
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

14-513 18-613

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The Memory Hierarchy

15-213/18-213/15-513/18-613: Introduction to Computer Systems
10th Lecture, March 9th, 2021

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Announcements

 Midterm Exam Logistics (Tentative)

▪ Available Tuesday the 16th – Thursday the 18th

▪ 3 hours, download through upload

▪ The exam is what we’d typically give in 80 minutes, but we are
allowing extra time to handle technical issues and because, in this
mode, we aren’t rushed by class changes.

▪ Extra time, etc, provided according to accommodations

▪ Via Gradescope

▪ Permitted resources:

▪ Materials the course staff has supplied to you, e.g. via the official
course Web page, Canvas, or Autolab, including directly linked
materials, and the suggested/required textbooks. Additionally, those
books suggested by course staff on Piazza are allowed.

▪ Self-proctored

▪ Taking a break is okay, but it counts toward the 3 hour time limit and you
must avoid exposure to all but allowed resources during the break.

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exam Scope 1/4

• Bits, Bytes, and Ints: Student should be able to convert among 2s
complement, regular binary, hexadecimal, and decimal
representations; do arithmetic; recognize and manage overflow and
underflow and the numerical consequences; be able to recognize and
write out important bit patterns; articulate limits; as well as be able to
use C’s casting rules and do datalab-style problems.

• Floats: Student should be able to recognize and translate numbers from
into and out of IEEE-style representations, both normalized and
denormalized; do arithmetic upon IEEE-style numbers, including that
which crosses over the norm/denorm boundary and results in special
numbers, e.g. NaN, infinity; recognize and articulate special bit
patterns; round numbers; cast and compare among float and non-float
types using C’s rules; and do datalab style puzzles.

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exam Scope 2/4

• Machine programming: Students should be able to read and write basic
assembly, similar to the in class example, including that which requires
if statements, and loops (for, while, do). Students should be careful to
understand the behavior of mov operations from smaller into larger
registers, e.g. %edx to %rax, set operations and movzbl and similar, and
lea vs mov. Students should also be familiar with the condition flags,
how and when they are set, and how they are used.

• Stack and calling convention: Students should understand the calling
convention, including how registers are used to pass arguments, how
caller- and callee- saved registers are managed across function calls,
and how the stack is layed, for example, w.r.t. How, where, and in
which stack frame (caller vs callee) allocations occur and what it looks
like in assembly, e.g. local variables, arguments, and return address.

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exam Scope 3/4

• Data representation: Students should understand how arrays (dynamic
and static) are represented in memory, how they are accessed in C and
assembly, and what row-major ordering is and that it is used. They
should understand how structs are organized in memory and how they
are accessed in C and assembly. They should understand alignment, the
alignment rules, and how this affects data, especially structs. They
should understand to use sizeof() in C and why. They should be able to
read and write code, in assembly and C, to access complex types, e.g.
arrays of structs or structs containing arrays, or even arrays containing
structs containing arrays. Students should be cautions about type sizes,
e.g. statically allocated arrays vs pointers vs scalar types.

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exam Scope 4/4

 Caching: Students should understand the organization of direct and set-
associative caches and be able to draw a figure representing the cache
organization from the parameters. Given all but one of the parameters
for a cache, students should be able to derive the missing parameter.
Given a cache configuration and a set of memory accesses, students
should be able to simulate the accesses to identify the hits, misses, and
associated rates. Given C or assembly code which accesses memory
within one or more loops, possibly nested, students should be able to
estimate the hit or miss rate. Students should understand why the miss
rate is a more intuitive metric than the hit rate. Given cache performance
parameters, e.g. miss rates, and access times, students should be able to
compute the effective memory access time.

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 The memory abstraction
 RAM : main memory building block
 Locality of reference
 The memory hierarchy
 Storage technologies and trends

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Writing & Reading Memory

 Write
▪ Transfer data from CPU to memory
movq %rax, 8(%rsp)

▪ “Store” operation

 Read
▪ Transfer data from memory to CPU
movq 8(%rsp), %rax

▪ “Load” operation

From 5th lecture

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Traditional Bus Structure Connecting
CPU and Memory

 A bus is a collection of parallel wires that carry address,
data, and control signals.

