Introduction to Linux Shell

15-213/15-513/14-513:

Introduction to Computer Systems

Linux Shell

- Theshellis a program that takes commands from the keyboard and gives them to the
operating system to perform

- Computers “think” in text commands
- Write commands using a “Command Line Interface” (CLI), often called a “termina
- Say the basics of being in a directory, include slide

|”

What is linux?

- On most Linux systems a program called bash acts as the shell
- Other shell programs which include: sh, ksh, tcsh and zsh.

The Basics: Directories

Two commands commonly used to work with the current working directory:
e pwd - printworkingdirectory
o This tells you what directory you are currently in

e cd-changedirectory
o This lets you change into a different directory

Important Directory Names:
e ~ -thehomedirectory
~andrewid - the home directory of user “andrewid”
. —the current directory
- the parent directory (the directory right above the current one)
/ -therootdirectory (the main directory that has no parent)

Manual pages (man pages)

e Ifyouare ever unsure about a command one helpful resource is to utilize man pages
e $ man <command>

o Givesinformation on what acommand does and what options you can give it.
e Youcansearch through aman page by typing: /thing i want to_find

o Advance from one match to the next by pressing n
e Most commands have a --help or -h option that will print out a help message

For more information about the man command, enter:

$ man man

Transferring files between machines

scp: a secure way to copy files between 2 machines

$ scp user@alpha.com:/somedir/somefile.txt user@beta.com:/anotherdir
Remote to Local $ scp username@from_host:file.txt /local/directory/
Local to Remote $ scp file.txt username@to_host:/remote/directory/

Remote to Remote $ scp username@from_host:/remote/file.txt username@to_host:/remote/directory/

Flags
-r: recursive [useful for copying directories]

"V vet.’bose mode [useful for debugging] directory from your local machine, use. as the file path.
-q: quiet [useful for when updated messages are not needed] See slide about DIRECTORIES for more.

NOTE: If you are copying a file to a current directory,
use. as the file path. If you are recursively copying a

Managing your files

Managing files: Moving, creating & deleting files

cp <source> <destination> - copy files

mv <source> <destination>-move and rename files

rm <filename>- PERMANENTLY delete files

rmdir <filename>- PERMANENTLY delete empty directory
mkdir <directory>-make directories

touch <file>-create anempty file

List the files in the current directory:
o 1s [path] - listingfiles
o tree [path] -recursively listingfiles

WHAT NOT TO DO

-rf /
-rf *
-rf .
/home/user/* /dev/null
e What NottoDo Part 1
e What Not to Do Part 2

2843

https://www.tecmint.com/10-most-dangerous-commands-you-should-never-execute-on-linux/
https://www.howtogeek.com/125157/8-deadly-commands-you-should-never-run-on-linux/

Hidden & Temporary Files

E325: ATTENTION
Found a swap file by the name ".hat.txt.swp"

owned by: alhoffma dated: Sun Jun 14 09:12:24 2020
file name: ~alhoffma/private/hat.txt

modified: YES

user name: alhoffma host name: unix6.andrew.cmu.edu
process ID: 23658

While opening file "hat.txt"

dated: Sun Jun 14 ©9:12:09 2020

(1) Another program may be editing the same file. If this is the case,
be careful not to end up with two different instances of the same
file when making changes. Quit, or continue with caution.

(2) An edit session for this file crashed.

If this is the case, use ":recover” or "vim -r hat.txt"
to recover the changes (see ":help recovery").
If you did this already, delete the swap file ".hat.txt.swp™

to avoid this message.

Swap file ".hat.txt.swp" already exists
[0]pen Read-Only, (E)dit anyway, (R)ecover, (D)elete it, (Q)uit, (A)bort:

e Hidden files begin with a. and are hidden unless you specify a command for -a (all)

Swap Files **applies to vim**

malloc.c

.malloc.c.swp

e Acopy of an old version of a file that was not properly saved

e Solution:

o Delete swap file from command line

Open Read Only
Useful for when
you only want to
view contents

Edit anyway
Be careful! If the file is
being edited in
another vim session,
you will have 2
versions

Recover Delete it
Useful for when Useful for when
you know the swap you no longer
file contains the need the file
changes you want
to recover

Quit Abort
Useful to not edit Useful to close any
the current file open vim sessions
but want to keep
other vim
sessions open

Tar

A way to archive files in 1 bundle (and compress them)

Flags

-C: create a tarball
-X: open a tarball

-Z: zipped using gzip

-v: verbose mode [displays progress]

-f: specify file name

tar
tar
tar

tar

-cf
-cf
-cf
-xf

name-of-archive. tar
name-of-archive.tar
name-of-archive. tar

name-of-archive. tar

/path/to/dir/ compressdirectory
/path/to/filename compress file
dir1 dir2 dir3 compress multiple directories

open a tar file in current directory

This might be helpful for bootcamp labs!

