $rdi,%$rsi), %rax # tl
addg $rdx, %Srax # t2
leaq %$rsi,%rsi,2), %rdx
salqg $4, %rdx # t4
leaq 4 (%rdi,%$rdx), %rcx # t5
imulq $rcx, %rax # rval

ret

Regster | Usel)

$rdi
$rsi

$rdx

$rax

$rcx

Argument x
Argument y

Argument z,
t4

tl, t2, rval
t5

48

Today: Machine Programming I:
Basics

History of Intel processors and architectures

O
m Assembly Basics: Registers, operands, move
m Arithmetic & logical operations

O

C, assembly, machine code

Turning C into Object Code

" Code in files pl.c p2.c

= Compile with command: gecc -Og pl.c p2.c -0 p

= Use debugging-friendly optimizations (-0g)

= Put resulting binary in file p

text

text

binary

binary

C program (pl.c p2.c)

Compiler (gcc -Og -S)

\ 4

Asm program (pl.s p2.s)

Assembler (gcc —c or as)

v

Object program (pl.o p2.0)

Static libraries

(.a)

Linker (gcc or 1d)

A\ 4

Executable program (p)

50

Compiling Into Assembly

C Code (sum.c) Generated x86-64 Assembly
long plus(long x, long y) sumstore:
pushqg $rbx
void sumstore(long x, long vy, movq srdx, %rbx
long *dest) call plus
{ movq $rax, (%rbx)
long t = plus(x, y): popq $rbx
*dest = t; ret

Obtain (on shark machine) with command
gcc -0g -S sum.c
Produces file sum. s

Warning: Will get very different results on non-Shark
machines (Andrew Linux, Mac 0S-X, ...) due to different
versions of gcc and different compiler settings.

51

What it really looks like

.globl sumstore
.type sumstore, @function
sumstore:
.LFB35:
.cfi_ startproc
pushq S%rbx
.cfi def cfa offset 16
.cfi offset 3, -16
movq srdx, S%rbx
call plus
movq $rax, (%rbx)
PoPrPgq srbx
.cfi def cfa offset 8
ret
.cfi _endproc
.LFE35:

.size sumstore, .-sumstore

52

What it

sumstore:
pushq

movq
call

movq

popq

ret

really looks like
Things that look weird
and are preceded by a “’
are generally directives.

Srbx
sumstore:
pushq $rbx
o o

srdx, %rbx movq srdx, %rbx
plus call flus -

mov %$rax $rbx
srax, (%rbx) E i)

o) %$rbx

Srbx POoPq °

ret

53

Object Code

Code for sumstore
m Assembler

0x0400595: .
||
0x53 Translates .s into .o
0x48 = Binary encoding of each instruction
0x89 = Nearly-complete image of executable code
0xd3 .. : .)
0§e8 = Missing linkages between code in different
Oxf2 files
Oxff m Linker
Oxff .
Ox £ £ = Resolves references between files
0x48 Total of 14 bytes " Combines with static run-time libraries
0x89 ° Eachinstruction = E.g., code formalloc, printf
0x03 1,3, or5bytes Some libraries are dynamically linked
= Some libraries are dynamically linke
Ox5b o Starts at address T 4 4 |
Oxc3 0x0400595 = Linking occurs when program begins

execution

54

Machine Instruction Example

*dest = t;

movq 3rax, (%rbx)

0x40059%9e: 48 89 03

m C Code

= Store value t where designated by
dest

m Assembly
" Move 8-byte value to memory
= Quad words in x86-64 parlance

= Operands:
t: Register $rax

dest: Register $rbx
*dest: Memory M[%rbx]

m Object Code

= 3-byte instruction
" Stored at address 0x40059e

55

Disassembling Object Code

Disassembled

0000000000400595 <sumstore>:
400595: 53 push $rbx
400596: 48 89 d3 mov $rdx, $rbx
400599: e8 f2 ff ff ff callg 400590 <plus>
40059e: 48 89 03 mov $rax, (%$rbx)
4005al: 5b pop $rbx
4005a2: c3 retqg

m Disassembler
objdump -d sum
= Useful tool for examining object code
" Analyzes bit pattern of series of instructions

" Produces approximate rendition of assembly code
" Can be run on either a.out (complete executable) or .o file

56

Alternate Disassembly

Disassembled

0x0000000000400595
0x0000000000400596
0x0000000000400599
0x000000000040059%9e
0x00000000004005a1
0x00000000004005a2

<+0>: push
<+1>: mov
<+4>: callq
<+9>: mov
<+12>:pop
<+13>:retq

Dump of assembler code for function sumstore:

%rbx

%$rdx, $rbx
0x400590 <plus>
$rax, (%rbx)
%rbx

m Within gdb Debugger

= Disassemble procedure

gdb sum

disassemble sumstore

57

Alternate Disassembly

Disassembled

Object
Code

0x0400595:
0x53
0x48
0x89
0xd3
Oxe8
Oxf2
Oxff
Oxff
Oxff
0x48
0x89
0x03
0x5b
Oxc3

Dump of assembler code for function sumstore:

0x0000000000400595
0x0000000000400596
0x0000000000400599
0x000000000040059%9e
0x00000000004005a1
0x00000000004005a2

<+0>: push $rbx

<+1>: mov $rdx, $rbx

<+4>: callg 0x400590 <plus>
<+9>: mov $rax, ($rbx)
<+12>:pop $rbx
<+13>:retq

m Within gdb Debugger

= Disassemble procedure

gdb sum

disassemble sumstore

= Examine the 14 bytes starting at sumstore

x/14xb sumstore

58

What Can be Disassembled?

% objdump -d WINWORD.EXE
WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:

30001000

30001001 : : : :

30001003 : Reverse engineering forbidden by
30001005: Microsoft End User License Agreement
3000100a:

m Anything that can be interpreted as executable code

m Disassembler examines bytes and reconstructs assembly
source

59

Machine Programming |: Summary

m History of Intel processors and architectures
" Evolutionary design leads to many quirks and artifacts
m C, assembly, machine code

" New forms of visible state: program counter, registers, ...

= Compiler must transform statements, expressions, procedures
into low-level instruction sequences

m Assembly Basics: Registers, operands, move

= The x86-64 move instructions cover wide range of data
movement forms

m Arithmetic

= C compiler will figure out different instruction combinations to
carry out computation

60