 Buses are typically shared by multiple devices.

Main
memory

I/O
bridge

Bus interface

ALU

Register file

CPU chip

System bus Memory bus

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Read Transaction (1)

 CPU places address A on the memory bus.

ALU

Register file

Bus interface

A
0

Ax

Main memory
I/O bridge

%rax

Load operation: movq A, %rax

CPU chip

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Read Transaction (2)

 Main memory reads A from the memory bus, retrieves
word x, and places it on the bus.

ALU

Register file

Bus interface

x 0

Ax

Main
memory

%rax

I/O bridge

Load operation: movq A, %rax

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Read Transaction (3)

 CPU read word x from the bus and copies it into register
%rax.

ALU

Register file

Bus interface x

Main memory
0

A

%rax

I/O bridge

Load operation: movq A, %rax

x

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Write Transaction (1)

 CPU places address A on bus. Main memory reads it and
waits for the corresponding data word to arrive.

y
ALU

Register file

Bus interface

A

Main memory
0

A

%rax

I/O bridge

Store operation: movq %rax, A

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Write Transaction (2)

 CPU places data word y on the bus.

y
ALU

Register file

Bus interface

y

Main memory
0

A

%rax

I/O bridge

Store operation: movq %rax, A

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Write Transaction (3)

 Main memory reads data word y from the bus and stores
it at address A.

y
ALU

Register file

Bus interface y

Main memory
0

A

%rax

I/O bridge

Store operation: movq %rax, A

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 The memory abstraction
 RAM : main memory building block
 Locality of reference
 The memory hierarchy
 Storage technologies and trends

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Random-Access Memory (RAM)

 Key features
▪ RAM is traditionally packaged as a chip.

▪ or embedded as part of processor chip

▪ Basic storage unit is normally a cell (one bit per cell).

▪ Multiple RAM chips form a memory.

 RAM comes in two varieties:
▪ SRAM (Static RAM)

▪ DRAM (Dynamic RAM)

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

RAM Technologies

 DRAM

 1 Transistor + 1
capacitor / bit

▪ Capacitor oriented
vertically

 Must refresh state
periodically

 SRAM

 6 transistors / bit

 Holds state indefinitely
(but will still lose data
on power loss)

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

SRAM vs DRAM Summary

 Trends
▪ SRAM scales with semiconductor technology

▪ Reaching its limits

▪ DRAM scaling limited by need for minimum capacitance

▪ Aspect ratio limits how deep can make capacitor

▪ Also reaching its limits

Trans. Access Needs Needs
per bit time refresh? EDC? Cost Applications

SRAM 6 or 8 1x No Maybe 100x Cache memories

DRAM 1 10x Yes Yes 1x Main memories,
frame buffers

EDC: Error detection and correction

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Enhanced DRAMs

 Operation of DRAM cell has not changed since its invention
▪ Commercialized by Intel in 1970.

 DRAM cores with better interface logic and faster I/O :
▪ Synchronous DRAM (SDRAM)

▪ Uses a conventional clock signal instead of asynchronous control

▪ Double data-rate synchronous DRAM (DDR SDRAM)

▪ Double edge clocking sends two bits per cycle per pin

▪ Different types distinguished by size of small prefetch buffer:

– DDR (2 bits), DDR2 (4 bits), DDR3 (8 bits), DDR4 (16 bits)

▪ By 2010, standard for most server and desktop systems

▪ Intel Core i7 supports DDR3 and DDR4 SDRAM

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Conventional DRAM Organization

 d x w DRAM:

▪ d⋅ w total bits organized as d supercells of size w bits

cols

rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip (toy example)

addr

data

supercell

(2,1)

2 bits

/

8 bits

/

Memory

controller
(to/from CPU)

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading DRAM Supercell (2,1)
Step 1(a): Row access strobe (RAS) selects row 2.

Step 1(b): Row 2 copied from DRAM array to row buffer.