Text Processing

$ sort sortlines of text file
-d: dictionary order -f:ignore case

$ cat concatenatesinputs and prints on the screen
$ uniq reportsor omits repeated lines

$ head/tail printsfirst (or last) lines of afile
-bx: print out first (or last) x bytes

-n: numeric sort —Ir:reverse

-nx: print out first (or last) x lines

Other helpful aspects of a shell

File Redirection

Syntax Meaning

command < file.txt Read the stdin of “command” from “file.txt”

command > file.txt Send the stdout of “command” to “file.txt”, overwriting its contents
command >> file.txt Append the stdout of “command” to the end of “file.txt”

command 2> file.txt Send the stderr of “command” to “file.txt”, overwriting its contents
command 2>> file.txt Append the stderr of “command” to the end of “file.txt”

Example*:

'hello.txt' doesn't exist, so it will be created
$ echo "Hello" > hello.txt
$ cat hello.txt

Hello *more on echo at theend:)

Grep (Global Regular Expression Print)

grep searches for patterns in a file [if no file is provided, all files are recursively searched]

S grep [OPTION...] PATTERNS [FILE...]

Standard Flags
-C: prints count of matching lines -n: display matches and line numbers
-h: display matches without filenames -e exp: specificies expression with this option
-i: ignores case for matching -f file: takes pattern from file
-l: displays list of only filenames -0: print only matching parts of lines
-r: read all files under each directory, recursively
Examples

S grep “test” *
S grep -r “test”
S grep -rc “test”

Pipes (])

e Pipesare away to chain together the output from one command with the input to another.
o Tocreate apipe, we use the Unix pipe character: |
Lets use grep to find words in the computer’s dictionary that contain the string “compute
$ grep compute /usr/share/dict/words

»

>> compute
computer

Uncomputed
Pipe output of grep (on stdout) to the input of wc (on stdin)
$ grep “compute” /usr/share/dict/words | wc -1
>> 34 # Thus, 34 words have the word 'compute’ in them
e Using pipes effectively can reduce some incredibly hard problems down to one line of code

Lab Time!

http://tinyurl.com/r76fb5nj

What is git?

e git # GitHub

e Version control system
O Better than:

e using git this semester will (with high probability) be mandatory!!!

copy pasting code

emailing the code to yourself

taking a picture of your code and texting it to yourself
zipping the code and messaging it to yourself on facebook

style point deductions if you don’t use it

THISIS GIT: IT TRACKS COLLABORATIVE. LIORK
ON PROJECTS THROUGH A BEAUTIFUL
DISTRIBUTED GRAPH THEORY TREE. MODEL.

COOL. HOU DO WEVSE. IT?

NO IDEA. JUST MEMORIZE. THESE. SHELL
COMMANDS AND TYPE THEM TO SYNC UR
IF YOU GET ERRORS, SAVE YOUR WORK
ELSELHERE, DELETE THE. PROJECT
AND DOUNLOAD A FRESH COPY.

\

Configuring git

$ git config --global user.name "<Your Name>"
$ git config --global user.email “<Your Email>”
$ git config --global push.default simple

(Make sure the email is your Andrew ID, and make sure to add that email to your GitHub
account!)

To see the current set of configs: $§ git config --1list

Creating a Repository

e S git init turn the current folder into a new repository.
OR
e S git clone initialize a repository locally from a remote server

For example, in ~/private/15213:

$ mkdir datalab
S cd datalab

$ git init

Core Gameplay Loop

1. $ git add Stages files to be committed. Flags: --a (all files), -u (only previously added files)
Can also add specific files by listing them after ‘add’.
1. $ git commit -m “<MESSAGE>" Commit the changes in the staged files. Write descriptive,
meaningful messages for future you!

If repository is connected to remote server (like GitHub):
1. $ git push Push changes to a remote server.

If working with others on remote server:
0. $ git pull Pull changes from a server

Other Important Commands

e S git status shows key information such as current branch, “add”ed files, “commit”ed files not
yet pushed.

e S git log show commit history. Can use --decorate --graph --all to make it pretty.

e $ git diff shows the changes you’ve made

e $ git rm stages files to be removed.