Cols

Rows

RAS = 2
0 1 2 3

0

1

2

Internal row buffer

16 x 8 DRAM chip

3

addr

data

2

/

8

/

Memory

controller

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading DRAM Supercell (2,1)
Step 2(a): Column access strobe (CAS) selects column 1.

Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually
back to the CPU.

Step 3: All data written back to row to provide refresh

Cols

Rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

CAS = 1

addr

data

2

/

8

/

Memory

controller

supercell

(2,1)

supercell

(2,1)

To CPU

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Modules

: supercell (i,j)

64 MB
memory module
consisting of
eight 8Mx8 DRAMs

addr (row = i, col = j)

Memory

controller

DRAM 7

DRAM 0

031 78151623243263 394047485556

64-bit word main memory address A

bits

0-7

bits

8-15

bits

16-23

bits

24-31

bits

32-39

bits

40-47

bits

48-55

bits

56-63

64-bit word

031 78151623243263 394047485556

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 The memory Abstraction
 DRAM : main memory building block
 Locality of reference
 The memory hierarchy
 Storage technologies and trends

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The CPU-Memory Gap
The gap between DRAM, disk, and CPU speeds.

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1985 1990 1995 2000 2003 2005 2010 2015

T
im

e
 (

n
s
)

Year

Disk seek time

SSD access time

DRAM access time

SRAM access time

CPU cycle time

Effective CPU cycle time

DRAM

CPU

SSD

Disk

Effective CPU cycle time:
accounts for parallelism
within CPU (e.g., multiple
cores per CPU)

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Locality to the Rescue!

The key to bridging this CPU-Memory gap is a fundamental
property of computer programs known as locality.

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Locality

 Principle of Locality: Programs tend to use data and
instructions with addresses near or equal to those they
have used recently

 Temporal locality:
▪ Recently referenced items are likely

to be referenced again in the near future

 Spatial locality:
▪ Items with nearby addresses tend

to be referenced close together in time

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Locality Example

 Data references
▪ Reference array elements in succession

(stride-1 reference pattern).

▪ Reference variable sum each iteration.

 Instruction references
▪ Reference instructions in sequence.

▪ Cycle through loop repeatedly.

sum = 0;

for (i = 0; i < n; i++)

sum += a[i];

return sum;

Spatial or Temporal
Locality?

temporal

spatial

temporal

spatial

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Qualitative Estimates of Locality
 Claim: Being able to look at code and get a qualitative

sense of its locality is a key skill for a professional
programmer.

 Question: Does this function have good locality with
respect to array a? int sum_array_rows(int a[M][N])

{

int i, j, sum = 0;

for (i = 0; i < M; i++)

for (j = 0; j < N; j++)

sum += a[i][j];

return sum;

}

Answer: yes
Stride-1 reference

pattern

Hint: array layout
is row-major order

• • •

a

[0]

[0]

a

[0]

[N-1]

• • •

a

[1]

[0]

a

[1]

[N-1]

• • •

a

[M-1]

[0]

a

[M-1]

[N-1]

• • •

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Locality Example

 Question: Does this function have good locality with
respect to array a?

int sum_array_cols(int a[M][N])

{

int i, j, sum = 0;

for (j = 0; j < N; j++)

for (i = 0; i < M; i++)

sum += a[i][j];

return sum;

}

Answer: no

Stride N reference
pattern

• • •

a

[0]

[0]

a

[0]

[N-1]

• • •

a

[1]

[0]

a

[1]

[N-1]

• • •

a

[M-1]

[0]

a

[M-1]

[N-1]

• • •

Note: If M is very small
then good locality. Why?

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Locality Example

 Question: Can you permute the loops so that the function
scans the 3-d array a with a stride-1 reference pattern
(and thus has good spatial locality)?

int sum_array_3d(int a[M][N][N])

{

int i, j, k, sum = 0;

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

for (k = 0; k < M; k++)

sum += a[k][i][j];

return sum;

}

Answer: make j the inner loop

$ time ./loopijk

real 0m2.765s

user 0m2.328s

sys 0m0.422s

$ time ./loopkij

real 0m1.651s

user 0m1.234s

sys 0m0.422s

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 The memory abstraction
 DRAM : main memory building block
 Locality of reference
 The memory hierarchy
 Storage technologies and trends

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Hierarchies

 Some fundamental and enduring properties of hardware
and software:
▪ Fast storage technologies cost more per byte, have less capacity,

and require more power (heat!).