$ git reset HEAD <FILE NAME> unstages “FILE_NAME” from the commit

Documentation for all commands: Git - Documentation (git-scm.com)

https://git-scm.com/doc

Chronomancy (The Greatest Magic of All!)

A Time Lord’s toolkit:
e $ git revert <COMMIT HASH>
o Creates a new commit where everything is the same as the commit with COMMIT_HASH
e $ git checkout <FILE NAME>
o Used to reset any changes made to a file to previous commit.
e $ git reset --hard <COMMIT HASH>
o Sets you back to COMMIT_HASH.
o Commits between COMMIT_HASH and present time will disappear.
e Many more ways to do similar and different things, all in Git documentation.

Time Magic is Dangerous!

e Uncommitted changes will be destroyed.

e Often cannot be undone

e $ git reset --hard
o Going back multiple commits will rewrite history and make crew members time-sick.
o Last resort that should only be used in private repos. Revert is safer.

Helpful Tips and Tricks

Permissions

e fs 1la:tounderstand permissions for a directory
e Permissions:

o r read o w editexisting files
o 1 list files and see basic information o k “lock” files so no one can edit them at the same time
o i create newfiles o a admin

o d deletefiles
e fs sa <directory> <user> <permission>: how to set permissionson afile or directory

S fs sa foo acarnegie rldwik

Recovering Lost Files
Oh no, I've deleted all of my files!
e Plan A: Git version control (revert old commit) or Github
e Plan B: CMU keeps a nightly snapshot of files in ~/0ldFiles

e Plan C: Run the following command to create ~/0ldFiles from backup:

S cd~
S fs mkmount OldFiles user.ANDREW_ID_HERE.backup

Wildcards

rm g*

1s b*.txt
cat Data???
tree [abc]*
[[:upper:]]*

*[1[:1lower:]]

*: Matches any characters
?: Matches any single character
[characters]*: Matches any character that is a member of the set characters.
['characters]: Matches any character that is NOT a member of the set characters.
More info: Wildcards (tidp.org)

remove all files starting with “g”

list all files that begin with “b” and end with “txt”

cat any file beginning with Data and has exactly 3 more characters
tree any files that begin with “a” “b” or “c”

references any file beginning with an upper case character

references any file that does not end with a lowercase letter

*this also works with any POSIX character classes!

https://tldp.org/LDP/GNU-Linux-Tools-Summary/html/x11655.htm

Processes

e Aprocessis aninstance of a running program.
o) Not the same as “program” or “processor”
A process is a currently executing command (or program), sometimes referred to as a job.
e Atany given time there may be a couple hundred or less processes running.
e Ifyou're running Linux or a Unix based machine you can run a number of different
commands:

o ps aux //thiswilldisplay a list of processes
o top //detailed information about all processes, threads, and more

Foreground vs Background Jobs

Ajobis a process that is currently running or has been stopped or terminated.
e Uniquejob ID (JID) to each job, and can be run in the foreground or the background
o Foreground job: ajob that occupies the terminal until it is completed
o Background job: a job that executes in the background and does not occupy the
terminal
m Abackground job can be run by writing a & at the end of the line
e Theshell canonly handle 1 foreground job and many background jobs at the same time

Commands related to jobs

jobs: lists the state of all jobs

g %n:brings current or specified job in foreground; nis JID

bg %n: places current or specified job in background; nis JID

CTRL + z:stopsforeground job and places it in the background as a stopped job [this job
can be restarted later]

e CTRL + c:sendsSIGINT to a foreground job and usually causes it to exit [it can never be
restarted]

Echo & sed commands

echo isusedtodisplay line of text/string that are passed as an argument

° S echo 1ls -1 | sh

o #Passes the output of "echo 1s -1"tothe shell, with the same result asasimplels -1
e sedcandoinsertion, deletion, search and replace (substitution)
e S sed 's/old word/new word/' file.txt

o s —substitution
o Substitutes‘old word’with‘'new word’in file.txt

Sources

https://www.tldp.org/LDP/abs/html/textproc.html

http://linuxcommand.org/Ic3 1ts0010.php

https://www.cs.cmu.edu/~15131/

https://www.cs.cmu.edu/~213

https://haydenjames.io/linux-securely-copy-files-using-scp/

https://www.tldp.org/LDP/abs/html/textproc.html
http://linuxcommand.org/lc3_lts0010.php
https://www.cs.cmu.edu/~15131/
https://www.cs.cmu.edu/~213
https://haydenjames.io/linux-securely-copy-files-using-scp/

Feedback:

https://forms.gle/w5yKdJ6BgN3nk42TA
https://forms.gle/w5yKdJ6BgN3nk42TA