▪ The gap between CPU and main memory speed is widening.

▪ Well-written programs tend to exhibit good locality.

 These fundamental properties complement each other
beautifully.

 They suggest an approach for organizing memory and
storage systems known as a memory hierarchy.

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example Memory
Hierarchy Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files
retrieved from disks
on remote servers.

L2 cache
(SRAM)

L1 cache holds cache lines retrieved
from the L2 cache.

CPU registers hold words retrieved
from the L1 cache.

L2 cache holds cache lines
retrieved from L3 cache.

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
costlier
(per byte)
storage
devices

L3 cache
(SRAM)

L3 cache holds cache lines
retrieved from main memory.

L6:

Main memory holds disk blocks
retrieved from local disks.

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Caches

 Cache: A smaller, faster storage device that acts as a staging
area for a subset of the data in a larger, slower device.

 Fundamental idea of a memory hierarchy:
▪ For each k, the faster, smaller device at level k serves as a cache for the

larger, slower device at level k+1.

 Why do memory hierarchies work?
▪ Because of locality, programs tend to access the data at level k more

often than they access the data at level k+1.

▪ Thus, the storage at level k+1 can be slower, and thus larger and
cheaper per bit.

 Big Idea (Ideal): The memory hierarchy creates a large pool
of storage that costs as much as the cheap storage near the
bottom, but that serves data to programs at the rate of the
fast storage near the top.

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General Cache Concepts

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

Smaller, faster, more expensive
memory caches a subset of
the blocks

4

4

4

10

10

10

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14
Block b is in cache:
Hit!

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memory

Request: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
•Replacement policy:

determines which block
gets evicted (victim)

Impact of spatial locality
on number of misses?

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General Caching Concepts:
3 Types of Cache Misses

 Cold (compulsory) miss
▪ Cold misses occur because the cache starts empty and this is the first

reference to the block.

 Capacity miss
▪ Occurs when the set of active cache blocks (working set) is larger than

the cache.

 Conflict miss
▪ Most caches limit blocks at level k+1 to a small subset (sometimes a

singleton) of the block positions at level k.

▪ E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.

▪ Conflict misses occur when the level k cache is large enough, but multiple
data objects all map to the same level k block.

▪ E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Examples of Caching in the Mem. Hierarchy

Hardware
MMU

0On-Chip TLBAddress translationsTLB

Web browser10,000,000Local diskWeb pagesBrowser cache

Web cache

Network buffer
cache

Buffer cache

Virtual Memory

L2 cache

L1 cache

Registers

Cache Type

Web pages

Parts of files

Parts of files

4-KB pages

64-byte blocks

64-byte blocks

4-8 byte words

What is Cached?

Web proxy
server

1,000,000,000Remote server disks

OS100Main memory

Hardware4On-Chip L1

Hardware10On-Chip L2

NFS client10,000,000Local disk

Hardware + OS100Main memory

Compiler0CPU core

Managed ByLatency (cycles)Where is it Cached?

Disk cache Disk sectors Disk controller 100,000 Disk firmware

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Quiz Time!

Check out:

https://canvas.cmu.edu/courses/20895

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 The memory abstraction
 RAM : main memory building block
 Locality of reference
 The memory hierarchy
 Storage technologies and trends

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Storage Technologies

 Magnetic Disks

 Store on magnetic
medium

 Electromechanical
access

 Nonvolatile (Flash)
Memory

 Store as persistent
charge

 Implemented with 3-D
structure

▪ 100+ levels of cells

▪ 3 bits data per cell

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What’s Inside A Disk Drive?
SpindleArm

Actuator

Platters

Electronics
(including a
processor
and memory!)SCSI

connector

Image courtesy of Seagate Technology

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Geometry

 Disks consist of platters, each with two surfaces.

 Each surface consists of concentric rings called tracks.

 Each track consists of sectors separated by gaps.

Spindle

Surface
Tracks

Track k

Sectors

Gaps

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Capacity

 Capacity: maximum number of bits that can be stored.
▪ Vendors express capacity in units of gigabytes (GB) or terabytes (TB),

where 1 GB = 109 Bytes and 1 TB = 1012 Bytes

 Capacity is determined by these technology factors:
▪ Recording density (bits/in): number of bits that can be squeezed into

a 1 inch segment of a track.

▪ Track density (tracks/in): number of tracks that can be squeezed into
a 1 inch radial segment.

▪ Areal density (bits/in2): product of
recording and track density.

Tracks

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Operation (Single-Platter View)

The disk surface
spins at a fixed
rotational rate

By moving radially, the arm can
position the read/write head
over any track.

The read/write head
is attached to the end
of the arm and flies over
the disk surface on
a thin cushion of air.

sp
in

d
le

spindle

sp
in

d
le

spindlespindle

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Operation (Multi-Platter View)

Arm

Read/write heads
move in unison
from cylinder to
cylinder

Spindle

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Access – Service Time Components

After BLUE read Seek for RED Rotational latency After RED read

Data transfer Seek Rotational
latency

Data transfer

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Access Time

 Average time to access some target sector approximated by:
▪ Taccess = Tavg seek + Tavg rotation + Tavg transfer

 Seek time (Tavg seek)
▪ Time to position heads over cylinder containing target sector.

▪ Typical Tavg seek is 3—9 ms

 Rotational latency (Tavg rotation)
▪ Time waiting for first bit of target sector to pass under r/w head.

▪ Tavg rotation = 1/2 x 1/RPMs x 60 sec/1 min

▪ Typical rotational rate = 7,200 RPMs

 Transfer time (Tavg transfer)
▪ Time to read the bits in the target sector.

▪ Tavg transfer = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min

time for one rotation (in minutes) fraction of a rotation to be read

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Access Time Example

 Given:
▪ Rotational rate = 7,200 RPM

▪ Average seek time = 9 ms

▪ Avg # sectors/track = 400

 Derived:
▪ Tavg rotation = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec = 4 ms

▪ Tavg transfer = 60/7200 x 1/400 x 1000 ms/sec = 0.02 ms

▪ Taccess = 9 ms + 4 ms + 0.02 ms

 Important points:
▪ Access time dominated by seek time and rotational latency.

▪ First bit in a sector is the most expensive, the rest are free.

▪ SRAM access time is about 4 ns/doubleword, DRAM about 60 ns

▪ Disk is about 40,000 times slower than SRAM,

▪ 2,500 times slower than DRAM.

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I/O Bus

Main
memory

I/O
bridge

Bus interface

ALU

Register file

CPU chip

System bus Memory bus

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor

Disk

I/O bus Expansion slots for
other devices such
as network adapters.

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading a Disk Sector (1)

Main
memory

ALU

Register file

CPU chip

Disk
controller

Graphics
adapter

USB
controller

mouse keyboard Monitor

Disk

I/O bus

Bus interface

CPU initiates a disk read by writing a
command, logical block number, and
destination memory address to a port
(address) associated with disk controller.

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading a Disk Sector (2)

Main
memory

ALU

Register file

CPU chip

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor

Disk

I/O bus

Bus interface

Disk controller reads the sector and
performs a direct memory access
(DMA) transfer into main memory.

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading a Disk Sector (3)

Main
memory

ALU

Register file

CPU chip

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor

Disk

I/O bus

Bus interface

When the DMA transfer completes,
the disk controller notifies the CPU
with an interrupt (i.e., asserts a
special “interrupt” pin on the CPU).

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Nonvolatile Memories

 DRAM and SRAM are volatile memories
▪ Lose information if powered off.

 Nonvolatile memories retain value even if powered off
▪ Read-only memory (ROM): programmed during production

▪ Electrically eraseable PROM (EEPROM): electronic erase capability

▪ Flash memory: EEPROMs, with partial (block-level) erase capability

▪ Wears out after about 100,000 erasings

▪ 3D XPoint (Intel Optane) & emerging NVMs

▪ New materials

 Uses for Nonvolatile Memories
▪ Firmware programs stored in a ROM (BIOS, controllers for disks,

network cards, graphics accelerators, security subsystems,…)

▪ Solid state disks (replacing rotating disks)

▪ Disk caches

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Solid State Disks (SSDs)

 Pages: 512KB to 4KB, Blocks: 32 to 128 pages

 Data read/written in units of pages.

 Page can be written only after its block has been erased.

 A block wears out after about 100,000 repeated writes.

Flash
translation layer

I/O bus

Page 0 Page 1 Page P-1…
Block 0

… Page 0 Page 1 Page P-1…
Block B-1

Flash memory

Solid State Disk (SSD)

Requests to read and
write logical disk blocks

DRAM
Buffer

Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

SSD Performance Characteristics
 Benchmark of Samsung 940 EVO Plus

 Sequential access faster than random access
▪ Common theme in the memory hierarchy

 Random writes are somewhat slower
▪ Erasing a block takes a long time (~1 ms).

▪ Modifying a block page requires all other pages to be copied to
new block.

▪ Flash translation layer allows accumulating series of small writes
before doing block write.

Sequential read throughput 2,126 MB/s Sequential write tput 1,880 MB/s
Random read throughput 140 MB/s Random write tput 59 MB/s

https://ssd.userbenchmark.com/SpeedTest/711305/Samsung-SSD-970-EVO-Plus-250GB

https://ssd.userbenchmark.com/SpeedTest/711305/Samsung-SSD-970-EVO-Plus-250GB

Carnegie Mellon

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

SSD Tradeoffs vs Rotating Disks

 Advantages

▪ No moving parts → faster, less power, more rugged

 Disadvantages
▪ Have the potential to wear out

▪ Mitigated by “wear leveling logic” in flash translation layer

▪ E.g. Samsung 940 EVO Plus guarantees 600 writes/byte of
writes before they wear out

▪ Controller migrates data to minimize wear level

▪ In 2019, about 4 times more expensive per byte

▪ And, relative cost will keep dropping

 Applications
▪ Smartphones, laptops

▪ Increasingly common in desktops and servers

Carnegie Mellon

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary

 The speed gap between CPU, memory and mass storage
continues to widen.

 Well-written programs exhibit a property called locality.

 Memory hierarchies based on caching close the gap by
exploiting locality.

 Flash memory progress outpacing all other memory and
storage technologies (DRAM, SRAM, magnetic disk)
▪ Able to stack cells in three dimensions

Carnegie Mellon

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Supplemental slides

Carnegie Mellon

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Metric 1985 1990 1995 2000 2005 2010 2015 2015:1985

$/MB 880 100 30 1 0.1 0.06 0.02 44,000

access (ns) 200 100 70 60 50 40 20 10

typical size (MB) 0.256 4 16 64 2,000 8,000 16.000 62,500

Storage Trends

DRAM

SRAM

Metric 1985 1990 1995 2000 2005 2010 2015 2015:1985

$/GB 100,000 8,000 300 10 5 0.3 0.03 3,333,333

access (ms) 75 28 10 8 5 3 3 25

typical size (GB) 0.01 0.16 1 20 160 1,500 3,000 300,000

Disk

Metric 1985 1990 1995 2000 2005 2010 2015 2015:1985

$/MB 2,900 320 256 100 75 60 320 116

access (ns) 150 35 15 3 2 1.5 200 115

Carnegie Mellon

65Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

CPU Clock Rates

1985 1990 1995 2003 2005 2010 2015 2015:1985

CPU 80286 80386 Pentium P-4 Core 2 Core i7(n) Core i7(h)

Clock

rate (MHz) 6 20 150 3,300 2,000 2,500 3,000 500

Cycle

time (ns) 166 50 6 0.30 0.50 0.4 0.33 500

Cores 1 1 1 1 2 4 4 4

Effective

cycle 166 50 6 0.30 0.25 0.10 0.08 2,075

time (ns)

Inflection point in computer history
when designers hit the “Power Wall”

(n) Nehalem processor
(h) Haswell processor

